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Abstract 

Arabic is a language known for its rich and complex morphology. Although many research projects have focused on the problem of 
Arabic morphological analysis using different techniques and approaches, very few have addressed the issue of generation of fully 
inflected words for the purpose of text authoring. Available open-source spell checking resources for Arabic are too small and 
inadequate. Ayaspell, for example, the official resource used with OpenOffice applications, contains only 300,000 fully inflected 
words. We try to bridge this critical gap by creating an adequate, open-source and large-coverage word list for Arabic containing 
9,000,000 fully inflected surface words. Furthermore, from a large list of valid forms and invalid forms we create a character-based 
tri-gram language model to approximate knowledge about permissible character clusters in Arabic, creating a novel method for 
detecting spelling errors. Testing of this language model gives a precision of 98.2% at a recall of 100%. We take our research a step 
further by creating a context-independent spelling correction tool using a finite-state automaton that measures the edit distance 
between input words and candidate corrections, the Noisy Channel Model, and knowledge-based rules. Our system performs 
significantly better than Hunspell in choosing the best solution, but it is still below the MS Spell Checker. 
 
Keywords: Arabic, spelling error detection and correction, finite state morphological generation, character-based language model, 
Arabic open-source spell checker 
 

1. Introduction 
With the advent of the era of free and open-source 
software, the need for language resources has become 
even stronger. Very few researchers and developers have 
tried to develop a free alternative to the proprietary 
Microsoft Arabic spell checker. One example is the 
Arabic Spell1 open-source project (designed for Aspell), 
which relies on the Buckwalter morphological analyser 
and generates about 900,000 inflected words. Another 
example is the Ayaspell2 word list, which is the official 
resource used in OpenOffice applications. Developers of 
this word list created their own morphological generator, 
and their word list contains about 300,000 inflected 
words. In this paper we use the term ‘word’ to designate 
fully inflected surface word forms, while the term 
‘lemma’ is used to indicate the uninflected base form of 
the word without affixes or clitics. 
 
We create a very large word list for Arabic using 
AraComLex3 , an open-source finite-state large-scale 
morphological transducer (as presented in Section 2), 
which generates about 13 million words, of which 9 
million are found to be valid forms. For the sake of 
comparison, we also use a word list created from a corpus 

                                                           
1 http://sourceforge.net/projects/arabic-spell/files/arabic-spell 
2 http://ayaspell.sourceforge.net/ 
3 http://aracomlex.sourceforge.net/ 

of 1,000,000,000 words. We automatically match all the 
word lists against the Microsoft Spell Checker (in the 
Office 2010 suite) to determine how many words are 
accepted and how many are rejected. We note her that at 
this stage, the acceptance and rejection decisions by MS 
Spell Checker are taken per se without any further 
checking. The results are shown in Table 1.  
 
 No. of 

Words 
MS 
Accepted 

MS 
Rejected 
 

AraComLex4 12,951,042 8,783,858 4,167,186 
Arabic-Spell for 
Aspell (using 
Buckwalter) 

938,977 673,875 265,103 

1 billion-word 
corpus 
(Gigaword5 and 
Al -Jazeera)  

2,662,780 1,202,481 1460,447 

Ayaspell for 
Hunspell 

292,464 230,506 61,958 

Total* 15,147,199 9,306,138 5,841,061 
 
Table 1: Arabic word lists matched against Microsoft 
Spell Checker 
* Totals will not add due to the removal of duplicates 
 

                                                           
4 http://arabic-wordlist.sourceforge.net/ 
5 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp? 
catalogId=LDC2009T3 

719



Proclitics Prefix Stem Suffix Enclitic 
Conjunction/ 
question article 

Complementizer Tense/mood – 
number/gender 

Verb Tense/mood – 
number/gender 

Object 
pronoun 

Conjunctions و 
wa ‘and’ or ف fa 
‘then’ 

’li ‘to ل  Imperfective tense 
(5) 

 
 
 
Stem 

Imperfective tense 
(10) 

First person 
(2) 

Question word 
 a ‘is it true᾽ أ
that’ 

’sa ‘will س  Perfective tense 
(1) 

Perfective tense 
(12) 

Second 
person (5) 

 la ‘then’ Imperative (2) Imperative (5) Third person ل
(5) 

Table 2. Possible concatenations in Arabic verbs 

 
By comparing our list to other languages, we find that for 
English there are, among other word lists, AGID6, which 
contains 281,921 words, and SCOWL7 , containing 
708,125; for French, there is a word list that contains 
338,989 words. The largest word list we find on the web is 
a Polish word list for Aspell containing 3,024,8528. This 
makes our word list one of the largest for any human 
language so far. Finnish and Turkish are agglutinative 
languages with rich morphology that can lead to an 
exposition in the number of words, similar to Arabic, but 
word lists for these two languages are not available to us 
yet. We take the combined and filtered list of 9,306,138 
words as our spell checking word list and name it 
“AraComLex Extended”. 
 
A complete and conclusive word list of Arabic is almost 
impossible to obtain due to the high morphological 
productivity of the language and the many constraints 
which even experienced linguists might not be able to 
explicitly formulate. Therefore, we use a character-based 
tri-gram language model trained on the total MS accepted 
list in Table 1 to detect permitted vs. disallowed clusters 
of characters. The result of our experiment (in Section 
3.2) gives a precision of 97% at a recall of 100% for 
detecting valid and invalid word forms. 
 
Having detected possible errors, the next step is to provide 
an ordered list of candidate corrections. We deploy the 
full list of correct Arabic words in a finite-state automaton 
to propose candidate corrections for misspelled words 
within a specified edit distance from the correct words. In 
order to rank the candidate corrections, a word-based 
language model (trained on Gigaword corpus data) is used 
to assign scores to each correction. We also use language 
specific knowledge to help choose the best correction in a 
given context. 
 
The remainder of this paper is structured as follows. 
Section 2 illustrates the complexity of Arabic morphology 
and show how the word list is created from the 
AraComLex finite-state morphological generator. Section 

                                                           
6 http://sourceforge.net/projects/wordlist/files/AGID/ 
Rev%204/agid-4.zip/download 
7 http://sourceforge.net/projects/wordlist/files/SCOWL/ 
Rev%207.1/scowl-7.1.zip/download 
8 http://www.winedt.org/Dict/ 

3 shows how we use language modelling to predict valid 
words versus invalid words. Section 4 shows how 
finite-state edit distance (modified with knowledge-based 
rules) is used to provide spelling corrections for errors. 
Finally Section 5 gives the conclusion. 

2. Finite-State Word Generation 
Arabic morphology is well-known for being rich and 
complex (Beesley and Karttunen, 2003; Watson, 2002; 
Kiraz, 2001; Hajič et al., 2005). Arabic morphology has a 
multi-tiered structure and applies non-concatenative 
morphotactics. Words in Arabic are originally formed 
through the amalgamation of roots and patterns, as shown 
in Table 3. A root is a sequence of three consonants and 
the pattern is a template of vowels with slots into which 
the consonants of the root are inserted. This process of 
insertion is called interdigitation (Beesley and Karttunen, 
2003). The resulting lemmas then pass through a series of 
affixations (to express morpho-syntactic features) and 
clitic attachments (as conjunctions and prepositions, for 
example, are mostly joined to adjacent words in writing) 
until they finally appear as surface forms. 
 

Root       درس 
       drs 

POS V V N N 

Pattern R1aR2aR3a R1aR2R2aR3a R1AR2iR3 muR1aR2~iR3 

lemma darasa 

‘study’ 
darrasa 

‘teach’ 
dAris 

‘student’ 
mudar~is 

‘teacher’ 

Table 3. Root and Pattern Interdigitation 
 
Due to the richness and complexity of Arabic 
morphology, there is no corpus, no matter how large, that 
contains all possible word forms. Given a word in Arabic, 
one can change its form by adding or removing yet 
another prefix, suffix, proclitic or enclitic. This is why a 
morphological generator is essential in creating an 
adequate list of possible words. 
 
As an example, possible concatenations and inflections in 
Arabic verbs are shown in Table 2. All affixes and clitics 
are optional, and they can be connected together in a 
series of concatenations. The maximum number of 
concatenations (of bound morphemes representing affixes 
and clitics) with Arabic verb lemmas is five. 
Unconstrained concatenations for verbs can produce as 
many as 33,696 forms for a single verb lemma. In real 
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constrained examples, some verbs, such as ()* šakara ‘to 
thank’, generate 2,552 valid forms. This considerable 
amount of form variation is a good indication of the 
productive power of Arabic morphology. 
 

Attia et al. (2011) build a large-scale open-source 
finite-state morphological transducer for Arabic, 
AraComLex, that contains 30,587 lemmas. There are a 
number of advantages of this finite-state technology that 
makes it especially attractive in dealing with human 
language morphologies (Wintner, 2008). Among these 
advantages are the ability to handle concatenative and 
non-concatenative morphotactics, compactness, high 
speed, and efficiency.  
 
 No. of 

Words 
Coverage Accuracy f-measure 

AraComLex 12,951,042 0.9697 0.9803 0.9899 
Arabic-Spell 
for Aspell 

938,977 0.6553 0.6586 0.7917 

1 billion- 
word corpus  

2,662,780 0.9982 0.9845 0.9921 

Ayaspell for 
Hunspell 

292,464 0.5529 0.5681 0.7190 

AraComLex 
Extended 

9,306,138 0.9840 0.9998 0.9999 

Table 4: Comparison of coverage, accuracy and f-measure 
of AraComLex Extended against other resources  
 
Another main advantage of finite-state morphology is that 
it is bidirectional, which makes it suitable for both 
analysis and generation. We use this generation feature to 
produce all the possible words within this morphology. 
AraComLex generates 12,951,042 words. When 
automatically validated using MS Spell Checker 
4,167,186 forms are rejected, leaving 8,783,858 as 
accepted forms, that is 68% of the data. At the current 
stage, we just accept MS decisions without questions, yet 
more validation is needed to check how accurate the MS 
Spell Checker is in accepting and rejecting forms. The 
word list that we have created will be available as an 
open-source resource under GPLv3 license. 
 
In order to test the the various components in this research 
project, we create a test set of 400,000 words collected 
from documents from Arabic news websites, and we 
make sure that these documents are not included in the 
Gigaword corpus.  Words in the test set are automatically 
marked by MS Spell Checker as either ‘correct’ or 
‘incorrect’. We test the coverage, accuracy, and f-measure 
of AraComLex Extended against this test set and compare 
it to the other available resources, as shown in Table 4. 
AraComLex Extended has the best scores in accuracy and 
f-measure, and second best in coverage after the corpus. 

3. Error Detection 
We use two methods, the direct method, that is matching 
against a word list, and a language modelling method in 
case such a word list is not available. 

3.1 Direct Detection 
The direct way for detecting spelling errors is to match 
words in an input text against a list of correct words. Such 
a word list in Arabic can run into several millions as 
shown earlier. This is why it is more efficient to use finite 
state automata to store words in a more compact manner. 
Input string can then be composed against the valid word 
list paths and spelling errors will merely be the difference 
between the two word lists (Hassan et al., 2008). 
 
3.2 Detection through language modelling 
Language modelling has been used frequently for the 
purpose of spelling correction (Magdy and Darwish, 
2006; Brill, Eric and Moore, 2000; Choudhury et al. 
2007). However, here we build a language model in order 
to help in the validation and classification of Arabic 
words either in the existing word list or in new forms that 
can be encountered at future stages. Arabic is challenging 
for language modelling due to the high graphemic 
similarity of Arabic words. This is shown by Ben 
Othmane Zribi et al. (2003) who conducted an experiment 
using four editing operations (addition, substitution, 
deletion and interchanging two adjacent letters), 
calculating the number of correct forms among the 
number of automatically built forms (or lexically 
neighbouring words) resulting from these editing 
operations. They found that the average number of 
neighbouring forms for Arabic is 26.5, which is 
significantly higher than that for French, 3.5 and English, 
3.0. 

 
Figure 1: New Results of the LM classifier 
identifying valid and invalid Arabic word forms 

 
We build a character-based tri-gram language model 
using SRILM9 in order to classify generated words as 
valid and invalid. We split each word into characters, and 
create two language models: one for the total list of words 
accepted as valid (9,306,138 words), and one for the total 
list rejected as invalid (5,841,061 words) through MS 
Spell Checker filtering as shown in Table 1 above. The 
maximum word length attested in the data is found to be 
                                                           
9 http://www.speech.sri.com/projects/srilm/ 
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19 characters. We test the model against our test set of 
400,000 words. Figure 1 shows a precision-recall curve of 
the classifier. The curve represents precision and recall 
scores of the detection of spelling errors based on the 
difference between the perplexity obtained by the accept 
model and the perplexity of the reject model. The 
downward movement of the curve indicates that the 
model is working quite reasonably giving a precision of 
98.2% at a recall of 100%. The model also achieves a 
precision of around 98,8% at a recall of 40%. We can 
identify 30% of all errors with a precision of 99%, i.e. 
with 1% false alarms only.  

4. Spelling Correction 
Having detected an error in spelling, the next step is to 
propose a list of corrections. We deploy finite-state 
automata to propose candidate corrections within a 
specified edit distance measured by Levenshtein Distance 
(Levenshtein, 1966) from the misspelled word (Oflazer, 
1996). Our implementation covers the edit distance 
primitive operations of substitution, deletion and 
insertion, in addition to the non-primitive operation of 
transposition (ab → ba). After choosing candidate 
corrections, we use the Noisy Channel Model (Section 
4.2.2) trained on our corpus of one-billion words, and 
knowledge-based rules to assign scores to the candidate 
corrections and choose the best correction independent of 
the context. In Section 4.2, we explain the ranking 
procedures and compare the results against the Microsoft 
Spell Checker in Office 2010 and Hunsell-ar (using 
Ayaspell) used in OpenOffice. 
 
4.1 Related work 
Hassan et al. (2008) applied an edit distance spelling 
correction approach to an Arabic dictionary of 526,492 
entries and tested it on words of lengths from 3 to 13 
characters. Here we apply a similar approach to the total 
word list of 9.3 million words, and we also apply it to all 
allowable word lengths from 2 to 19 characters. We 
complement our approach by using knowledge-based 
rules focused on the most common types of errors. For 
example, Arabic writers are frequently confused about the 
placement of hamzah, which can have 8 different forms ( أ

 ـ –ئ  –آ  –ؤ  –ا  –إ  – S - ء ). Alif maqsoura and yaa ( ى - ي  ) 
are often confused at the end of words, as one of them has 
two dots beneath and the other does not; the same with taa 
marboutah and haa (  Wـ - Xـ ), where one of them has two 
dots above and the other does not. 
 
Hassan et al. (2008) reported 89% auto-correction (or first 
order choice) accuracy, but they conducted the test on 
only 556 words. Moreover, they did not indicate the 
source of these errors and whether they are actual errors 
extracted from real texts or whether they were artificially 
introduced. In this paper we test our first order ranking 
(having the best correction first, also called ‘auto- 
correction) approaches on 1,799 naturally-occurring (i.e., 
not machine-generated) spelling errors that are obtained 
from a news corpus of 400,000 words especially extracted 

for testing. 
 
We tried using Foma (Hulden, 2009) to generate the 
finite-state automata, but although it worked nicely with 
smaller datasets, it failed to read the full list of 9.3 million 
words apparently due to its huge size. The Xerox XFST 
successfully built a finite-state network for the whole 
Arabic word list, and is used in the experiments reported 
below. The spelling-correction tool can be accessed on 
this temporary link10.  
 
4.2 Correction Procedure and Evaluation 
 
Ranking is an important feature of a spelling checker. An 
optimized ranking algorithm would yield a reduced 
number of suggestions. Here we experiment with two 
methods of ranking spellchecking candidates. Our results 
(Section 4.2.3) show that augmenting edit distance and 
the Noisy Channel Model with knowledge-based rules 
improved the accuracy of ranking by 6.8% absolute. 
 
Our first approach consists of assigning weights based on 
the edit distance between the misspelled word and a set of 
correction candidates. We train the Noisy Channel 
probability model on our one-billion word corpus 
(Gigaword and Al-Jazeera). This model is used to rescore 
candidates so that two candidates might receive different 
weights for the same number of edits. Our second 
approach differs from the first only in the edit distance 
scoring mechanism. Unlike the first edit distance, where 
costs assignment is based on arbitrary letter change, we 
augment the edit distance scoring mechanism with rules 
following the error patterns in the Arabic language 
(Shaalan et al. 2003), so that letters belonging to the same 
groups will be assigned lower edit costs. 
 
Here we present a step-by-step explanation of the 
procedure we followed in spelling error correction. 

1. All the misspelled words are extracted from a 
test corpus of 400,000 words. The number of 
misspelled tokens automatically identified by the 
MS Spell Checker is 6,279. 

2. After removing duplicates from the 6,279 
misspelled tokens, the number dropped to 3,012 
types. 

3. The 3,012 types were manually reviewed to 
create a gold standard correction for each 
misspelled word. Sometimes, the word was not 
actually misspelled, but was not known to the 
spell checker. The count of real spelling errors 
(true negatives) that have manual corrections is 
1,799 types. There are 1,213 incorrectly detected 
by MS Spell checker as errors (false negatives). 
Manual analysis of this list of false negatives is 
reported in Table 5. 

a. We evaluate MS first order choice of 
correction candidates for the 1,799 
spelling errors against our manually 

                                                           
10 http://user.phil-fak.uni-duesseldorf.de/~samih/arabic.php 
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annotated gold standard, resulting in 
80.54% accuracy. 

b. We also evaluate Hunspell-Ayaspell 
first order choice for the 1,799 spelling 
errors, resulting in 45.64% accuracy. 

4. We generate a group of candidates for each of 
spelling the errors (1,799) using edit distance 1 
and 2. 

5. For the misspelled words with candidates, we 
want to rank the candidates so that the best 
correction goes high up in the list. For this 
purpose we use two approaches: the first uses the 
Noisy Channel Model alone, and the second uses 
the Noisy Channel Model with knowledge-based 
language-specific heuristics. 

 
Type Count Examples 
Normal Words 493 XYرZ[\ا  African 

X]^_`ا  craftsmanship 
Xabcd`ا comforting 

Proper Nouns 364 نfgZh  Biden 
ijkZl  McCain 
m`n)`Zl  Malcolm 

Newly coined 222 X^cY(`ا  digitalizing 
Xط(plf`ا 
democratization 
X^_qrc`ا  
personalized 

Newly borrowed 38 تZjhn`  lobbies 
Zjhn[nltuvا  
Islamophobia 
 nhZx  taboosھZت

Colloquial 39 yz{^xا  destroyed 
ygادn|  tales 
 f|Zl  nobodyش

Unknown 34 W~�ln� 
Xgndu(p`ا 
Xj^gflو 

Classical 23 زورbc`ا  sinful 
 critical  ا`bcزوم
�c�c`ا  soaked 

Table 5: Analysis of false negatives in the test corpus. 
 
Figure 2 shows a diagram of the procedure for ranking 
spelling error candidates. The finite state transducer takes 
input and matches it against our list of 9.3 million words. 
If a word is not found, it is considered as containing a 
spelling error and is passed to the ‘suggestion list 
generator’ which uses the Edit Distance algorithm to 
generate all words within distance 1 and 2 from the input 
word. This is then passed to the candidate list scorer 
which uses the Noisy Channel Model (trained on the 
corpus) and Edit Distance augmented with 
language-specific rules. We post-process the output 
before displaying suggestions. This process is explained 
in more detail in the following sections. 
 
4.2.1 Candidate Generation 
We integrated a candidate generator in our system in the 

form of an edit distance finite-state transducer. It 
generates all possible words that are within edit distance 
1and 2 from the entries included in the word list (Oflazer, 
1996; Hulden, 2009). It is basically a character-based 
generator as it replaces each character with all possible 
characters in the alphabet as well as deleting, inserting, 
and transposing neighbouring characters. This is a 
brute-force process that ends up with a huge list of 
candidates that need to be reduced and scored. To filter 
out unnecessary words, only words that are found in the 
word list (by the transducer) are passed to the scorer. This 
is done by composing two automata ���	. �. �� where ��� 
stands for the lexical items in the word list and �� is the 
words generated by the edit distance generator. 
 

Figure 2. Flow chart of spelling error correction  

4.2.2 Scoring the Candidates 
Our scoring mechanism is based on the Noisy Channel 
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Model (Kernigan, 1990). The posterior probability of 
each plausible candidate is evaluated according to 
Bayes‘ formula which is equivalent to: 
 

�	
������|�� = ��|�����/��� 
 
where p(c) is the language model or a prior probability of 
the correction c; p(w|c) is the error model or the 
probability that the word w  was misspelled when the user 
meant c, p(w) is a normalizing constant, �	
����  is the 
scoring mechanism that computes all plausible values of 
the correction c and  maximizes its probability given the 
original word w. These probabilities are trained on our 
one-billion word corpus.  
 
4.2.3 Final Ranking 
First Approach. At this stage, every word is reordered by 
the scores previously computed by the Noisy Channel 
Model and a normalized minimum edit-distance so that 
corrections that exceed a pre-defined threshold are 
discarded. In this way, our program yields a reduced 
number of corrections. 
 
Technically speaking, the problem of threshold definition 
can be empirically solved if it is understood in terms of 
allowable errors (Davis and de Salles, 2007). Ideally, the 
maximum number of allowable errors k for a string S is 
defined as shown in the following equation: 
 

k = (1.0 – δ) . |S| 
 
A Frequency distribution analysis of word lengths in the 
corpus is used to give an approximate calculation of the  
individual word matching threshold. The separation of 8 
million words from the corpus has revealed that 80% of 
words have between 4 and 9 characters. As a result, 
defining a threshold of  δ=0.87 means to allow for a 
maximum of one error in a 3 to 9 letters word, and 2 errors 
for a 10 to 15 letter word. 
 
 First Top 5 Top 10 
Approach 1: 
Edit distance 1 & Noisy 
Channel 

68.2% 79.3% 85.1% 

Approach 2: 
Edit distance 1 & Noisy 
Channel & heuristics 

71.3% 82.1% 92.4% 

Table 6: Comparing Approaches 1 and 2  
 
Second Approach. In the second approach, we adopt a 
slightly different but well established method to improve 
the ranking results. The ranking mechanism we have used 
so far is based on the Noisy Channel Model   and a simple 
minimum edit where the cost assignment is based on 
arbitrary letter change. We primed the edit distance 
scoring mechanism with different rules following the 
error patterns for Arabic as defined by Shaalan et al. 
(2003) so that substituting letters belonging to the same 
groups are evaluated at reduced edit costs (Mitton, 1996). 
 

{ } ,{ا, أ, إ, آ } ,{ب,ت,ث,ن,gـ خ,ج,ح }, { } ,{د,ذ  ,{ر,ز
{ } ,{س,ش } ,{ص,ض } ,{ط,ظ } ,{ع,غ } ,{ف,ق  ,{ه،ة
{ } ,{و,ؤ {ي,ى  

 
For example, substituting letters within the same group 
only costs 0.5 instead of 1.0 . This extension to the basic 
edit distance improved accuracy of the ranking algorithm 
by 3.1% (Table 6). The ranking results of Approaches 1 
and 2 are reported in Table 6 showing accuracy for having 
the gold correction in the first, top 5 and top 10 
candidates. 
 
Approaches 1 and 2 have been concerned with the 
re-ranking of candidates. We supplement Approach 2 with 
a post-processing step that simplistically handles the set 
of unknown words (227 words) for which no candidates 
have been generated at all. Inspecting the list of unknown 
words, we found that 63% of them are two or more words 
that are joined together, such as �c�]`راnd~`ا “scientific 
development”, mgاf`اf�� “Abdul-Dayem”, fg(xو� “and does 
not want”, and ثf�gZl “what happens”. We deal with those 
words through regular expression replace rules which 
separates 7 words and particles that are commonly found 
in the joint word forms. These words are: 
 

{ f��, Zg, nhو� ,أ, �, Zlو, Zl} 
 
This simple process corrects 102 words from a total of 
105 words affected. This step yields significant 
improvement on the system’s accuracy raising it up to 
75% (Table 7).  In future research we need to develop a 
more structure strategy to deal with unknown words, 
maybe through language modelling or machine learning. 
 
We compare our first order selection (or auto-correction) 
results against both the Microsoft Spell Checker in Office 
2010 and the OpenOffice Hunspell-ar using the Ayaspell 
Arabic spell checker. Our test results show a significant 
improvement over Hunspell, yet our results are still below 
the accuracy of MS Spell Checker, as shown in Table 7. 
 
Spell Checker First order ranking 
MS Spell Checker 80.54% 
Hunspell using Ayaspell 45.64% 
Approach 1: Edit distance & 
Noisy Channel 

68.20% 

Approach 2: Adding heuristics 
to Edit distance 

71.3% 

Approach 2 with 
post-processing 

75% 

Table 7: First order ranking for 1,799 misspelled words 

5. Conclusion 
Arabic is a challenging language due its rich and complex 
morphology. Our research contributes to the open-source 
community by creating a large and adequate word list for 
Arabic to be integrated in text authoring tools. We use a 
tri-gram language model of the allowable vs. unallowable 
sequences of Arabic characters, which can help in the 
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validation of existing word lists and making decision on 
new unseen words. We also create a hybrid spelling 
correction methodology that significantly outperforms 
Hunspell in first order ranking of candidates. 
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