
Efficient Dependency Graph Matching
with the IMS Open Corpus Workbench

Thomas Proisl, Peter Uhrig

University of Erlangen-Nürnberg
Interdisciplinary Centre for Research on Lexicography, Valency and Collocation

Bismarckstr. 1, 91054 Erlangen
thomas.proisl@linguistik.uni-erlangen.de, peter.uhrig@angl.phil.uni-erlangen.de

Abstract
State-of-the-art dependency representations such as the Stanford Typed Dependencies may represent the grammatical
relations in a sentence as directed, possibly cyclic graphs. Querying a syntactically annotated corpus for grammatical
structures that are represented as graphs requires graph matching, which is a non-trivial task. In this paper, we
present an algorithm for graph matching that is tailored to the properties of large, syntactically annotated corpora.
The implementation of the algorithm is built on top of the popular IMS Open Corpus Workbench, allowing corpus
linguists to re-use existing infrastructure. An evaluation of the resulting software, CWB-treebank, shows that its
performance in real world applications, such as a web query interface, compares favourably to implementations
that rely on a relational database or a dedicated graph database while at the same time offering a greater expres-
sive power for queries. An intuitive graphical interface for building the query graphs is available via the Treebank.info project.

Keywords: treebank, graph matching, dependency parsing

1. Introduction
Over the past few years, dependency parsers (or depen-
dency annotation schemes) have become more and more
popular in the NLP community. There is a wide range
of parsers and converters available (see for instance
Cer et al. (2010)) that allow the annotation of large
quantities of text which then in turn can be used in
information retrieval and similar tasks (e. g. biomedical
text mining, c. f. Schneider et al. (2009)). There is how-
ever a considerable lack of easy-to-use, freely available
interfaces that make the wealth of information pro-
vided by the parsers accessible to (non-computational)
linguists. One notable exception, though not tailored
specifically towards dependency graphs, is ANNIS2
(Zeldes et al., 2009), which however still needs some
specialist’s manual work to set up in conjunction with
freely available parsers for English. The Treebank.info
project (see next section) sets out to remedy this issue
and to provide access to parsed corpora for everyone
via an easy-to-use web interface. In order to be able
to find subgraphs in the dependency graphs within a
time-span acceptable to most users, CWB-treebank –
the piece of software described in the present paper –
was developed. It works as an add-on to the freely
available IMS Open Corpus Workbench and has been
made freely available via Launchpad.1

1.1. Treebank.info
The Treebank.info project2 (Uhrig and Proisl, 2011a;
Uhrig and Proisl, 2011b) allows users to upload their
own corpora in plain text format and then processes
the uploaded corpora in a pipeline consisting of sen-
tence splitting, tokenization, pos-tagging, lemmatiza-

1https://launchpad.net/cwb-treebank
2http://treebank.info

tion, phrase structure parsing, and dependency parsing.
All results are stored in a document database and then
the dependency graphs (so-called stemmata (Tesnière,
1966, 15)) and all item-specific information (see list-
ing 1) are exported to the Open Corpus Workbench,
on which CWB-treebank operates as the back-end to
the web-based query interface.

1.2. The IMS Open Corpus Workbench
The original IMS Corpus Workbench (Christ, 1994;
Christ and Schulze, 1996) was developed at the Institute
for Natural Language Processing in Stuttgart (IMS)
in the mid-1990s. The software is still under active
development and has been released under the GPL
as the IMS Open Corpus Workbench.3 One of the
key components of CWB is CQP, the Corpus Query
Processor, and its de facto standard query language
that is also supported by other systems, e. g. Manatee
(Rychlý, 2007). Besides its high speed, its efficient
indexing and powerful query language render the IMS
Open Corpus Workbench a promising basis for efficient
dependency graph matching, even though it was not
originally conceived for such a use case.

1.3. The problem
Although it is in principle usable with any dependency-
type representation, the current version of our software
makes use of Stanford Typed Dependencies (de Marn-
effe et al., 2006; de Marneffe and Manning, 2008b) in a
version in which conjunct dependencies are propagated.
Thus, the resulting graphs are not necessarily trees and
may even be cyclic (de Marneffe and Manning, 2008a,
18). Accordingly, it is not possible to use established,
efficient (i. e. requiring only polynomial time) meth-
ods for matching trees (see Shamir and Tsur (1999)

3http://cwb.sourceforge.net/

2750

https://launchpad.net/cwb-treebank
http://treebank.info

<s id=" HHB_2310 ">
The DT the DET |det (1, 0)| |
thought NN thought SUBST |nsubj (9, 0)| |det (0, -1)| prep_of (0, 3)| prep_of (0, 5)|
of IN of CONJ/PREP | |
soiled JJ soiled ADJ |amod (1, 0)| |
nappies NNS nappy SUBST | prep_of (-3, 0)| |amod (0, -1)| conj_and (0, 2)|
and CC and CONJ/PREP | |
vomit NN vomit SUBST | prep_of (-5, 0)| conj_and (-2, 0)| | prep_on (0, 3)|
on IN on CONJ/PREP | |
my PRP$ my PRON |poss (1, 0)| |
clothes NNS clothes SUBST | prep_on (-3, 0)| |poss (0, -1)|
gives VBZ give VERB | |nsubj (0, -9)| iobj (0, 1)| dobj (0, 3)|
me PRP me PRON |iobj (-1, 0)| |
the DT the DET |det (1, 0)| |
horrors NNS horror SUBST |dobj (-3, 0)| |det (0, -1)|
. . . PUNC | |
</s>

Listing 1: Vertical format for HHB 2310

for an overview). Since exactly matching a graph (or
tree) against a larger graph is an NP-complete problem
known as the subgraph isomorphism problem (Garey
and Johnson, 1979, 202) and thus becomes quickly
unfeasible for large graphs,4 the implementation pre-
sented here relies on known properties of dependency
graphs to reduce the search space and thus achieve
higher performance.
Earlier prototypes of the system behind the Tree-
bank.info project made use of relational databases (first
MySQL, later PostgreSQL) and then moved on to a
graph database (neo4j). However, as the evaluation
(section 3.) will show, the performance of both earlier
versions was not appropriate for interactive use over a
web interface so that a dedicated and specialised solu-
tion had to be created. As pointed out above, the IMS
Open Corpus Workbench appeared to be a suitable
basis for such an application, even though it does not
natively support syntactically annotated corpora.

2. Graph matching with the IMS
Open Corpus Workbench

2.1. Corpus format
The Open Corpus Workbench requires a corpus to be
available as verticalized text, i. e. in a format with
one token per line, “with the surface form in the first
column and token-level annotations specified as addi-
tional TAB-separated columns” (Evert and The OCWB
Development Team, 2010a, 2). Let us illustrate this
using the following example:5

4A large graph is a graph that contains “hundreds or
thousands of nodes” (Cordella et al., 2004, 1367), and
sentences or units analysed as sentences in authentic natural
language can easily exceed that number of tokens. Currently,
the Treebank.info project imposes a 200 word limit due
to the high memory requirements by parsers for longer
sentences.

5The example has been taken from the British National
Corpus (2007), distributed by Oxford University Computing

(1) The thought of soiled nappies and vomit on my
clothes gives me the horrors. [BNC: HHB 2310]

The Stanford Typed Dependencies analysis of exam-
ple sentence (1) is shown in figure 1. Listing 1 shows

gives

thought

nsubj

me

 iobj

horrors

dobj

The

det

nappies

 prep_of

vomit

prep_of

soiled

amod conj_and

clothes

 prep_on

my

 poss

the

 det

Figure 1: Stemma for HHB 2310

how the dependency relations between the words are
encoded using feature set attributes (Evert and The
OCWB Development Team, 2010b, 33–35). Incoming
dependencies are encoded in the fifth column, outgo-

Services on behalf of the BNC Consortium. All rights in
the texts cited are reserved.

2751

0 1 2 3
0 lemma = “give” relation = “iobj” relation = “dobj”
1 pos = “PRP”
2 pos = “NNS” relation = “det”
3 word = “the”

Table 1: Query as adjacency matrix

ing dependencies in the sixth column. Every depen-
dency relation consists of a relation type, e. g. “det”
or “prep_of”, and two relative offsets indicating the
tokens functioning as governor and dependent. The
feature amod(0, -1) in the sixth column of the token
“nappies”, for example, indicates that the current to-
ken (0) governs an adjectival modifier (amod) that is
immediately preceding (-1) it.

2.2. Query format
Dependency stemmata are represented as graphs. So in
order to be able to reap the full benefits of a treebank,
it should be possible to formulate queries as directed
graphs that describe a particular linguistic structure,
e. g. the lemma give in a ditransitive construction with
a personal pronoun as indirect object and a plural noun
with the determiner the as direct object. Using the
query interface of Treebank.info, such a query can be
formulated in an intuitive graphical way (cf. figure 2).
Internally, a query graph is represented as an adjacency
matrix (Cormen et al., 2009, 589–592).6 Table 1 shows
the matrix for our query. The nodes are represented
on the diagonal, outgoing dependencies are in the same
row as the node, incoming dependencies in the same
column. To send it across the network to the CWB-
treebank server, the matrix is serialized as a JSON7

object.
In the current implementation, the query graphs are
tailored to meet the needs of linguistic dependency
graphs: Between any two nodes, there can only be one
incoming and one outgoing dependency relation, i. e.
any field in the matrix can only hold one dependency
relation. This behavior is motivated by the fact that
for example a noun cannot be direct object and indirect
object of the same verb at the same time.8
To further increase the expressive power of the queries,
every restriction can contain regular expressions (al-
though the current frontend only makes use of regular
expressions on the wordform/lemma) and various fea-
tures can be negated, namely the wordform/lemma, the

6Given that our query graphs are typically quite small,
we can follow Cormen et al. (2009, 591), who argue that
although the alternative representation as an adjacency list
“is asymptotically at least as space-efficient as the adjacency-
matrix representation, adjacency matrices are simpler, and
so we may prefer them when graphs are reasonably small.”

7JavaScript Object Notation (JSON) is a text format for
the interchange of structured data described in RFC 4627
(Crockford, 2006).

8Of course, this restriction can easily be lifted if it is not
adequate for a given use case.

Figure 2: Query as dependency graph (screenshot from
Treebank.info)

pos/word class, and outgoing dependency relations. It
is thus possible with one single query to find all mono-
transitive uses of a given verb, i. e. sentences where
the verb governs a direct object but neither an indi-
rect object nor a prepositional phrase with “to” nor a
phrasal verb particle. In the case of verbs such as give,
this feature greatly improves precision since without
the possibility of negation, a lot of noise, i. e. the much
more frequent ditransitive uses, would also be retrieved.

2.3. The matching algorithm

In order to find the sentences that match the query
and all corpus positions within the sentences that cor-

2752

respond to nodes in the query graph, the following
strategy is pursued:

1. Only look at constraints on nodes (e. g. word form,
lemma, part-of-speech, word class, incoming/out-
going dependency relation) and find matching sen-
tences.

2. For every sentence, create a look-up table that
contains all the corpus positions that might corre-
spond to the nodes in the query.

3. Recursively remove all unconnected items from the
candidate lists and break if there are no candidates
left for a given node in the query.

4. Output all possible mappings of query nodes to
corpus positions.

2.3.1. Retrieving candidates
To keep the search space as small as possible and to
avoid having to match a query unnecessarily against a
large graph, we retrieve all candidate corpus positions
that might correspond to a node in the query graph
before we perform the actual matching. To do this,
we have to find all sentences that match the node re-
strictions and remember the matching corpus positions.
This can be done straightforwardly:
First, the frequencies of all the nodes in the query
graph are determined independently by using only the
restrictions on the nodes themselves, i. e. restrictions
on word form, lemma, part of speech, word class, type
of incoming or outgoing dependency relations. Then
the nodes are sorted by their frequencies in ascending
order. For the least frequent node, all matching cor-
pus positions and sentence IDs are determined using
a CQP query. The sentence IDs and corpus positions
are stored in a data structure, then the active corpus
in the Corpus Workbench is limited to the sentences
that matched the query. The procedure is repeated
on the restricted subcorpus for all remaining nodes in
the query graph. By always limiting the corpus to the
results of the previous query, the sentence IDs of the
last query represent all sentences in the corpus that
match all the node restrictions in the query graph. By
beginning this process with the least frequent node,
subcorpus size is minimized from the start.
Now, to find out whether these sentences also match
the whole query graph and to determine the possible
mappings of query nodes to corpus positions, the edges
connecting the nodes have to be taken into account.
So, for every sentence matching the node restrictions,
the subroutine match (algorithm 1) is called with three
arguments: the query graph, the index of the query
node with which to start, i. e. 0,9 and the candidate
corpus positions for each query node.

9For simplicity, we assume that the first node has index 0,
the second index 1, and so on. In practice, we follow Ullman
(1976, 34–35) who suggests that it might be advantageous to
order the nodes by decreasing degree, even though we were
unable to measure a significant improvement in response
time.

2.3.2. Filtering the corpus positions

Algorithm 1 Subroutine match
Input: queryGraph, index, candidates
Output: mappings of node indices from queryGraph

to corpus positions from candidates
1: if index > getLastIndex(queryGraph) then
2: output candidates
3: return
4: end if
5: queryDeps ← getDeps(queryGraph, index)
6: for each cpos in candidates[index] do
7: localCands ← candidates \ cpos
8: localCands[index]← cpos
9: corpusDeps ← getCorpusDeps(cpos)

10: corpusCands ← []
11: for each queryDep in queryDeps do
12: nodeIdx ← getGov(queryDep)
13: for each corpusDep in corpusDeps do
14: if queryDep == corpusDep then
15: nodeCpos ← getNodeCpos(corpusDep)
16: corpusCands[nodeIdx]←

corpusCands[nodeIdx] ∪ nodeCpos
17: end if
18: end for
19: end for
20: for idx = 0 to getLastIndex(queryGraph) do
21: if size(corpusCands[idx]) > 0 then
22: localCands[idx]← localCands[idx]∩

corpusCands[idx]
23: next cpos if size(localCands[idx]) == 0
24: end if
25: end for
26: match(queryGraph, index + 1, localCands)
27: end for

The match algorithm (algorithm 1) is similar to the
classic algorithm by Ullman (1976) and the VF2 algo-
rithm described in Cordella et al. (2004). A prominent
difference to these algorithms is the fact that part of the
work happening in the “refinement procedure” (Ullman,
1976, 33–35) or the “feasibility rules” (Cordella et al.,
2004, 1368–1369) has already been done during candi-
date retrieval which benefits from efficient indexing on
node properties.
In the match subroutine, the incoming and outgoing
dependency relations of the query node specified by the
value of index are retrieved from the query graph (5).
The algorithm loops over all corpus positions (cpos) that
are stored as candidates for the current query node (6).
Within the loop, a local copy of candidates is created,
in which the current cpos is removed from all nodes
(7). The only candidate for the current query node
is the current cpos (8). The incoming and outgoing
dependency relations of the node at the current corpus
position are stored in corpusDeps (9).
In line 11–18, all dependency relations in queryDeps are
compared with all dependency relations in corpusDeps.
If the two dependency relations are of the same type,
the corpus position of the node connected via this

2753

query PostgreSQL neo4j CWB-treebank
time sd time sd time sd

bachelor 0.41 s 0.20 s 4.98 s 2.81 s 5.95 s 3.11 s
confuse 4.77 s 0.27 s 19.95 s 8.20 s 7.41 s 3.69 s
creeps 195.36 s 5.19 s 934.33 s 100.51 s 11.20 s 1.83 s
way 927.63 s 14.87 s 343.39 s 276.90 s 31.79 s 4.36 s

Table 2: Average response times10

relation is added to the corpus-based list of candidates
(corpusCands).
The corpus positions in localCands and corpusCands
are then intersected (20–25). This way, corpus positions
that match the node restrictions but are not connected
to the current node are removed from the candidate
list. The updated list of candidates is then used in the
next recursion (26).
Once all query nodes have been processed, there re-
mains only one candidate per query node. These candi-
dates consitute one possible mapping of query nodes to
corpus positions and are output before the subroutine
returns (1–4).

["22" ,[["404" ,"405" ,"409" ,"408"] ,
["404" ,"405" ,"414" ,"413"]]]

Listing 2: Serialized output for a sentence with two
mappings

The serialized output (listing 2) for a sentence consists
of its sentence ID followed by a list of lists of corpus
positions. Within these lists of corpus positions, the
first corpus position corresponds to the first query node,
the second position to the second node and so on. This
data is sufficient for retrieving any kind of informa-
tion that might have been requested, e. g. word forms,
lemmata or the whole sentence.

3. Evaluation
In order to evaluate the performance of CWB-treebank,
it was compared to earlier implementations using Post-
greSQL as a relational database system and neo4j as
a native graph database.11 The hardware used was
an AMD Opteron 875@2.2 GHz Linux machine with
16GB of RAM and an U320 SCSI hard disk and should
thus be relatively close to real world applications, al-
though all systems will of course run faster on a modern
CPU.12 The corpus used for the evaluation was the 100

10In order to account for effects of memory mapping and
file system caching (and thus obtain measurements closer
to real world use cases), the four queries were executed in
all possible orders and server was shut down and the caches
were cleared after each round only.

11All measurements were taken with cold application
caches since a cached query returns almost instantaneously
in any of the systems so that differences are not noticeable
to users of a web frontend as long as traffic on the site is
not extremely high.

12Our first tests were carried out on an Intel Core2 Quad
Q9550 with 4GB of RAM but both PostgreSQL and neo4j

million word British National Corpus parsed with the
Stanford Parser.
The data model in the relational database was highly
normalized with one table per typed dependency, each
containing columns with sentence ID, governor ID and
dependent ID, plus a vocabulary lookup table. Relevant
indexes were added to speed up the queries.
In the graph database, two data models were evaluated
in an earlier stage of development and it turned out
that a model in which word form, lemma, and pos
were not coded as properties of every occurrence but as
separate nodes with named edges to every occurrence
was more suitable for the graph matching algorithm
provided by neo4j.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

bachelor confuse creeps way

s
e
c
o
n
d
s

PostgreSQL
neo4j
CWB

Figure 3: Average response times

As we can see in table 2 (visualized in figure 3),
PostgreSQL is significantly faster than both CWB-

ran out of memory for the more complex queries. It turns
out that neo4j profits more from even larger RAM than
the other two solutions. Thus storing the entire database
in the RAM disk of a machine with 128GB of RAM can
improve its response time for complex queries by almost
two orders of magnitude whereas the performance gain was
by far not as drastic for the other two systems. However,
RAM disks do not currently represent affordable storage for
larger databases such as the ones required for large scale
corpora.

2754

lemma: bachelor

[no restriction]

 amod

(a) bachelor

lemma: confuse

[no restriction]

 csubj

wordform: to

 aux

(b) confuse

lemma: give

pos: PRP

 iobj

pos: NNS

dobj

wordform: the

 det

(c) creeps

pos: VBD

wordform: way

dobj

pos: NN

 prep_to

pos: PRP$

 poss

(d) way

Figure 4: Query graphs

treebank13 and neo4j14 for simple queries where only
one join on word ID fields is required, such as a query
for premodifying adjectives of bachelor (figure 4a). It
should be noted that even for such simple queries, neo4j
is not significantly faster than CWB-treebank.15 Where
three nodes are involved in the query, such as for to-
infinitive subjects of confuse (figure 4b), PostgreSQL
is faster than CWB-treebank but not significantly,16

whereas both are significantly faster than neo4j.17 In
both queries, even the “slower” systems respond within
acceptable timespans for a web interface. For larger
query graphs which include higher frequency items,
such as the query for sentences with ditransitive give, a
personal pronoun as indirect object and a plural noun
with a determiner the as direct object (as discussed in
2.2.; figure 4c), CWB treebank outperforms the other
two solutions significantly.18 The same is true of the
query which looks for instances of VERBed one’s way
PP (figure 4d).19 Thus we can say that the performance
of CWB-treebank is much more consistent and that
the system can handle larger query graphs more easily
than the earlier implementations. The standard devia-
tion is still within acceptable limits for CWB-treebank
and PostgreSQL, but neo4j shows huge variation in
its response times since these are highly dependent on
the queries that had run before and are thus almost
unpredictable in a production environment.20

A comparison of the size of the data on disk also reflects
favourably on CWB-treebank, since it only consumes

13Exact Wilcoxon Mann-Whitney Rank Sum Test: Z =
−5.9399, pone-sided = 3.101e−14

14Z = −5.9397, pone-sided = 3.101e−14

15Z = −1.3403, pone-sided = 0.09176
16Z = 0, pone-sided = 0.5041
17Z = −5.0518, pone-sided = 1.129e−08 for a comparison

of CWB-treebank with neo4j.
18Z = −5.9385, pone-sided = 3.101e−14 for a comparison

of CWB-treebank with PostgreSQL.
19Z = −5.6085, pone-sided = 2.837e−11 for a comparison

of CWB-treebank with neo4j.
20This is possibly due to the memory mapping architec-

ture employed by neo4j, given that queries with cold file
system caches after a restart of the system took particularly
long.

around 1.8GB due to the efficient indexing and com-
pression of the IMS Open Corpus Workbench while
the PostgreSQL database takes up 18GB (including
indexes) and the graph database 24GB.

4. Conclusion
As we have seen above, CWB-treebank, while not the
fastet solution for trivial queries, significantly outper-
forms the alternative solutions for complex queries,
allowing for reasonable response times. Its support for
regular expressions and negation are additional features
that make it the system of choice over the other solu-
tions tested. While both other implementations have to
treat the corpus as one big unit due to the data models
enforced by the software used,21 the main advantages
of our system are that graphs are stored as individual
sentences and that the powerful indexing mechanism
and query engine provided by the IMS Open Corpus
Workbench are adapted to linguistic data and thus
enable CWB-treebank to efficiently reduce the search
space through restrictions applied on individual nodes.

5. Acknowledgements
We would like to thank KONWIHR22 for a small grant
to work on our processing pipeline and the HPC group
at the University of Erlangen-Nürnberg for their con-
tinuous support and for allowing us to use all sorts of
extremely powerful hardware.
We are also grateful to the three anonymous reviewers
for their constructive comments.

6. References
The British National Corpus. 2007. Version 3 (BNC
XML edition). Distributed by Oxford University
Computing Services on behalf of the BNC Consor-
tium. http://www.natcorp.ox.ac.uk.

21Thus the graph matching algorithm of neo4j only sup-
ported one large connected graph and had to be supplied
with a starting node. In PostgreSQL, a faster data model
may be possible through denormalization, but such steps
usually come at the cost of increasing the size of the tables.

22Kompetenznetzwerk für Wissenschaftliches Höchstleis-
tungsrechnen in Bayern

2755

http://www.natcorp.ox.ac.uk

Daniel Cer, Marie-Catherine de Marneffe, Dan Juraf-
sky, and Christopher D. Manning. 2010. Parsing to
stanford dependencies: Trade-offs between speed and
accuracy. In Proceedings of the Seventh International
Conference on Language Resources and Evaluation
(LREC 2010), pages 1628–1632, Valletta.

Oliver Christ and Bruno M. Schulze. 1996. Ein flexibles
und modulares Anfragesystem für Textcorpora. In
H. Feldweg and E. W. Hinrichs, editors, Lexikon und
Text: Wiederverwendbare Methoden und Ressourcen
zur linguistischen Erschließung des Deutschen, pages
121–133, Tübingen. Niemeyer.

Oliver Christ. 1994. A modular and flexible architec-
ture for an integrated corpus query system. In Pro-
ceedings of COMPLEX’94: 3rd Conference on Com-
putational Lexicography and Text Research, pages
23–32, Budapest.

Luigi P. Cordella, Pasquale Foggia, Carlos Sansone,
and Mario Vento. 2004. A (sub)graph isomorphism
algorithm for matching large graphs. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
26(10):1367–1372.

Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. 2009. Introduction to
Algorithms. MIT Press, Cambridge, MA, 3rd edition.

Douglas Crockford. 2006. RFC 4627 - The applica-
tion/json Media Type for JavaScript Object No-
tation (JSON). Technical report, IETF. http://
tools.ietf.org/html/rfc4627.

Marie-Catherine de Marneffe and Christopher D.
Manning. 2008a. Stanford typed dependencies
manual. http://nlp.stanford.edu/software/
dependencies_manual.pdf. Revised in 2011.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008b. The stanford typed dependencies repre-
sentation. In Coling 2008: Proceedings of the work-
shop on Cross-Framework and Cross-Domain Parser
Evaluation, pages 1–8, Manchester.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proceedings of the 5th International Conference on
Language Resources and Evaluation (LREC 2006),
pages 449–454, Genoa.

Stefan Evert and The OCWB Development
Team. 2010a. The IMS Open Corpus Work-
bench (CWB). Corpus encoding tutorial.
http://cwb.sourceforge.net/files/CWB_
Encoding_Tutorial.pdf.

Stefan Evert and The OCWB Development Team.
2010b. The IMS Open Corpus Workbench
(CWB). CQP query language tutorial. http://cwb.
sourceforge.net/files/CQP_Tutorial.pdf.

Michael R. Garey and David S. Johnson. 1979. Com-
puters and Intractability. A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York.

Pavel Rychlý. 2007. Manatee/Bonito – a modular cor-
pus manager. In 1st Workshop on Recent Advances in
Slavonic Natural Language Processing, pages 65–70,

Brno. Masarykova univerzita.
Gerold Schneider, Kaarel Kaljurand, and Fabio Rinaldi.
2009. Detecting protein/protein interactions using
a parser and linguistic resources. In CICLing 2009,
10th International Conference on Intelligent Text
Processing and Computational Linguistics, Mexico
City.

Ron Shamir and Dekel Tsur. 1999. Faster subtree
isomorphism. Journal of Algorithms, 33:267–280.

Lucien Tesnière. 1966. Éléments de Syntaxe Struc-
turale. Klincksieck, Paris, 2nd edition.

Peter Uhrig and Thomas Proisl. 2011a. A fast and
user-friendly interface for large treebanks. Presented
at Corpus Linguistics 2011 in Birmingham on July
20.

Peter Uhrig and Thomas Proisl. 2011b. The tree-
bank.info project. Presented at ICAME 32 in Oslo
on June 4.

Jeffrey D. Ullman. 1976. An algorithm for subgraph
isomorphism. Journal of the Association for Com-
puting Machinery, 23(1):31–42.

Amir Zeldes, Julia Ritz, Anke Lüdeling, and Christian
Chiarcos. 2009. ANNIS: A search tool for multi-
layer annotated corpora. In Proceedings of Corpus
Linguistics 2009, pages 1–8, Liverpool.

2756

http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://cwb.sourceforge.net/files/CWB_Encoding_Tutorial.pdf
http://cwb.sourceforge.net/files/CWB_Encoding_Tutorial.pdf
http://cwb.sourceforge.net/files/CQP_Tutorial.pdf
http://cwb.sourceforge.net/files/CQP_Tutorial.pdf

	Introduction
	Treebank.info
	The IMS Open Corpus Workbench
	The problem

	Graph matching with the IMS Open Corpus Workbench
	Corpus format
	Query format
	The matching algorithm
	Retrieving candidates
	Filtering the corpus positions

	Evaluation
	Conclusion
	Acknowledgements
	References

