
Annotation Trees: LDC’s customizable, extensible, scalable annotation
infrastructure

Jonathan Wright, Kira Griffit, Joe Ellis, Stephanie Strassel, Brendan Callahan

Linguistic Data Consortium
University of Pennsylvania, Philadelphia, PA

{jdwright,kiragrif,joellis,strassel,bcal}@ldc.upenn.edu

Abstract
In recent months, LDC has developed a web-based annotation infrastructure centered around a tree model of annotations and a Ruby
on Rails application called the LDC User Interface (LUI). The effort aims to centralize all annotation into this single platform, which
means annotation is always available remotely, with no more software required than a web browser. While the design is monolithic in
the sense of handling any number of annotation projects, it is also scalable, as it is distributed over many physical and virtual machines.
Furthermore, minimizing customization was a core design principle, and new functionality can be plugged in without writing a full
application. The creation and customization of GUIs is itself done through the web interface, without writing code, with the aim of
eventually allowing project managers to create a new task without developer intervention. Many of the desirable features follow from
the model of annotations as trees, and the operationalization of annotation as tree modification.

Keywords: annotation, web, software

1. Introduction
Under the auspices of three DARPA natural language pro-
grams, LDC has developed a new web-based annotation in-
frastructure that goes beyond typical notions of annotation
tools. The central component of the framework is the gener-
alized model of annotation data as a tree of types, hence the
idea of ”Annotation Trees”. A variety of other design ele-
ments were built around this concept to address LDC’s di-
verse annotation requirements, with the goal of supporting
all annotation projects through a single platform. The pri-
mary piece of software is a Ruby on Rails application called
the LDC User Interface (LUI). The current purpose of LUI
is to support annotation efforts for LDC sponsored projects,
not only through annotation itself, but related tasks like re-
porting. Here we discuss the current state of affairs, roughly
6 months into development, as well as future plans.

2. History
As part of DARPA’s Machine Reading Program (MR),
where multiple domains and tasks was part of the program
design, LDC developed technical infrastructure for versa-
tile and generalized annotation. The challenges of MR,
namely the rapid development of multiple domains, repre-
sented a microcosm of LDC annotation project operations,
since LDC resources are highly distributed across projects.
In other words, while other projects may themselves be less
varied compared to MR, LDC staff typically support mul-
tiple annotation projects, creating similar time constraints
on individuals. In practice this often leads to reinventing
the wheel; there is often no time to do otherwise. The de-
sign of MR brought this problem into focus, and the anno-
tation infrastructure developed was designed from the be-
ginning to be maximally reusable, which amounts to easily
customizable. Early reports on this work are Strassel et
al. (2010) and Maeda et al. (2010). However, the infras-
tructure as of mid 2011 was critically limited by a desktop

oriented, rather than web oriented, design. During the MR
Phase 3 evaluation of 2011, where remote use was manda-
tory, a new Ruby on Rails application was developed using
the existing Annotation Tree model. During early 2012,
the application has grown to support several projects, but
primarily development has supported DARPA’s BOLT and
RATS projects.

3. Motivation
3.1. Logistical
Increasingly, remote annotation is either desired or abso-
lutely necessary, since language experts can not always be
found among in house staff. Furthermore, much annota-
tion work occurs on nights and weekends when LDC is not
open. Desktop applications are impractical due to problems
of installation, annotator tracking, data transfer, etc. Cross
platform software compatibility and the distribution of soft-
ware has continually been a problem in cases where desk-
top software was used. Concurrent annotation is another
concern, even when annotation is done in the office, and
an efficient means of integrating the work of large teams is
needed.

3.2. Technical
As annotation projects change, supporting code naturally
changes as well. A particular change in the annotation tar-
gets or guidelines must be reflected in code that governs
the user interface, and likely code that produces or formats
the final product that forms the corpus. At a minimum, this
involves changing a string somewhere. At the other ex-
treme, a new project or new domain may be so different
that no code can truly be reused. Add to this the prob-
lem of database reuse. The schema for a database changes
from project to project, and even slight changes typically
require brand new databases. The problem then is to max-
imally separate those parts of the infrastructure that might
be changed from those that won’t.

479



4. Infrastructure Design
4.1. User Centric Access
The front end for the new infrastructure is a Ruby on Rails
application called the LDC User Interface or LUI, since it
centers around the secure authentication and authorization
of each visitor to the web site(s). Following the popular
online Rails tutorial by Michael Hartl1, the application be-
gan as nothing more than a site where a user could log in
and visit their own (basically empty) profile. However, this
user tracking kernel is an important design element around
which everything, projects, tasks, workflows, annotation
tools, etc., are built. Almost every URL that points to LUI
results in user authentication, which ensures users access
the projects and tools intended by project managers. Fur-
thermore, careless or malicious access to data is not possi-
ble.

4.2. Monolithic Interface
LUI is designed as a single interface for all annotation
projects. A user can navigate among all projects and uti-
lize all tools, assuming they have permission to do so. The
benefits to project managers and annotators are obvious:
there’s a single point of entry and a unified user experi-
ence, where possible. While annotating named entities in
text and performing speaker ID auditing of phone calls will
be completely different, the same user can manager or re-
ceive assignments for these tasks with the same interface.
The obvious potential drawbacks of a monolithic design are

1. the development difficulty of an all-in-one tool, and

2. the scalability of such a tool.

Nevertheless, the benefit of the monolithic design led to so-
lutions to these concerns, details of which are discussed in
following sections. Regarding (1), the notion of ”tool” in
this framework is somewhat misleading, and the infrastruc-
ture is designed such that a new tool is basically a new web
page that plugs in to existing functionality. Regarding (2),
LUI is deployed on multiple virtual machines with sepa-
rate URLs; each instance is identical and points to the same
databases. In addition, while application data like users and
projects are in a central database, annotation data is stored
across multiple physical or virtual machines. In short, the
infrastructure scales by the addition of servers to the cluster.

4.3. Annotation Trees
To address reuse and customization, annotations were mod-
eled with classes that could be instantiated, following the
Object Oriented Programming paradigm. A domain spe-
cific language (DSL) for class definitions was created to
configure the desktop application used during MR, such
that the annotation task was defined at runtime by the DSL,
outside the program code. Since the DSL classes pointed to
other classes, the instantiation of a Root class resulted in a
tree structure, hence ”Annotation Trees”. Annotation Trees
capitalize on the typical convergence of three factors: anno-
tation targets, GUI design (i.e. widget layout), and output
structure. For example, if you want to annotate relations

1ruby.railstutorial.org

in text, along with their agents and patients, this forms a
conceptual tree structure, where each relation has two sub-
parts, the agent and patient. Since the layouts of GUIs
are tree structured, and data formats like XML and JSON
are tree structured, you likely have an isomorphism for all
three structures. Enforcing this isomorphism, even when
not ideal, greatly simplifies development and customiza-
tion. A toy example might be the following:

{
label: {
value: "relation"
},
agent: {
label: {
value: "agent";

},
text: {
value: {
docid: "doc1",
beg: 10,
end: 16

}
},
patient: {
label: {
value: "patient"

},
text: {
value: {
docid: "doc2",
beg: 123,
end: 129

}
}
}

}

Figure 1: Simple GUI layout and its isomorphic data tree.

More realistic examples can be seen in the screen shots at
the end of the paper. Eventually the domain specific lan-
guage was abandoned in favor of a graphical editor that
used the same concept (see Section 4.5.1). A user can cre-
ate new widget types, set their CSS style, indicate their par-

480



ent/child relationships, and see the resulting GUI layout in
a read only mode. When the GUI is used in a live task, it
will save data in an isomorphic fashion without any config-
uration required (see Fig 1. and the following section on
data storage).

4.4. Data Storage
The framework has a mixed database backend. The appli-
cation data, meaning things like users, projects, tasks, as-
signments, etc., are stored in a MySQL2 database, while
the annotation data is stored in a MongoDB3 database.
MongoDB is among several new ”schema-less” databases;
specifically we can say that MongoDB is a document store,
rather than a relational database. The ”documents” of a
MongoDB instance are JSON objects, like the JSON object
shown in Fig. 1. This is a natural storage mechanism for
annotation trees. While there are ways to store trees in rela-
tional databases, MongoDB is designed to do so efficiently.
Dynamic data, in other words, the annotations themselves,
are stored this way in the database. The web application
reads such a tree and ”elaborates” it, adding the static infor-
mation like labels and CSS styling, and creates a recursive
<div> structure in HTML for display in a browser.

4.5. Minimizing Customization
There is a common programming paradigm known as
Model-View-Controller or MVC, where an application is
separated into the GUI (view), the data (model), and some
logic for populating the GUI with the data (controller). In
web applications, the view is the webpage, and the model
roughly equates to the database design. A core design prin-
ciple of LUI was to minimize the amount of customiza-
tion necessary, and this is best viewed through the MVC
paradigm. In short, customization of LUI to a new task is
focused on the views, while no customization of the mod-
els or database design is necessary at all (specifically, no
customization of the annotation database).

4.5.1. Namespace Editor
The namespace editor allows users to create task specific
layouts for the annotation framework (Fig. 4). When a new
namespace is created in the system, a new tree containing
only a Root node is created. The control section on the right
side of the editor allows users to modify the tree structure.
As the user makes changes within the control section, the
workspace view on the left side of the screen automatically
updates with the current representation of the tree as it ap-
pears in the HTML DOM. The user must click the add wid-
get link at the top of the controls section to create a new
widget, and a dialog prompts them to specify a widget type
and name. To edit existing widgets, the user clicks on the
widget’s name in the control section to expand the widget
specific editor. The children of branching nodes can be re-
arranged using a simple drag and drop interface. The edi-
tor also offers a full screen preview of each layout, which
allows any layout created within the editor to double as a
mockup.

2www.mysql.com
3www.mongodb.org

4.5.2. Style Manager
Within the namespace editor, a style profile is created and
mapped to every new widget. The style profile of any wid-
get can be edited via the style manager, which displays an
editable list of existing style profiles within (Fig. 5). Within
the style manager, users are able to assign CSS attributes to
any style profile. As a user makes changes to style profiles
assigned to widgets in the workspace, they will see those
changes update automatically in the workspace. The auto-
matic page updating is accomplished via AJAX, letting the
user create entire namespaces without having to refresh the
page. Finally, these attributes are not stored with the anno-
tation data, but attached to the trees on every web request,
thus the attributes can be safely modified during the course
of annotation.

4.5.3. Javascript Logic
Much of the customization of a new task can be isolated to
the JavaScript loaded with a web page, for example, cos-
metics, custom verbiage, and the activation/deactivation of
input elements as an annotator enter data. While a general
purpose JavaScript file is loaded for all annotation tasks,
this general file expects the existence of a per-task file as
well. The general purpose file controls the common be-
havior across all layouts, including the saving of actions
taken by annotators, the creation of complex widgets that
require JavaScript, the setting of listeners which occur on
user actions, etc. The task specific file adds additional be-
havior without disrupting the general purpose behavior (un-
less that’s the intent of course). For example, when a user
tries to mark an assignment as complete, which is handled
in the general purpose file, there is a hook for the task spe-
cific file to confirm that the user has completed all the task-
specific steps required of them, and block the submission
to the server if necessary.

4.5.4. Plug-in Workflows
One of the challenging aspects of annotation projects is
workflow management, particular if one wants to maximize
generality and minimize customization. Ideally, a new an-
notation task can utilize an existing workflow, e.g. given
a set of assignments, randomly assign them as annotators
log in. When this is not possible, and a developer must cre-
ate a new workflow, LUI allows a new piece of logic to be
dropped into place. In LUI, each workflow is itself a model,
a Ruby class that wraps a Workflows table in the application
database. Each workflow is essentially a state machine that
moves users and data through a series of states, depend-
ing on the messages it receives from the application/user.
Therefore to create a custom workflow, the developer cre-
ates a single Ruby class in the workflows directory which
implements this state transition logic. The rest of the appli-
cation passes messages to the workflow which then updates
states accordingly, but the application requires no changes,
other than this new workflow class.

4.6. Annotation Operations
Since all annotation data is modeled as generalized trees,
annotation itself is modeled as a sequence of tree opera-
tions. The most important operations are as follows:

481



create-nodes When annotation begins, an empty tree is
initialized to represent the empty annotation GUI pre-
sented to the user. This operation is called recursively,
beginning with the root type, to produce the tree. It is
also called after add-child, see below.

add-child Annotation GUIs are mostly static in shape, and
dynamic needs are mainly met through a single List
widget type. Where lists of annotations are necessary,
a List widget is placed in the GUI. The add-child oper-
ation adds a new node to this list, followed by create-
nodes to fill out the required subtree.

delete-node This operation deletes part of a tree, typically
from a List widget.

change-value Most annotation is implemented with this
operation. The leaves in the annotation tree are ana-
logues to the columns of a relational database table,
bearing the actual annotation data (judgement, com-
ment, label, etc.). Differing views (radiobuttons, text
boxes, etc.) perform alike, i.e. they change the value
stored in a leaf node.

Complex operations can be composed from simple ones.
For example, a button can be configured to send a sequence
of operations as a single message to the server. During an-
notation, the full data structure visible to the annotator is
not being sent back and forth from browser to server, only
the changes are communicated.

4.7. Logging
The above operationalization of annotation, and the logging
of these operations, allows for the following features.

real time updates Each action the annotator takes is im-
mediately sent to the server to update the data, so
an explicit ”save” is never necessary. Ajax (Asyn-
chronous Javascript) is used to avoid refreshing the
page, which would be disruptive to annotation.

offline annotation New features of HTML5 may allow for
annotation to proceed during a connectivity interrup-
tion. The operations would be queued locally for fu-
ture syncing with the server.

accurate tracking Timestamps are logged with every op-
eration, so fine grained tracking of annotators is possi-
ble.

version control Since the current state of the annotation
tree is due to the series of operations that has been
logged, previous versions of the data can be recon-
structed.

5. Functionality
5.1. Basic Data Entry
Much annotation amounts filling out a complex HTML
form of radio buttons, text boxes, etc. The key feature of
LUI here is the instantaneous saving of every meaningful
change, eliminating the need for a ”submit” or ”save” fea-
ture. Here ”submitting” really amounts to moving on to the
next assignment.

5.2. Text Annotation
Text annotation, in the sense of capturing strings from text
as well as a pointer into the text (stand-off annotation),
can be complex for many tasks and challenging to imple-
ment. LUI follows the model used in the MR desktop tool,
where arbitrary strings in a document pane can be selected
and captured into special text boxes in the annotation pane.
When such an annotation is made, the selected text is un-
derlined, and the (abbreviated) text is pasted into the text
box within the annotation pane. As the user continues an-
notation of a document, navigation is possible by clicking
on the text boxes, or on the underlines, to cause scrolling in
the other pane. Multiple, overlapping underlines are possi-
ble, which is often the case in text annotation tasks.

5.3. Audio Capability
Audio playback is provided by a javascript plugin called
JPlayer4, which wraps the HTML5 capability of modern
browsers. Currently only simple playback is provided, but
future development will focus on waveform display, times-
tamped annotations, etc. JPlayer also provides video play-
back, another future direction for LUI. HTML5 features are
key in obviating any special installation on the users’ part,
other than having a modern web browser.

5.4. Coreference
For text based annotation, coreference is increasingly im-
portant, and has been a central feature to the framework
from early on. A drag and drop interface was designed
where annotators drag mentions (or use the appropriate key
strokes) from the left hand column to the right hand col-
umn, arranging them into boxes that represent entities (Fig.
4). This model has been extended to Speaker ID auditing,
where instead of text, mentions have audio players embed-
ded and annotators listen and group the mentions into enti-
ties based on what they hear.

5.5. Search
Some servers in the cluster run the Solr5 search engine to
provide text search capabilities to users.

5.6. Workflow Management
Workflows can be assigned to tasks via the interface, and
managers can track progress by viewing the states of users
and assignments. For example, does a particular user cur-
rently have an assignment, or how many assignments have
been completed so far.

5.7. Reporting
An important corollary to annotation is reporting on that
annotation, to managers, external sponsors, even the anno-
tators themselves. The strong authentication backbone of
LUI makes customized reporting easy, and a customizable
reporting mechanism exists, similar to the other plug and
play features of the annotation infrastructure. When a Ruby
file that executes the necessary database query is added to
the codebase, users have access to a new report that can be
executed on demand.

4www.jplayer.org
5lucene.apache.org/solr/

482



6. Future Directions
6.1. Output Transformations
An important part of the MR desktop software was its abil-
ity to perform structural transformations on the annotation
trees. In MR, annotation structure and the ontological struc-
ture of the final data product were typically not in align-
ment. The domain specific language used to define the an-
notation tree structure had a notation for rearranging ele-
ments, allowing for easy output creation without changing
the native format of the annotations. A similar feature will
be added to the current namespace (see Section 4.5.1). The
RESTful interface of LUI can then be queried over HTTP
to receive annotation data in various forms that may not be
identical to the stored objects. Currently such data requests
are handled by custom code in the application.

6.2. Multimedia
So far, the use of audio in LUI has been limited to au-
diting, i.e. making judgements on the played audio seg-
ments. However, the eventual goal is fully functional audio
annotation, transcription, even acoustic analysis, tasks nor-
mally performed with desktop applications. Furthermore,
the JPlayer plugin, already in use for audio, also plays
video, so video annotation is in the development path as
well.

6.3. Treebanking
The tree based storage, display, and annotation operational-
ization makes treebanking an obvious direction for devel-
opment. The key here will be providing the necessary key
and mouse bindings to provide annotators with an interface
similar to the software they currently use.

6.4. Annotation as a Service
Following the model of software as a service, the possibil-
ity emerges of providing annotation as a service. The basic
service already exists: remote annotation without software
installation. What remains is allowing the user to deter-
mine the data and the task, and granting the authorization
to download the data that they create. Assuming the ap-
propriate permissions and resources can be established, the
technical functionality will already be in place.

7. Conclusion
The LUI infrastructure and annotation tree model will pro-
vide the next generation of annotation ”tools” for the LDC,
where a ”tool” is now just a customized configuration of ex-
isting components on a web page. In an environment where
there is no real distinction between rapid prototyping and
rapid development of the final product, this infrastructure
promises to improve annotation efficiency. Furthermore,
it lays the groundwork for providing an annotation and/or
research service outside of our sponsored projects. Those
interested in a demonstration should contact the LDC so
that appropriate access can be granted. While anyone can
visit one of the LUI URLs and create an account, a new
user won’t have sufficient authorization to access any tools
or data.

8. Acknowledgements
This material is based upon work supported by the De-
fense Advanced Research Projects Agency (DARPA) under
Contract No. D10PC20016. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the Defense Advanced Research Projects Agency
or its Contracting Agent, the U.S. Department of the Inte-
rior, National Business Center, Acquisition Services Direc-
torate.
BOLT: This material is based upon work supported by the
Defense Advanced Research Projects Agency (DARPA)
under Contract No. HR0011-11-C-0145. The content of
this paper does not necessarily reflect the position or the
policy of the Government, and no official endorsement
should be inferred.

9. References
Kazuaki Maeda, Haejoong Lee, Stephen Grimes, Jonathan

Wright, Robert Parker, David Lee, and Andrea Maz-
zucchi. 2010. Technical infrastructure at linguistic data
consortium: Software and hardware resources for lin-
guistic data creation. In Nicoletta Calzolari (Confer-
ence Chair), Khalid Choukri, Bente Maegaard, Joseph
Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and
Daniel Tapias, editors, Proceedings of the Seventh con-
ference on International Language Resources and Eval-
uation (LREC’10), Valletta, Malta, may. European Lan-
guage Resources Association (ELRA).

Stephanie Strassel, Dan Adams, Henry Goldberg, Jonathan
Herr, Ron Keesing, Daniel Oblinger, Heather Simpson,
Robert Schrag, and Jonathan Wright. 2010. The darpa
machine reading program - encouraging linguistic and
reasoning research with a series of reading tasks. In
Nicoletta Calzolari (Conference Chair), Khalid Choukri,
Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios
Piperidis, Mike Rosner, and Daniel Tapias, editors, Pro-
ceedings of the Seventh conference on International Lan-
guage Resources and Evaluation (LREC’10), Valletta,
Malta, may. European Language Resources Association
(ELRA).

483



Figure 2: A snapshot of the BOLT triage tool.

Figure 3: A snapshot of the coreference widget, with toy data.

484



Figure 4: The namespace editor with a simple GUI layout.

Figure 5: The style manager opened on the same GUI.

485


