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Abstract
Motivation: Gold Standards for named entities are, ironically, not standard themselves. Some specify the “one perfect annotation”.
Others specify “perfectly good alternatives”. The concept of Silver standard is relatively new. The objective is consensus rather than
perfection. How should the two concepts be best represented and related? Approach: We examine several Biomedical Gold Standards
and motivate a new representational format, centroids, which simply and effectively represents name distributions. We define an
algorithm for finding centroids, given a set of alternative input annotations and we test the outputs quantitatively and qualitatively.
We also define a metric of relatively acceptability on top of the centroid standard. Results: Precision, recall and F-scores of over
0.99 are achieved for the simple sanity check of giving the algorithm Gold Standard inputs. Qualitative analysis of the differences
very often reveals errors and incompleteness in the original Gold Standard. Given automatically generated annotations, the centroids
effectively represent the range of those contributions and the quality of the centroid annotations is highly competitive with the best of
the contributors. Conclusion: Centroids cleanly represent alternative name variations for Silver and Gold Standards. A centroid Silver
Standard is derived just like a Gold Standard, only from imperfect inputs.
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1. Introduction
We examine several Gold Standard assessment datasets
available in biomedicine and motivate a new representation
for Gold Standard markup: centroids. Centroids provide a
simple and effective representation for name distributions
and a more fine-grained method for measuring how good a
user annotation is. In this way, centroids represent an ex-
tension of classical gold standard markup.
In addition, we define an algorithm for finding centroids,
given a set of alternatively annotated inputs, and test it
quantitatively and qualitatively against both Gold Standard
inputs and automatically annotated inputs.
Given a set of alternative inputs, each of which is Gold
Standard, we verify that the algorithmically discovered cen-
troids are also overwhelmingly gold standard, as tradition-
ally conceived. Even when (infrequently) they are not, they
very often represent errors in the original gold standard.
We apply the algorithm also to sets of alternative automatic
annotations as submitted to the CALBC challenge competi-
tion. We thereby derive a Silver Standard, a representation
of a consensus driven standard. We show that silver stan-
dard centroids are very highly competitive with the best
of the contributing annotations. Further experiments also
show that Silver Standard scores correlate to Gold Stan-
dard, suggesting that silver might indeed stand proxy for

gold as well as representing a consensus annotation (with
distributions).
We conclude that it is indeed highly desirable to represent
distributions directly within the Gold Standards and not just
implicitly, for example through fuzzy or partial matching
schemes.

2. Background
The Gold Standard data-sets available for biomedical
named entity recognition are only few in number. Yet, they
differ in more than just subject matter. Here we show how
they vary in the representation and suggested evaluation of
name variations.
The SCAI corpus (Kolarik et al., 2008) for chemical enti-
ties, for instance, assigns gold standard I-O-B labels to pre-
defined tokens within sentences. Good scores require re-
producing the same tokenization as well as the one correct
label for each token. Some variation is possible through
the use of special class labels. For example, the token
compounds within uridine compounds is assigned the la-
bel B-Modifier. This perhaps indicates that compounds
is not here functionning as an essential part of the name
of the chemical. Other labels, such as B-Trivial and
B-Family are similarly suggestive. It is therefore at least
possible for an evaluation procedure to be sensitive to these
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class-labels and treat the actual tags generated by an auto-
matic annotator accordingly.
A second example is BioCreative (Krallinger et al., 2008).
Here, gold standard entities are defined over untokenized
character strings through the use of character offsets. The
offsets mean that automatic annotators need not re-use a
predefined tokenization. They also easily allow for the
markup of alternative names. In a sentence 20 characters
long, one entity may be defined from character positions 10
to 12 whereas another may be defined from 7 to 15. These
entities overlap and represent alternative markups. Clearly,
it is also possible for two names that do not overlap to both
overlap a third.
In BioCreative, one ‘core’ set of entirely non-overlapping
offsets is dignified with the title “Gene List.” All other off-
sets are included in a second and optional list called the “Al-
ternative Gene List.” Fig 1 illustrates one example where
the Gene List entry endogenous TGF-beta-specific complex
overlaps three smaller entries in the Alternative Gene List.
BioCreative supplies its own evaluation procedure which, if
the Alternative Gene List is left unspecified, sets automatic
annotators the task of reproducing exactly all and only the
names in the ‘core’ Gene List. If the Alternative Gene List
is also specified, then the task becomes slightly more com-
plex. The intuition behind it is that a candidate annotation
is true positive simply if it appears either in the Gene List or
in the Alternative Gene List. Also, a false negative only oc-
curs if a core name (from the Gene List) is absent from the
annotation and every alternative (in the Alternative Gene
List) that overlaps it is also absent1. Therefore perfect re-
call requires spotting at least one alternative for every core
name. It should be noted that all alternatives are deemed
equally as good as each other and equally as good as the
“core” name that they overlap.
Finally, we briefly consider the Arizona Disease Corpus
(Leaman et al., 2009). This also uses offsets and includes
some alternative overlapping names. Unlike BioCreative
however, all alternatives are included within one flat list
and no evaluation script is provided so it is somewhat un-
clear how the alternatives are to be scored. Fig 2 illustrates
some example alternative names from the Arizona Disease
Corpus.
In what follows, we propose a new representation in which
the core name is identified (automatically) and the alterna-
tives are represented as a distribution around it. We also
define an intuitive evaluation scheme for candidate mark-
up against such a gold standard and report on a number of
experiments both with gold standard inputs and automatic
inputs.

3. Centred Alternatives & Preferred
Alternatives

The BioCreative names in Fig. 1 all share a common heart:
TGF-beta. Every name is a string extension of one string:
TGF-beta, and that string is itself Gold Standard. Let us
call this property the centroid property. One might expect
all sets of alternatives to exhibit it, but, as we show below,

1There are small wrinkles which disturb this intuitive picture.
They are discussed further below.

Core Name endogenous TGF-beta-specific complex
Alternatives TGF-beta

endogenous TGF-beta
TGF-beta-specific complex

Sentence . . . similar to that of the endogenous
TGF-beta-specific complex observed in
. . .

Figure 1: BioCreative alternatives

Sentence . . . predispose carriers to multiple adeno-
matous polyps of the colon and rectum
and to . . .

Names multiple adenomatous polyps
adenomatous polyps of the colon
adenomatous polyps of the colon and rec-
tum

Figure 2: AZDC alternatives (no names are identified as
“core”)

this is not actually true of all the Gold Standards we have
examined. By contrast, we suggest a representation that
requires it.
Certainly, the centroid property does not hold true of the
AZDC names in Fig. 2. A common heart exists, adenoma-
tous polyps but it is not itself deemed to be a Gold Stan-
dard name. It is very unclear what the reason for this might
be. The internal evidence is highly suggestive: the last two
names suggest that multiple is optional; the first suggests
of the colon is optional. Externally, one easily verifies that
Adenomatous polyps lies within the Mesh controlled vocab-
ulary (id:D018256).
The centroid property indicates that alternative names
should have a Gold Standard common heart. In addition
however, we may observe that the alternative names in Fig
1 have a distribution. Of all the extensions of TGF-beta,
two include endogenous and two do not. Similarly, two
names post-fix -specific complex and two do not. However,
no names only post-fix -specific.
In our proposals below, we both represent these facts and
we use them for judgments of relative acceptability. The
measure we define below (section 6.) has the result that an
annotation that include endogenous is just as preferred as
one that omits it. The measure makes a boundary after
-specific less acceptable than a boundary after TGF-beta,
whereas the latter boundary is just as acceptable as one
after complex. In this way, many expert (or indeed auto-
matic) judgments can help contribute to a distributional as-
sessment of correctness.

4. Centroid Algorithm
Given a corpus of text, the input to the centroid algorithm is
a set of markups over that corpus. Each markup consists of
the text considered as a character string plus inline markup
of (non-overlapping) entity names. Given the Context and
Names shown in Fig 1, four inline markups would be re-
quired, each containing one of the alternative names.
Texts are tokenized at the character level and (ignoring
spaces) votes are counted over pairs of adjacent name-
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... o-f-t-h-e-e-n-d-o-g-e-n-o-u-s-T-G-F-b-e-t-a-s-p-e-c-i-f-i-c-c-o ...

... 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 ...

Figure 3: Counts of adjacent name-internal characters

1) . . . of the endogenous 〈e b=’l:0:2,l:10:2,r:0:2,r:16:2’〉TGF-beta〈/e〉-specific complex observed . . .
2) . . . Rel-related human 〈e b=’l:16:2,l:5:3,l:0:2,r:0:2,r:13:1,r:20:3’〉p75〈/e〉nucleoprotein complex . . .

Figure 4: Two centroids + boundary distributions

internal characters. Figure 3 shows the character-pair
counts for our running example. Two markups consider that
the transition e → n at the beginning of endogenous falls
within the name; whereas all four consider that T → G do.
The focus on name-internal pairs, rather than single charac-
ters, ensures that boundaries are valued when two different
names happen to be directly adjacent themselves.
Over the course of a text, the number of votes will mostly
be zero, punctuated by occasional bursts of wave-like vari-
ation. We define the centroids to be the substring(s) over
character pairs that are peaks (or local maxima) in a burst
of votes. In our running example, there is only one peak
and the centroid is TGF-beta.
In addition, thresholds may be added to further refine the
notion of a peak. For example, “only local maxima” might
be relaxed to “local maxima plus surrounding material
within a certain threshold of votes”. In this way, small de-
viations from peaks might be ignored. Equally, a minimum
threshold of votes may be applied so that very low peaks be-
come ignored. Thresholding becomes important when the
algorithm is applied to generate a Silver Standard from sets
of imperfect inputs, such as those that result from automatic
annotation.
The character-pair votes also define the boundary distribu-
tion around the centroid. We currently define a possible
boundary whenever the number of votes changes. Its value
is the difference in votes. So, the centroid TGF-beta has a
possible left boundary before T and its value is 2 (the differ-
ence between 4 and 2). The boundary before endogenous
also scores 2 (the difference between 0 and 2). There is no
boundary immediately after specific.
Fig. 4 illustrates typical outputs of the algorithm using an
xml representation. The centroid itself is represented in-
side an e element. Each possible boundary is represented
as d:p:v (direction,position,value) in a comma-delimited
list. For example, l:10:2 means that there is a boundary
10 characters to the left of TGF-beta. This boundary in-
cludes emdogenous. The ‘value’ of the boundary, 2, is used
in measuring relative acceptability (see further below). The
string encompassed by the leftmost and rightmost bound-
aries is the maximal extent of the centroid.

5. Algorithm Evaluation
Here we evaluate the centroid algorithm first when fed per-
fect inputs, namely sets of humanly annotated alternatives
from Gold Standard corpora, and secondly when fed auto-
matic annotations.

5.1. Gold Standard Inputs
We generated multiple copies of the BioCreative training
corpus (15k sentences) such that every Gold Standard name
(core and alternative) was marked up once in some copy of
the corpus. Then, we applied the centroid algorithm. No
thresholding was used. As the inputs are all Gold Standard,
no threshold ought to be necessary because one vote is sim-
ply enough votes.
We evaluated the resulting centroids using, as a de facto
pre-existing standard, the BioCreative evaluation script.
(For the use of Boundary Scores, see below.)
The results (Fig 5) show that only a tiny proportion of cen-
troids were not also Gold Standard names. That is, the vast
majority of sets of alternatives in BioCreative do not resem-
ble the (deliberately chosen) AZDC example of Section 3..
Nevertheless, we investigated the reasons why some names
were not so well-behaved (see below). We also observe that
the recall of Gold Standard names is extremely high. We
conclude that any tagger that performs well in finding cen-
troids will perform equally well against the original Gold
Standard, as measured by BioCreative’s own evaluation.
One unexpected result was that the algorithm uncovered
more centroids (18339) than there were core names in
BioCreative (18265). How could this be? It turned out
that there were entries in the BioCreative Alternative Gene
List that overlapped no core name, e.g PHA from offsets
175 to 177 in P01842498A0000; gp0.7 from 30 to 34 in
P01310178A0876. Such cases are probably just errors in
the BioCreative data2. If nothing else, this demonstrates
that a Gold Standard in the BioCreative format requires a
certain degree of internal consistency checking. By con-
trast, such an error simply cannot appear in a centroid rep-
resentation. Every alternative must extend a centroid.
Fig 5 also demonstrates that there are fewer true and false
positives according to the evaluation procedure than there
are “core” names. This is surprising too. One might ex-
pect every candidate name either to be true (match the Gold
Standard in some way) or false. This is not so however be-
cause BioCreative evaluation actually depends on the dis-
tribution of overlapping names between the Gene List and
Alternative Gene List. If two candidates match smaller al-
ternatives of the same longer core name, then they count for
only one, not two.
Our qualitative analysis of discrepancies also highlighted
this possibility. Fig. 6 shows two such cases. In each case,

2Errors because a non-overlapping alternative will not be used
by the evaluation script.
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db #cents TP FP FN P R F #core names
BC 18339 18141 134 124 0.993 0.993 0.993 18265

AZDC 3206 3186 15 32 0.995 0.990 0.993 3218

Figure 5: Centroid evaluation

the core name from the Gene List is shown italicized.

1st Example (superstring is core)
Rel-related human p75 nucleoprotein complex
Rel
Rel-related human p75
Rel-related
human p75 nucleoprotein
human p75 nucleoprotein complex
human p75
p75 nucleoprotein complex
p75
2nd Example (superstring is non-core)
Gamma glutamyl transpeptidase
GGTP
Gamma glutamyl transpeptidase (GGTP)

Figure 6: Disjoint substring alternatives

In the first example, if a candidate annotation includes Rel
but not p75, BioCreative will give no recall penalty. This
is because Rel and p75 are just equally good alternatives
to annotating the one core entity: Rel-related human p75
nucleoprotein complex. If one name in the Alternative Gene
List which overlaps it has been found, then the core name
has been found. So there is no recall error. By contrast,
the centroid algorithm finds that the two smaller names are
both centroids and evaluation will therefore require both of
them to be found by an automatic annotator. This seems to
us intuitively correct. Given the alternatives in Fig 6, both
Rel and p75 ought to be annotated either individually or as
parts of one long name. Otherwise, a use of a gene name
has been missed.
Fig 4 shows in xml format the p75 centroid that is found
by the algorithm. It is important to note that the distribu-
tion of boundaries does not tie particular left boundaries
to particular right boundaries. Therefore, p75 nucleopro-
tein is permissible given the centroid representation. In this
way, the centroid representation further deviates from what
is represented in the BioCreative Gold Standard. p75 nucle-
oprotein is not in fact included in the long list of alternative
names that are deemed Gold Standard by BioCreative. If an
annotation included this candidate, it would simply be false
positive. According to the centroid measure, however, it is
true positive with a right boundary score (see section 6.) of
0.33.
Who is right? Although no external validation (such as a
Mesh identifier) for p75 nucleoprotein could be found in
a web-search, we note that BioCreative itself deems hu-
man p75 nucleoprotein to be Gold Standard and it certainly
seems that human is an optional element. (We could find no
identifier for human p75 nucleoprotein either.) Therefore,
we believe that p75 nucleoprotein ought to be acceptable
too. It is of course not clear how the lists of alternative

names in the BioCreative gold standard were arrived at; but
our investigations suggest that they may not be complete.
We carried out the same procedure and analysis for the
Arizona Disease Corpus. In this case it was necessary to
partition the undifferentiated set of names into ‘core’ and
‘alternative’ and this was done without human interven-
tion. Whenever an overlap was detected, the core name
was simply the first member of the set. However, the re-
sulting partition only contained 194 alternatives for 3218
core names which is significantly different from BioCre-
ative where 14499 alternatives are associated with 18265
core names. As a result, although the precision, recall and
f-scores for AZDC in Figure 5 resemble those for BioCre-
ative, the underlying situation is very different. The cen-
troid algorithm only has work to do when there are alterna-
tives and this is infrequently the case in AZDC.
Qualititative analysis of the AZDC disagreements revealed
that they mostly resembled the example of Figure 2. For ex-
ample, ovarian cancer and cancer cell growth, are overlap-
ping alternatives in AZDC. This leads to a centroid of can-
cer which is not itself deemed gold standard. In fact, in this
particular case, the superstring ovarian cancer cell growth
was also not AZDC gold standard! One might defend the
omission of ‘cancer’ on its own from the Gold Standard on
the grounds that it is too imprecise or vague, even though
a disease tagger that spots cancer has at least done some-
thing better than one that spots nothing at all. It is harder to
understand why the superstring ovarian cancer cell growth
should not be Gold Standard given that both ovarian cancer
and cancer cell growth are Gold Standard.
The conclusion is that, in most cases, where the cen-
troid representation suggests names that differ from those
present in the input list of alternatives, the centroid sug-
gested names are correct.

5.1.1. Appositional cases
There is one common case, however, where the centroid
algorithm appears, intuitively, to produce incorrect results.
These cases involve the linguistic phenomenon of apposi-
tion, where two adjacent terms have one referent, such as
“C/EBP homologous protein CHOP-10.” Here, the follow-
ing names are Gold Standard alternatives: CHOP-10, pro-
tein CHOP-10 and C/EBP homologous protein. In these
circumstances, the centroid algorithm detects protein as a
centroid, in addition to CHOP-10 and C/EBP homologous.
Since these cases always arise through apposition and in-
volve a highly general term (such as gene or protein) as
head noun, one effective solution is simply to remove cen-
troids that only consist of such a term.
Alternatively, since our final objective is to uncover the en-
tities named and not just their names, information about
referents (sometimes called normalized names) should be
brought to bear. This however represents a future extension
of our work.
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5.2. Automatic annotation inputs
We also generated centroids for the re-annotations of
BioCreative data submitted as part of the CALBC-II 3

challenge competition (Rebholz-Schuhmann et al., 2011).
These inputs are not “perfect” of course. The output cen-
troids represent the “hearts” of the competing annotations:
a Silver Standard.

5.2.1. Automatic annotation results
Fig 7 shows the (BioCreative-assessed) scores of four dif-
ferent systems supplied by CALBC project partners (p1 to
p4) and the centroid scores at three thresholds (t=1 to t=3).
For t=1,2 the centroids outperform every partner, at least on
F-score.

partner P R F
p1 0.710 0.494 0.583
p2 0.690 0.466 0.556
p3 0.761 0.367 0.496
p4 0.888 0.285 0.432
Ce (t=1) 0.611 0.639 0.625
Ce (t=2) 0.772 0.472 0.586
Ce (t=3) 0.865 0.308 0.454

Figure 7: Partner-only harmonization

Fig 8 is for the challenge participants who at least matched
a project partner on their BioCreative-assessed score. The
result demonstrates that if we extend the participating an-
notations to all “good” challenge participants, the overall
F-Score (64.8) improves significantly (from 62.5) and all
but the very top participant are outscored by the centroids.

P R F
p5 0.968 0.676 0.796
p6 0.627 0.609 0.618
p1 0.709 0.494 0.582
p2 0.690 0.463 0.554
p3 0.763 0.371 0.499
p7 0.578 0.374 0.454
p4 0.887 0.282 0.428
Ce (t=2) 0.630 0.667 0.648
Ce (t=3) 0.731 0.576 0.645
Ce (t=4) 0.822 0.467 0.595
Ce (t=5) 0.867 0.344 0.493
Ce (t=6) 0.894 0.205 0.334

Figure 8: Partner-beating CALBC participants

We also experimented with including all challenge partic-
ipants, regardless of their own individual quality. In this
case, the quality of the derived centroids no longer in-
creases although, somewhat encouragingly, the F-measure
(for thresholds 2 to 5) remains above 50 (data not shown).
Furthermore, we also tested the degree of correlation be-
tween performance against silver and gold standards. That
is, even though by definition the silver standard is not gold,
do systems that perform well against a gold standard also
tend to perform well against a silver standard? For this test,

3http://www.calbc.eu

we considered all seventeen submissions, ranked their F-
score performance against each of the two standards and
calculated a Spearman’s rank correlation coefficient. rs was
0.745 which, if the submissions can be considered random
selections from the population of such taggers, is significant
at the p < 0.001 level (two-tailed test). The correlation is
not perfect of course. For example, the system which came
top against the gold standard only came fourth against the
silver standard whereas the top-ranking system against the
silver standard only came third against the gold standard.
Nevertheless, the degree of correlation does provide some
basis for the hope that a silver standard could stand proxy
for a gold standard.

6. Precision, Recall, Boundary Score
Thus far, we have considered centroids mostly as the
‘hearts’ of annotations. Now, we consider the distributional
information.
If we replace an existing Gold Standard with a centroid
representation, how should we define precision and recall
against it? There are several possibilities. We prefer one
where a candidate annotation is true positive if it is an ex-
tension4 of a centroid and that centroid’s maximal extent
is an extension of the annotation. That is, an annotation
must include the whole of the heart and neither annotation
boundary may lie outside the distribution. Precision is then
just the proportion of user annotations that are true positive.
Similarly, we define a centroid as positively found if there
is a candidate annotation which extends it and which does
not extend its maximal extent. Recall is the proportion of
centroids that are positively found.
Simply put, user annotations should be tested for whether
they lie within the range allowed by the distribution and
whether they extend its heart.
We tested empirically whether an F-Score based on these
definitions differed from BioCreative F-Score and found
only insignificant variation (data not shown).
The superiority of the centroid scoring mechanism lies in
two directions. First, it is an intuitively clear measure;
whereas the BioCreative measure is not, as shown in sec-
tion 3. above. Secondly, we can extend the measure to pro-
vide a more fine-grained score, a boundary score, for each
annotation. A left (right) boundary scores the ratio of its
value to the maximum value for any left (right) boundary
of the centroid. Boundary scores therefore lie in the range
0 ≤ x ≤ 1. In our running example, values of 2 are as-
signed at right boundary positions +0 and +16. The maxi-
mum is 2. So, TGF-beta will not only be true positive but
score a perfect 1 for its right-boundary, as will TGF-beta-
specific complex. They are both equally, and perfectly, ac-
ceptable. TGF-beta-specific is still true positive but scores
0 for its right boundary.
In purely practical terms, we also note that there is consid-
erable advantage to be obtained from an evaluation program
which can find and report on near misses (there should be
an annotation here, but the boundary is perhaps not perfect)
as well as total misses (even the very heart of the annotation
was missed).

4any string x is an extension of itself
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7. Comparison to Other Work
There have been several approaches to flexible matching
against gold standard named entities (see (Nadeau and
Sekine, 2009; Tsai et al., 2006) for recent reviews and
(Rebholz-Schuhmann et al., 2010) for a later development
incorporating the inverse document frequency (idf) scores
of the tokens inside named entities). Even in MUC, the
earliest of evaluation methodogies, some credit was given
to entities that only overlapped a gold standard name so
long as the right semantic type (person, organization, etc)
was assigned. In some NER competitions, e.g CONLL and
IREX, exact matching against a single right answer has re-
mained the standard (Sang and Meulder, 2003; Sekine and
Isahara, 2000).
The idea that candidate names must at least contain a gold
standard “core term” is one of the options (briefly) can-
vassed in (Tsai et al., 2006) where it is also correctly noted
that many text mining pipelines that deploy NER do not
actually require duplication of the sort of human-expert
boundary decision-making used in creating the gold stan-
dards. (Tsai et al., 2006) however state that “it is only pos-
sible to identify core terms by hand” and pay the idea no
further attention. We have demonstrated that, given a set of
(reasonably complete) alternatives, the core terms can be
identified automatically, as can inconsistencies and omis-
sions in the alternatives set. Of course, obtaining the range
of alternatives in the first place is not trivial; but it does not
require experts to identify the “core” parts of terms. Indeed,
it appears advantageous if human expert annotation is en-
visaged, from the outset, as aiming at gathering justifiable
alternatives rather than aiming unrealistically for the single,
ideal, expert-agreed boundary. We note also that the cen-
troid scheme include boundaries with weights. These could
reflect salience amongst experts, as well as salience in a
silver standard consensus. The right process for arriving
at (good) sets of alternatives appears to be an unexplored
research area.
The combination of automatic annotations in order to
generate a “silver” standard has been explored before.
(Rebholz-Schuhmann et al., 2010) describe a harmoniza-
tion built from n contributions by a sequence of n− 1 pair-
wise alignments using cosine similarity scores over vectors
of token idfs. The output, like most gold standards, rep-
resents a single choice of ‘ideal’ term extent and includes
no distributional information. In addition, the output of the
scheme is order dependent on the sequence of pairs and,
since it is also dependent on a particular tokenization and a
particular set of idfs, not wholly transparent. Our output is
order-independent, not dependent on token idf scores and
represents the distribution of terms. We are also, we be-
lieve, the first to report qualitative analysis of such a silver
standard.
That combinations of results can outperform any individual
contributor is of course a very well explored topic in ma-
chine learning. In BioCreative, (Smith et al., 2008) were
able to train a tagger over a combination of automatic an-
notation results which outperformed (with statistical sig-
nificance) the best contributor. Furthermore, they demon-
strated evidence that generally weaker systems still added
value overall. Although our results mirror these findings

to a degree, we note that own work is strictly orthogonal
to this line of investigation. Our objective is not to derive
the best tagging system but to improve the representations
within Gold Standards and to develop further the notion of
a consensus Silver Standard and evaluate it. Some early
investigations into a trained approach towards harmoniza-
tion appear in (Campos et al., 2011), but the output of the
approach once again does not represent distributional infor-
mation.

8. Conclusion
We have proposed a new representation for names and their
alternatives in both Gold and Silver Standard corpora, and
an algorithm for deriving them. We have demonstrated that,
given gold standard inputs, the outputs perform outstand-
ingly well by traditional measurement whilst also support-
ing an intuitive picture of the distribution of alternatives
and a novel means of assessing the acceptability of variants.
Given automatic inputs, the outputs form a Silver Standard
representing a consensus annotation.
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