
Web Service integration platform for Polish linguistic resources

Maciej Ogrodniczuk, Michał Lenart

Institute of Computer Science
Polish Academy of Sciences

ul. Ordona 21, Warsaw, Poland
maciej.ogrodniczuk@ipipan.waw.pl, michal.lenart@gmail.com

Abstract
This paper presents a robust linguistic Web service framework for Polish, combining several mature offline linguistic tools in a common
online platform. The toolset comprise paragraph-, sentence- and token-level segmenter, morphological analyser, disambiguating tagger,
shallow and deep parser, named entity recognizer and coreference resolver. Uniform access to processing results is provided by means
of a stand-off packaged adaptation of National Corpus of Polish TEI P5-based representation and interchange format.

A concept of asynchronous handling of requests sent to the implemented Web service (Multiservice) is introduced to enable processing
large amounts of text by setting up language processing chains of desired complexity. Apart from a dedicated API, a simple Web interface
to the service is presented, allowing to compose a chain of annotation services, run it and periodically check for execution results, made
available as plain XML or in a simple visualization. Usage examples and results from performance and scalability tests are also included.

Keywords: Web services, language processing chains, Polish, TEI P5, CLARIN

1. Introduction
Following the CLARIN1 perspective of making language
processing tools available online, approximately 200 Web
services for 20 languages have been made available
(Ogrodniczuk and Przepiórkowski, 2010; Ogrodniczuk and
Przepiórkowski, 2011) in CLARIN preparatory phase, fin-
ished in June 2011.
This apparent abundance resulted in several initiatives aim-
ing at creating the general technological frameworks for
combining these processing tools into ready-to-use pack-
ages by offering chaining possibilities. This had to be fol-
lowed by reuse or adaptation of common representation for-
mat for the chain, general enough to cover the diversity of
linguistic description on multiple levels.
One of such platforms, further referred to as the Multiser-
vice was created by the Linguistic Engineering Group at
the Institute of Computer Science, Polish Academy of Sci-
ences (ICS PAS). It consists of the common TEI P5-based
representation format, asynchronous execution architecture
and several interfaces for Web service chaining, including
a Web-based application.

2. The Integrated Tools
Offline versions of all integrated tools have been used by
the linguistic community in Poland for several years and
they proved their suitability and efficiency for linguistic en-
gineering tasks. They constitute the basic building blocks
of many local processing chains, but have never been made
available online in a consistent manner2 (in a common in-
frastructure and format). In this respect, bringing the tools

1Common Language Resources and Technology Infrastruc-
ture, see e.g. http://www.clarin.eu/.

2Demo online version of the older variant of the morphologi-
cal analyser, Morfeusz SiAT, is still available at http://sgjp.
pl/demo/morfeusz; TaKIPI tagger is also wrapped as a sep-
arate Web service which can be tested at http://nlp.pwr.
wroc.pl/clarin/ws/takipi/.

online can go beyond just illustrating capabilities of the
framework and the format and constitute real value to the
community and other interested parties. All integrated tools
are open source and all are actively maintained and devel-
oped.
Here is the short list of Polish processing tools currently
available in the framework:

• Morfeusz (Woliński, 2006b) is a morphologi-
cal analyzer for Polish using a positional tagset
(Przepiórkowski and Woliński, 2003); current version
of the tool, Morfeusz SGJP, is based on linguistic data
coming from The Grammatical Dictionary of Polish
(Saloni et al., 2007) – see also http://sgjp.pl/
morfeusz.html,

• TaKIPI (Piasecki and Wardyński, 2006) is a hy-
brid (multiclassifier) rule-based morphosyntactic tag-
ger (disambiguator of morphological descriptions) of
Polish,

• Pantera (Acedański, 2010) is a recently developed
morphosyntactic rule-based Brill tagger of Polish us-
ing an optimized version of Brill’s algorithm adapted
for specifics of inflectional languages,

• Spejd (Buczyński and Przepiórkowski, 2009) is an en-
gine for shallow parsing using cascade regular gram-
mars with their own specification language supporting
accepting and rejecting morphological interpretations,
agreement of entire tags or particular grammatical cat-
egories as well as grouping (with syntactic and seman-
tic head specified independently),

• Świgra (Woliński, 2006a) is a Prolog deep parser
of Polish implementing Marek Świdziński’s for-
mal metamorphosis grammar of Polish (Świdziński,
1992), regarded as the largest and most precise formal
description of general grammar of Polish,

1164



Figure 1: Architecture of the Multiservice

• NERF (Savary et al., 2010) is a statistical CRF-
based named entity recognizer trained over 1-
million-subcorpus of National Corpus of Polish
(Przepiórkowski et al., 2010) and successfully used in
the process of automated annotation of its total 1 bil-
lion segments,

• Ruler (Ogrodniczuk and Kopeć, 2011) is a rule-based
end-to-end coreference resolution system for Polish
using syntactic constraints (e.g. elimination of nested
nominal groups), syntactic filters (e.g. elimination of
syntactic incompatible heads) and selection (weighted
scoring) for identity-of-reference chain detection.

3. The Architecture of the Online Service
Language processing chains are created by sending re-
quests to the Web service which are being handled in asyn-
chronous manner to allow processing large amounts of text.
Invoking one of the available methods results in returning
the request token (identifier) which can be used to check the
request status and retrieve the result when processing com-
pletes. This design is directly inspired by TaKIPI Web ser-
vice (Broda et al., 2010) prepared by ICS PAS and Wrocław
University of Technology.
Requests are first enqueued (by executing
analyzeChain(text, chainParts, input-
Format, outputFormat) method) to let the service
execute the given chain of operations on the given text.
Each part of the chain is defined by operation type (i.e.
linguistic function such as tagging or shallow parsing),
requested tool name (since there can be many variant
tools of the same type configured) and a map of properties
specific to the provided tool. By using chains, one request
can trigger several (interrelated or independent) operations
at once, e.g. “tag text with Pantera, then perform deep
parsing with Świgra, filtering results using disambiguation
information provided by Pantera”).
The chain registering function returns a unique token of
the request which can be then queried for (by means of
getStatus(token) method) to periodically check the
status of request with the given token (currently one of:

PENDING, IN_PROGRESS, DONE or FAILED). If the sta-
tus of request is DONE, getResult(token) function
can be executed to return the result of the chain execution
(an XML TEI P5 file, see Sec. 4.). The same function is
used to return an error message when execution FAILED.
Removal of requests is currently not possible.

4. The Packaged TEI P5-based Linguistic
Representation

To achieve chaining linguistic tools, a common repre-
sentation and interchange format was necessary to bind
the tools together and present results to the user. Such
format has been developed for the National Corpus of
Polish as a stand-off, TEI P5-encoded annotation which
stores different levels of description in separate, inter-
linked files (Bański and Przepiórkowski, 2009; Bański and
Przepiórkowski, 2010; Przepiórkowski and Bański, 2009)
similarly to PAULA (Dipper, 2005) or MAF (Clement and
de la Clergerie, 2005). For the current interchange activ-
ity, a certain method of packaging them has been applied,
keeping the NKJP annotation principles on one hand and
adapting it to uniformity and performance requirements of
the online service on the other.
To meet packaging requirements, the standard TEI ap-
proach to storing multiple files in a single entity with cre-
ation of an (artificial) corpus has been used, adopting the
following structure:

• root <teiCorpus> element represents the collection
of annotation layers (including the source text),

• child <TEI> elements represent each annotation layer
(e.g. segmentation, lemmatization etc.)

Linguistic annotations of different levels are stored as
<text>s of the corpus with embedded <body> and <p>
subelements from the TEI syntax model. At each level
minimalistic set of means of TEI expression was used to
preserve the information: neutral <seg>ments linked by
means of corresp attributes and TEI-embedded feature
structure mechanism preserving structured annotation.
Currently the following layers have been integrated:

• text structure layer: contains “original” representation
of text, paragraph-segmented,

• segmentation layer: contains division of text into para-
graphs, sentences and tokens,

• morphosyntactic layer: contains disambiguated lex-
ical interpretations of referenced tokens – POS and
morphosyntactic tags – together with identified lem-
mata (with alternative values grouped in vAlt ele-
ments),

• syntactic word layer: groups individual tokens into
higher-level units to facilitate parsing,

• syntactic group (shallow parsing) layer: represents
syntactic groups with pointers (<ptr>s) to immediate
constituents of the group — syntactic words or other
syntactic groups, with syntactic and semantic heads
specifically marked,

1165



• named entity layer: represents hierarchical named en-
tities providing information on their types,

• deep parsing layer: represents parsing results as a
shared parse forest, i.e. a collection of parse subtrees
stored in a packed graph format, with each unique sub-
tree stored only once,

• coreference layer: provides information about men-
tions and coreferential chains.

Below we present a sample partial description from
the morphosyntactic layer (see http://nlp.ipipan.
waw.pl/TEI4NKJP/ for more detailed and complete ex-
amples):

<seg xml:id="m-seg1" corresp="#s-seg1">
<fs type="morph">
<f name="interps">
<vAlt>
<fs type="lex"

xml:id="m-seg1-lex">
<f name="base">

<string>lato</string></f>
<f name="ctag">

<symbol value="subst"/></f>
<f name="msd">

<symbol value="pl:gen:n"
xml:id="m-seg_1-msd"/>

</fs>
<fs type="lex"

xml:id="m-seg2-lex">
<f name="base">

<string>rok</string></f>
<f name="ctag">

<symbol value="subst"/></f>
<f name="msd">

<symbol value="pl:gen:m3"
xml:id="m-seg_2-msd"/>

</fs>
</vAlt>
</f>
<f name="disamb">
<fs feats="#pantera"

type="tool_report">
<f fVal="#m-seg_2-msd"

name="choice"/>
<f name="interpretation">
<string>rok:subst:pl:

gen:m3</string>
...

5. Interface and Usage
The service is executed in the following manner:

• the user sends to the service a processing request with
the linguistic function name and its parameters,

• the service generates a token for the request (further
used to operate on the given request with the service),
stores the request in the queue and returns the token to
the user,

• the user keeps querying the service about the status of
execution of a request identified with a given token un-
til the status shows that the execution stopped because
of error or ended successfully,

• on information on execution success (or failure), the
result (or an error message) can be retrieved by the
user and execution stops.

The pull execution method gives potential interfaces far
more flexibility and allows for better control over annota-
tion processes as compared to callback-based implementa-
tions. This is especially important with respect to the recent
hype of using Web services for processing corpora which
may result in long processing times.
The Multiservice is intended to be used via a dedicated API,
but to offer online access, a simple Web interface (see Fig.
2) is available at http://chopin.ipipan.waw.pl/
multiservice/. It allows to enter the text (or URL con-
taining it) to be processed and compose a chain of annota-
tion services.
After starting the analysis, the Web application checks peri-
odically the status of the request. When it ended execution,
the result is retrieved and displayed to the user. In case of a
failure, an appropriate error message is presented.

6. Notes on Performance and Scalability
Service plugin implementation class does not require the
tool being integrated to run as a background daemon (in
comparison to starting it for each request separately). How-
ever, all existing tools are initialized only once – at the dae-
mon startup. Intermediate results are parsed using StAX-
based parser, without keeping the whole XML document in
memory. Therefore it is possible to handle quite large text
documents. Nevertheless XML parsing still creates signifi-
cant overhead.
The major challenge for linguistic services is also storing
potentially huge amounts of data resulting from processing
of rather small input. It is not uncommon e.g. for deep
parsing systems which could generate plenty of different
result trees even though their subtrees are identical among
subsequent results. In case of the Multiservice the problem
was diminished by using a shared parse forest representa-
tion with each unique subtree stored no more than in one
instance.
A simple performance test has been carried out for one of
the component services. It shows overhead caused by using
the Web service when performing a simple request of tag-
ging n-word text with Pantera tagger (against the execution
of the offline tool alone). Results in Table 1 show durations
of request execution through Web service on the local host
for the most time-consuming operations.
It clearly shows that total request execution is 2-3 times
longer than invoking the tagger locally. Even though for
shorter texts such as a typical newspaper article (of ap-
prox. 1 000 tokens) the difference can still seem acceptable,
various optimizations are considered. Improvements in
XML postprocessing (inclusion of headers, pretty-printing
of document generated by C++ application with Pantera)
should give the most significant performance boost.

1166



Figure 2: The Multiservice Web interface

Table 1: Tagging performance test results
Number Execution time (s)
of words Total Tagger XML DB

1 000 3.2 1.0 1.2 0.1
2 000 4.5 1.4 2.1 0.6
5 000 9.2 3.7 3.3 1.4

10 000 14.9 7.0 4.8 2.7
20 000 32.6 14.7 10.3 5.7
30 000 48.3 22.4 15.7 8.1
40 000 98.5 29.7 45.3 22.1

It should also be noted that a test version of Multiservice
using binary data based on Apache Thrift library as inter-
change format is currently under development. It is ex-
pected to give even better performance results as XML doc-
ument will be created only at the very end of the execution
process.

7. Conclusions and Further Work
Leaving aside the purely engineering task of providing ad-
vanced linguistic services for Polish in a common frame-
work, preparation of the Multiservice resulted in several
useful developments. The first of them is by far the com-
mon tagset-independent TEI P5-based format, proved ef-
fective in an undergoing coreference resolution experi-
ments where it serves as a representation and interchange
format for pre-resolution linguistic analysis. Being stand-
off and packaged at the same time and basing on the idea

of a TEI corpus, the format is flexible enough to create
bundles, represent layers and annotation variants separately
which facilitates comparisons of different annotation mod-
els (e.g. two sets of parsing trees produced for two different
results of tagging over the same input). Another impor-
tant aspect of the realized solution is definitely the asyn-
chronous character of the service, making it ideal for pro-
cessing large amounts of data in a convenient way.
The first practical outcome of the implementation is its ap-
plication to the recent attempts of coreference resolution for
Polish where the Multiservice is used to tokenize, disam-
biguate morphological description and detect noun phrases
in the analyzed text.
Further technical work would concentrate on integration of
a wider range of input and output formats with multiple
encodings and integrated converters as well as plugging in
existing offline annotation components3 and future higher-
level annotation tools such as word-sense disambiguators.
Research activities would further delve into aspects of
maintaining semantic interoperability of the newly devel-
oped format (including issues related to Polish morphosyn-
tax vs. e.g. ISOCat Data Category Registry) as well as Web
service chaining issues such as algorithms for automated
chain detection, currently offered by WebLicht (Hinrichs et
al., 2010).

3First candidates are competitive morphological analysers
such as Morfologik by Marcin Miłkowski (see http://
morfologik.blogspot.com/.) or complete language pro-
cessing toolsets such as UAM Text Tools (see http://atos.
wmid.amu.edu.pl/~obrebski/ptx/utt/utt.html).

1167



8. Acknowledgements
The work reported here was carried out within the Com-
mon Language Resources and Technology Infrastructure
(CLARIN) project co-funded by the European Commis-
sion under the Seventh Framework Programme – Capac-
ities Specific Programme Research Infrastructures (Grant
Agreement No 212230).

9. References
Szymon Acedański. 2010. A Morphosyntactic Brill Tag-

ger for Inflectional Languages. In Hrafn Loftsson,
Eiríkur Rögnvaldsson, and Sigrún Helgadóttir, editors,
Advances in Natural Language Processing, volume 6233
of Lecture Notes in Computer Science, pages 3–14.
Springer.

Piotr Bański and Adam Przepiórkowski. 2009. Stand-off
TEI Annotation: the Case of the National Corpus of Pol-
ish. In Proceedings of the Third Linguistic Annotation
Workshop (LAW III) at ACL-IJCNLP 2009, pages 64–67,
Singapore.

Piotr Bański and Adam Przepiórkowski. 2010. The
TEI and the NCP: the model and its application. In
LREC 2010 Workshop on Language Resources: From
Storyboard to Sustainability and LR Lifecycle Manage-
ment, Valletta, Malta. ELRA.

Bartosz Broda, Michał Marcińczuk, and Maciej Piasecki.
2010. Building a node of the accessible language tech-
nology infrastructure. In Proceedings of the Seventh
conference on International Language Resources and
Evaluation (LREC’10), Nicoletta Calzolari (Conference
Chair), Khalid Choukri, Bente Maegaard, Joseph Mar-
iani, Jan Odjik, Stelios Piperidis, Mike Rosner, Daniel
Tapias (eds.), May 19-21, Valletta, Malta.

Aleksander Buczyński and Adam Przepiórkowski. 2009.
Spejd: A shallow processing and morphological disam-
biguation tool. In Zygmunt Vetulani and Hans Uszkoreit,
editors, Human Language Technology: Challenges of the
Information Society, volume 5603 of Lecture Notes in
Artificial Intelligence, pages 131–141. Springer-Verlag,
Berlin.

Lionel Clement and Eric Villemonte de la Clergerie. 2005.
MAF: a morphosyntactic annotation framework. In Pro-
ceedings of the 2nd Language & Technology Conference,
pages 90–94, Poznań.

Stefanie Dipper. 2005. XML-based Stand-off Representa-
tion and Exploitation of Multi-Level Linguistic Annota-
tion. In Proceedings of Berliner XML Tage 2005 (BXML
2005), pages 39–50, Berlin.

Marie Hinrichs, Thomas Zastrow, and Erhard Hinrichs.
2010. Weblicht: Web-based LRT Services in a Dis-
tributed eScience Infrastructure. In Proceedings of the
Seventh International Conference on Language Re-
sources and Evaluation, LREC 2010, Valletta, Malta.
ELRA.

Maciej Ogrodniczuk and Mateusz Kopeć. 2011. End-to-
end coreference resolution baseline system for Polish.
In Zygmunt Vetulani, editor, Proceedings of the 5th
Language & Technology Conference: Human Language
Technologies as a Challenge for Computer Science and
Linguistics, pages 167–171, Poznań, Poland.

Maciej Ogrodniczuk and Adam Przepiórkowski. 2010.
Linguistic Processing Chains as Web Services: Initial
Linguistic Considerations. In Proceedings of the Work-
shop on Web Services and Processing Pipelines in HLT:
Tool Evaluation, LR Production and Validation (WSPP
2010) at the Language Resources and Evaluation Con-
ference (LREC 2010), pages 1–7, Valletta, Malta. ELRA.

Maciej Ogrodniczuk and Adam Przepiórkowski. 2011. In-
tegration of Language Resources into Web service infras-
tructure. Technical report. CLARIN deliverable D5R-
3b.

Maciej Piasecki and Adam Wardyński. 2006. Multiclas-
sifier Approach to Tagging of Polish. In Proceedings of
1st International Symposium Advances in Artificial Intel-
ligence and Applications.

Adam Przepiórkowski and Piotr Bański. 2009. XML Text
Interchange Format in the National Corpus of Polish. In
Stanisław Goźdź-Roszkowski, editor, The proceedings
of Practical Applications in Language and Computers
PALC 2009, Frankfurt am Main. Peter Lang. Forthcom-
ing.

Adam Przepiórkowski and Marcin Woliński. 2003.
A Flexemic Tagset for Polish. In Proceedings of Mor-
phological Processing of Slavic Languages, EACL 2003.

Adam Przepiórkowski, Rafał L. Górski, Marek Łaziński,
and Piotr Pęzik. 2010. Recent developments in the Na-
tional Corpus of Polish. In Proceedings of the Seventh
International Conference on Language Resources and
Evaluation, LREC 2010, Valletta, Malta. ELRA.

Zygmunt Saloni, Włodzimierz Gruszczyński, Marcin
Woliński, and Robert Wołosz. 2007. Słownik gramaty-
czny języka polskiego. Wiedza Powszechna, Warsaw.
177 pp., CD.

Agata Savary, Jakub Waszczuk, and Adam Przepiórkowski.
2010. Towards the annotation of named entities in the
National Corpus of Polish. In Proceedings of the Sev-
enth International Conference on Language Resources
and Evaluation, LREC 2010, Valletta, Malta. ELRA.

Marek Świdziński. 1992. Formal grammar of Polish. [In
Polish]. Warsaw University Dissertations, Warsaw.

Marcin Woliński. 2006a. Jak się nie zgubić w lesie,
czyli o wynikach analizy składniowej według gramatyki
Świdzińskiego. Poradnik Językowy, 9:102–114.

Marcin Woliński. 2006b. Morfeusz — a practical tool for
the morphological analysis of Polish. In Mieczysław A.
Kłopotek, Sławomir T. Wierzchoń, and Krzysztof Tro-
janowski, editors, Proceedings of the International Intel-
ligent Information Systems: Intelligent Information Pro-
cessing and Web Mining’06 Conference, pages 511–520,
Wisła, Poland, June.

1168


