
Arabic Word Generation and Modelling for Spell Checking

Khaled Shaalan▢▢▢▢,Younes Samih‡, Mohammed Attia†▢▢▢▢,
Pavel Pecina◊, and Josef van Genabith†

▢The British University in Dubai, UAE
khaled.shaalan@buid.ac.ae

‡Heinrich-Heine-Universität, Germany
samih@phil.uni-duesseldorf.de

◊ Institute of Formal and Applied Linguistics,
Faculty of Mathematics and Physics,

Charles University in Prague, Czech Republic
pecina@ufal.mff.cuni.cz

†School of Computing, Dublin City University, Ireland
{mattia,josef}@computing.dcu.ie

Abstract

Arabic is a language known for its rich and complex morphology. Although many research projects have focused on the problem of
Arabic morphological analysis using different techniques and approaches, very few have addressed the issue of generation of fully
inflected words for the purpose of text authoring. Available open-source spell checking resources for Arabic are too small and
inadequate. Ayaspell, for example, the official resource used with OpenOffice applications, contains only 300,000 fully inflected
words. We try to bridge this critical gap by creating an adequate, open-source and large-coverage word list for Arabic containing
9,000,000 fully inflected surface words. Furthermore, from a large list of valid forms and invalid forms we create a character-based
tri-gram language model to approximate knowledge about permissible character clusters in Arabic, creating a novel method for
detecting spelling errors. Testing of this language model gives a precision of 98.2% at a recall of 100%. We take our research a step
further by creating a context-independent spelling correction tool using a finite-state automaton that measures the edit distance
between input words and candidate corrections, the Noisy Channel Model, and knowledge-based rules. Our system performs
significantly better than Hunspell in choosing the best solution, but it is still below the MS Spell Checker.

Keywords: Arabic, spelling error detection and correction, finite state morphological generation, character-based language model,
Arabic open-source spell checker

1. Introduction
With the advent of the era of free and open-source
software, the need for language resources has become
even stronger. Very few researchers and developers have
tried to develop a free alternative to the proprietary
Microsoft Arabic spell checker. One example is the
Arabic Spell1 open-source project (designed for Aspell),
which relies on the Buckwalter morphological analyser
and generates about 900,000 inflected words. Another
example is the Ayaspell2 word list, which is the official
resource used in OpenOffice applications. Developers of
this word list created their own morphological generator,
and their word list contains about 300,000 inflected
words. In this paper we use the term ‘word’ to designate
fully inflected surface word forms, while the term
‘lemma’ is used to indicate the uninflected base form of
the word without affixes or clitics.

We create a very large word list for Arabic using
AraComLex3 , an open-source finite-state large-scale
morphological transducer (as presented in Section 2),
which generates about 13 million words, of which 9
million are found to be valid forms. For the sake of
comparison, we also use a word list created from a corpus

1 http://sourceforge.net/projects/arabic-spell/files/arabic-spell
2 http://ayaspell.sourceforge.net/
3 http://aracomlex.sourceforge.net/

of 1,000,000,000 words. We automatically match all the
word lists against the Microsoft Spell Checker (in the
Office 2010 suite) to determine how many words are
accepted and how many are rejected. We note her that at
this stage, the acceptance and rejection decisions by MS
Spell Checker are taken per se without any further
checking. The results are shown in Table 1.

 No. of

Words
MS
Accepted

MS
Rejected

AraComLex4 12,951,042 8,783,858 4,167,186
Arabic-Spell for
Aspell (using
Buckwalter)

938,977 673,875 265,103

1 billion-word
corpus
(Gigaword5 and
Al -Jazeera)

2,662,780 1,202,481 1460,447

Ayaspell for
Hunspell

292,464 230,506 61,958

Total* 15,147,199 9,306,138 5,841,061

Table 1: Arabic word lists matched against Microsoft
Spell Checker
* Totals will not add due to the removal of duplicates

4 http://arabic-wordlist.sourceforge.net/
5 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
catalogId=LDC2009T3

719

Proclitics Prefix Stem Suffix Enclitic
Conjunction/
question article

Complementizer Tense/mood –
number/gender

Verb Tense/mood –
number/gender

Object
pronoun

Conjunctions و
wa ‘and’ or ف fa
‘then’

’li ‘to ل Imperfective tense
(5)

Stem

Imperfective tense
(10)

First person
(2)

Question word
 a ‘is it true᾽ أ
that’

’sa ‘will س Perfective tense
(1)

Perfective tense
(12)

Second
person (5)

 la ‘then’ Imperative (2) Imperative (5) Third person ل
(5)

Table 2. Possible concatenations in Arabic verbs

By comparing our list to other languages, we find that for
English there are, among other word lists, AGID6, which
contains 281,921 words, and SCOWL7 , containing
708,125; for French, there is a word list that contains
338,989 words. The largest word list we find on the web is
a Polish word list for Aspell containing 3,024,8528. This
makes our word list one of the largest for any human
language so far. Finnish and Turkish are agglutinative
languages with rich morphology that can lead to an
exposition in the number of words, similar to Arabic, but
word lists for these two languages are not available to us
yet. We take the combined and filtered list of 9,306,138
words as our spell checking word list and name it
“AraComLex Extended”.

A complete and conclusive word list of Arabic is almost
impossible to obtain due to the high morphological
productivity of the language and the many constraints
which even experienced linguists might not be able to
explicitly formulate. Therefore, we use a character-based
tri-gram language model trained on the total MS accepted
list in Table 1 to detect permitted vs. disallowed clusters
of characters. The result of our experiment (in Section
3.2) gives a precision of 97% at a recall of 100% for
detecting valid and invalid word forms.

Having detected possible errors, the next step is to provide
an ordered list of candidate corrections. We deploy the
full list of correct Arabic words in a finite-state automaton
to propose candidate corrections for misspelled words
within a specified edit distance from the correct words. In
order to rank the candidate corrections, a word-based
language model (trained on Gigaword corpus data) is used
to assign scores to each correction. We also use language
specific knowledge to help choose the best correction in a
given context.

The remainder of this paper is structured as follows.
Section 2 illustrates the complexity of Arabic morphology
and show how the word list is created from the
AraComLex finite-state morphological generator. Section

6 http://sourceforge.net/projects/wordlist/files/AGID/
Rev%204/agid-4.zip/download
7 http://sourceforge.net/projects/wordlist/files/SCOWL/
Rev%207.1/scowl-7.1.zip/download
8 http://www.winedt.org/Dict/

3 shows how we use language modelling to predict valid
words versus invalid words. Section 4 shows how
finite-state edit distance (modified with knowledge-based
rules) is used to provide spelling corrections for errors.
Finally Section 5 gives the conclusion.

2. Finite-State Word Generation
Arabic morphology is well-known for being rich and
complex (Beesley and Karttunen, 2003; Watson, 2002;
Kiraz, 2001; Hajič et al., 2005). Arabic morphology has a
multi-tiered structure and applies non-concatenative
morphotactics. Words in Arabic are originally formed
through the amalgamation of roots and patterns, as shown
in Table 3. A root is a sequence of three consonants and
the pattern is a template of vowels with slots into which
the consonants of the root are inserted. This process of
insertion is called interdigitation (Beesley and Karttunen,
2003). The resulting lemmas then pass through a series of
affixations (to express morpho-syntactic features) and
clitic attachments (as conjunctions and prepositions, for
example, are mostly joined to adjacent words in writing)
until they finally appear as surface forms.

Root درس
 drs

POS V V N N

Pattern R1aR2aR3a R1aR2R2aR3a R1AR2iR3 muR1aR2~iR3

lemma darasa

‘study’
darrasa

‘teach’
dAris

‘student’
mudar~is

‘teacher’

Table 3. Root and Pattern Interdigitation

Due to the richness and complexity of Arabic
morphology, there is no corpus, no matter how large, that
contains all possible word forms. Given a word in Arabic,
one can change its form by adding or removing yet
another prefix, suffix, proclitic or enclitic. This is why a
morphological generator is essential in creating an
adequate list of possible words.

As an example, possible concatenations and inflections in
Arabic verbs are shown in Table 2. All affixes and clitics
are optional, and they can be connected together in a
series of concatenations. The maximum number of
concatenations (of bound morphemes representing affixes
and clitics) with Arabic verb lemmas is five.
Unconstrained concatenations for verbs can produce as
many as 33,696 forms for a single verb lemma. In real

720

constrained examples, some verbs, such as ()* šakara ‘to
thank’, generate 2,552 valid forms. This considerable
amount of form variation is a good indication of the
productive power of Arabic morphology.

Attia et al. (2011) build a large-scale open-source
finite-state morphological transducer for Arabic,
AraComLex, that contains 30,587 lemmas. There are a
number of advantages of this finite-state technology that
makes it especially attractive in dealing with human
language morphologies (Wintner, 2008). Among these
advantages are the ability to handle concatenative and
non-concatenative morphotactics, compactness, high
speed, and efficiency.

 No. of

Words
Coverage Accuracy f-measure

AraComLex 12,951,042 0.9697 0.9803 0.9899
Arabic-Spell
for Aspell

938,977 0.6553 0.6586 0.7917

1 billion-
word corpus

2,662,780 0.9982 0.9845 0.9921

Ayaspell for
Hunspell

292,464 0.5529 0.5681 0.7190

AraComLex
Extended

9,306,138 0.9840 0.9998 0.9999

Table 4: Comparison of coverage, accuracy and f-measure
of AraComLex Extended against other resources

Another main advantage of finite-state morphology is that
it is bidirectional, which makes it suitable for both
analysis and generation. We use this generation feature to
produce all the possible words within this morphology.
AraComLex generates 12,951,042 words. When
automatically validated using MS Spell Checker
4,167,186 forms are rejected, leaving 8,783,858 as
accepted forms, that is 68% of the data. At the current
stage, we just accept MS decisions without questions, yet
more validation is needed to check how accurate the MS
Spell Checker is in accepting and rejecting forms. The
word list that we have created will be available as an
open-source resource under GPLv3 license.

In order to test the the various components in this research
project, we create a test set of 400,000 words collected
from documents from Arabic news websites, and we
make sure that these documents are not included in the
Gigaword corpus. Words in the test set are automatically
marked by MS Spell Checker as either ‘correct’ or
‘incorrect’. We test the coverage, accuracy, and f-measure
of AraComLex Extended against this test set and compare
it to the other available resources, as shown in Table 4.
AraComLex Extended has the best scores in accuracy and
f-measure, and second best in coverage after the corpus.

3. Error Detection
We use two methods, the direct method, that is matching
against a word list, and a language modelling method in
case such a word list is not available.

3.1 Direct Detection
The direct way for detecting spelling errors is to match
words in an input text against a list of correct words. Such
a word list in Arabic can run into several millions as
shown earlier. This is why it is more efficient to use finite
state automata to store words in a more compact manner.
Input string can then be composed against the valid word
list paths and spelling errors will merely be the difference
between the two word lists (Hassan et al., 2008).

3.2 Detection through language modelling
Language modelling has been used frequently for the
purpose of spelling correction (Magdy and Darwish,
2006; Brill, Eric and Moore, 2000; Choudhury et al.
2007). However, here we build a language model in order
to help in the validation and classification of Arabic
words either in the existing word list or in new forms that
can be encountered at future stages. Arabic is challenging
for language modelling due to the high graphemic
similarity of Arabic words. This is shown by Ben
Othmane Zribi et al. (2003) who conducted an experiment
using four editing operations (addition, substitution,
deletion and interchanging two adjacent letters),
calculating the number of correct forms among the
number of automatically built forms (or lexically
neighbouring words) resulting from these editing
operations. They found that the average number of
neighbouring forms for Arabic is 26.5, which is
significantly higher than that for French, 3.5 and English,
3.0.

Figure 1: New Results of the LM classifier
identifying valid and invalid Arabic word forms

We build a character-based tri-gram language model
using SRILM9 in order to classify generated words as
valid and invalid. We split each word into characters, and
create two language models: one for the total list of words
accepted as valid (9,306,138 words), and one for the total
list rejected as invalid (5,841,061 words) through MS
Spell Checker filtering as shown in Table 1 above. The
maximum word length attested in the data is found to be

9 http://www.speech.sri.com/projects/srilm/

721

19 characters. We test the model against our test set of
400,000 words. Figure 1 shows a precision-recall curve of
the classifier. The curve represents precision and recall
scores of the detection of spelling errors based on the
difference between the perplexity obtained by the accept
model and the perplexity of the reject model. The
downward movement of the curve indicates that the
model is working quite reasonably giving a precision of
98.2% at a recall of 100%. The model also achieves a
precision of around 98,8% at a recall of 40%. We can
identify 30% of all errors with a precision of 99%, i.e.
with 1% false alarms only.

4. Spelling Correction
Having detected an error in spelling, the next step is to
propose a list of corrections. We deploy finite-state
automata to propose candidate corrections within a
specified edit distance measured by Levenshtein Distance
(Levenshtein, 1966) from the misspelled word (Oflazer,
1996). Our implementation covers the edit distance
primitive operations of substitution, deletion and
insertion, in addition to the non-primitive operation of
transposition (ab → ba). After choosing candidate
corrections, we use the Noisy Channel Model (Section
4.2.2) trained on our corpus of one-billion words, and
knowledge-based rules to assign scores to the candidate
corrections and choose the best correction independent of
the context. In Section 4.2, we explain the ranking
procedures and compare the results against the Microsoft
Spell Checker in Office 2010 and Hunsell-ar (using
Ayaspell) used in OpenOffice.

4.1 Related work
Hassan et al. (2008) applied an edit distance spelling
correction approach to an Arabic dictionary of 526,492
entries and tested it on words of lengths from 3 to 13
characters. Here we apply a similar approach to the total
word list of 9.3 million words, and we also apply it to all
allowable word lengths from 2 to 19 characters. We
complement our approach by using knowledge-based
rules focused on the most common types of errors. For
example, Arabic writers are frequently confused about the
placement of hamzah, which can have 8 different forms (أ

 ـ –ئ –آ –ؤ –ا –إ – S - ء). Alif maqsoura and yaa (ى - ي)
are often confused at the end of words, as one of them has
two dots beneath and the other does not; the same with taa
marboutah and haa (Wـ - Xـ), where one of them has two
dots above and the other does not.

Hassan et al. (2008) reported 89% auto-correction (or first
order choice) accuracy, but they conducted the test on
only 556 words. Moreover, they did not indicate the
source of these errors and whether they are actual errors
extracted from real texts or whether they were artificially
introduced. In this paper we test our first order ranking
(having the best correction first, also called ‘auto-
correction) approaches on 1,799 naturally-occurring (i.e.,
not machine-generated) spelling errors that are obtained
from a news corpus of 400,000 words especially extracted

for testing.

We tried using Foma (Hulden, 2009) to generate the
finite-state automata, but although it worked nicely with
smaller datasets, it failed to read the full list of 9.3 million
words apparently due to its huge size. The Xerox XFST
successfully built a finite-state network for the whole
Arabic word list, and is used in the experiments reported
below. The spelling-correction tool can be accessed on
this temporary link10.

4.2 Correction Procedure and Evaluation

Ranking is an important feature of a spelling checker. An
optimized ranking algorithm would yield a reduced
number of suggestions. Here we experiment with two
methods of ranking spellchecking candidates. Our results
(Section 4.2.3) show that augmenting edit distance and
the Noisy Channel Model with knowledge-based rules
improved the accuracy of ranking by 6.8% absolute.

Our first approach consists of assigning weights based on
the edit distance between the misspelled word and a set of
correction candidates. We train the Noisy Channel
probability model on our one-billion word corpus
(Gigaword and Al-Jazeera). This model is used to rescore
candidates so that two candidates might receive different
weights for the same number of edits. Our second
approach differs from the first only in the edit distance
scoring mechanism. Unlike the first edit distance, where
costs assignment is based on arbitrary letter change, we
augment the edit distance scoring mechanism with rules
following the error patterns in the Arabic language
(Shaalan et al. 2003), so that letters belonging to the same
groups will be assigned lower edit costs.

Here we present a step-by-step explanation of the
procedure we followed in spelling error correction.

1. All the misspelled words are extracted from a
test corpus of 400,000 words. The number of
misspelled tokens automatically identified by the
MS Spell Checker is 6,279.

2. After removing duplicates from the 6,279
misspelled tokens, the number dropped to 3,012
types.

3. The 3,012 types were manually reviewed to
create a gold standard correction for each
misspelled word. Sometimes, the word was not
actually misspelled, but was not known to the
spell checker. The count of real spelling errors
(true negatives) that have manual corrections is
1,799 types. There are 1,213 incorrectly detected
by MS Spell checker as errors (false negatives).
Manual analysis of this list of false negatives is
reported in Table 5.

a. We evaluate MS first order choice of
correction candidates for the 1,799
spelling errors against our manually

10 http://user.phil-fak.uni-duesseldorf.de/~samih/arabic.php

722

annotated gold standard, resulting in
80.54% accuracy.

b. We also evaluate Hunspell-Ayaspell
first order choice for the 1,799 spelling
errors, resulting in 45.64% accuracy.

4. We generate a group of candidates for each of
spelling the errors (1,799) using edit distance 1
and 2.

5. For the misspelled words with candidates, we
want to rank the candidates so that the best
correction goes high up in the list. For this
purpose we use two approaches: the first uses the
Noisy Channel Model alone, and the second uses
the Noisy Channel Model with knowledge-based
language-specific heuristics.

Type Count Examples
Normal Words 493 XYرZ[\ا African

X]^_`ا craftsmanship
Xabcd`ا comforting

Proper Nouns 364 نfgZh Biden
ijkZl McCain
m`n)`Zl Malcolm

Newly coined 222 X^cY(`ا digitalizing
Xط(plf`ا
democratization
X^_qrc`ا
personalized

Newly borrowed 38 تZjhn` lobbies
Zjhn[nltuvا
Islamophobia
 nhZx taboosھZت

Colloquial 39 yz{^xا destroyed
ygادn| tales
 f|Zl nobodyش

Unknown 34 W~�ln�
Xgndu(p`ا
Xj^gflو

Classical 23 زورbc`ا sinful
 critical ا`bcزوم
�c�c`ا soaked

Table 5: Analysis of false negatives in the test corpus.

Figure 2 shows a diagram of the procedure for ranking
spelling error candidates. The finite state transducer takes
input and matches it against our list of 9.3 million words.
If a word is not found, it is considered as containing a
spelling error and is passed to the ‘suggestion list
generator’ which uses the Edit Distance algorithm to
generate all words within distance 1 and 2 from the input
word. This is then passed to the candidate list scorer
which uses the Noisy Channel Model (trained on the
corpus) and Edit Distance augmented with
language-specific rules. We post-process the output
before displaying suggestions. This process is explained
in more detail in the following sections.

4.2.1 Candidate Generation
We integrated a candidate generator in our system in the

form of an edit distance finite-state transducer. It
generates all possible words that are within edit distance
1and 2 from the entries included in the word list (Oflazer,
1996; Hulden, 2009). It is basically a character-based
generator as it replaces each character with all possible
characters in the alphabet as well as deleting, inserting,
and transposing neighbouring characters. This is a
brute-force process that ends up with a huge list of
candidates that need to be reduced and scored. To filter
out unnecessary words, only words that are found in the
word list (by the transducer) are passed to the scorer. This
is done by composing two automata ���	. �. �� where ���
stands for the lexical items in the word list and �� is the
words generated by the edit distance generator.

Figure 2. Flow chart of spelling error correction

4.2.2 Scoring the Candidates
Our scoring mechanism is based on the Noisy Channel

723

Model (Kernigan, 1990). The posterior probability of
each plausible candidate is evaluated according to
Bayes‘ formula which is equivalent to:

�	
������|�� = ��|�����/���

where p(c) is the language model or a prior probability of
the correction c; p(w|c) is the error model or the
probability that the word w was misspelled when the user
meant c, p(w) is a normalizing constant, �	
���� is the
scoring mechanism that computes all plausible values of
the correction c and maximizes its probability given the
original word w. These probabilities are trained on our
one-billion word corpus.

4.2.3 Final Ranking
First Approach. At this stage, every word is reordered by
the scores previously computed by the Noisy Channel
Model and a normalized minimum edit-distance so that
corrections that exceed a pre-defined threshold are
discarded. In this way, our program yields a reduced
number of corrections.

Technically speaking, the problem of threshold definition
can be empirically solved if it is understood in terms of
allowable errors (Davis and de Salles, 2007). Ideally, the
maximum number of allowable errors k for a string S is
defined as shown in the following equation:

k = (1.0 – δ) . |S|

A Frequency distribution analysis of word lengths in the
corpus is used to give an approximate calculation of the
individual word matching threshold. The separation of 8
million words from the corpus has revealed that 80% of
words have between 4 and 9 characters. As a result,
defining a threshold of δ=0.87 means to allow for a
maximum of one error in a 3 to 9 letters word, and 2 errors
for a 10 to 15 letter word.

 First Top 5 Top 10
Approach 1:
Edit distance 1 & Noisy
Channel

68.2% 79.3% 85.1%

Approach 2:
Edit distance 1 & Noisy
Channel & heuristics

71.3% 82.1% 92.4%

Table 6: Comparing Approaches 1 and 2

Second Approach. In the second approach, we adopt a
slightly different but well established method to improve
the ranking results. The ranking mechanism we have used
so far is based on the Noisy Channel Model and a simple
minimum edit where the cost assignment is based on
arbitrary letter change. We primed the edit distance
scoring mechanism with different rules following the
error patterns for Arabic as defined by Shaalan et al.
(2003) so that substituting letters belonging to the same
groups are evaluated at reduced edit costs (Mitton, 1996).

{ } ,{ا, أ, إ, آ } ,{ب,ت,ث,ن,gـ خ,ج,ح }, { } ,{د,ذ ,{ر,ز
{ } ,{س,ش } ,{ص,ض } ,{ط,ظ } ,{ع,غ } ,{ف,ق ,{ه،ة
{ } ,{و,ؤ {ي,ى

For example, substituting letters within the same group
only costs 0.5 instead of 1.0 . This extension to the basic
edit distance improved accuracy of the ranking algorithm
by 3.1% (Table 6). The ranking results of Approaches 1
and 2 are reported in Table 6 showing accuracy for having
the gold correction in the first, top 5 and top 10
candidates.

Approaches 1 and 2 have been concerned with the
re-ranking of candidates. We supplement Approach 2 with
a post-processing step that simplistically handles the set
of unknown words (227 words) for which no candidates
have been generated at all. Inspecting the list of unknown
words, we found that 63% of them are two or more words
that are joined together, such as �c�]`راnd~`ا “scientific
development”, mgاf`اf�� “Abdul-Dayem”, fg(xو� “and does
not want”, and ثf�gZl “what happens”. We deal with those
words through regular expression replace rules which
separates 7 words and particles that are commonly found
in the joint word forms. These words are:

{ f��, Zg, nhو� ,أ, �, Zlو, Zl}

This simple process corrects 102 words from a total of
105 words affected. This step yields significant
improvement on the system’s accuracy raising it up to
75% (Table 7). In future research we need to develop a
more structure strategy to deal with unknown words,
maybe through language modelling or machine learning.

We compare our first order selection (or auto-correction)
results against both the Microsoft Spell Checker in Office
2010 and the OpenOffice Hunspell-ar using the Ayaspell
Arabic spell checker. Our test results show a significant
improvement over Hunspell, yet our results are still below
the accuracy of MS Spell Checker, as shown in Table 7.

Spell Checker First order ranking
MS Spell Checker 80.54%
Hunspell using Ayaspell 45.64%
Approach 1: Edit distance &
Noisy Channel

68.20%

Approach 2: Adding heuristics
to Edit distance

71.3%

Approach 2 with
post-processing

75%

Table 7: First order ranking for 1,799 misspelled words

5. Conclusion
Arabic is a challenging language due its rich and complex
morphology. Our research contributes to the open-source
community by creating a large and adequate word list for
Arabic to be integrated in text authoring tools. We use a
tri-gram language model of the allowable vs. unallowable
sequences of Arabic characters, which can help in the

724

validation of existing word lists and making decision on
new unseen words. We also create a hybrid spelling
correction methodology that significantly outperforms
Hunspell in first order ranking of candidates.

Acknowledgements
This research is funded by the Irish Research Council for
Science Engineering and Technology (IRCSET), the UAE
National Research Foundation (NRF) (Grant No.
0514/2011), the Czech Science Foundation (grant no.
P103/12/G084), and the Science Foundation Ireland
(Grant No. 07/CE/I1142) as part of the Centre for Next
Generation Localisation (www.cngl.ie) at Dublin City
University.

References
Attia, Mohammed, Pavel Pecina, Lamia Tounsi, Antonio

Toral, Josef van Genabith. (2011). An Open-Source
Finite State Morphological Transducer for Modern
Standard Arabic. International Workshop on Finite
State Methods and Natural Language Processing
(FSMNLP). Blois, France.

Beesley, K. R., and Karttunen, L. (2003). Finite State
Morphology: CSLI studies in computational
linguistics. Stanford, Calif.: CSLI.

Ben Othmane Zribi C. and Ben Ahmed M., Efficient
Automatic Correction of Misspelled Arabic Words
Based on Contextual Information, Lecture Notes in
Computer Science, (Springer, 2003), Vol. 2773,
pp.770–777.

Brill, Eric and Robert C. Moore. 2000. An improved error
model for noisy channel spelling correction. ACL '00
Proceedings of the 38th Annual Meeting on
Association for Computational Linguistics.

Choudhury, Monojit, Rahul Saraf, Vijit Jain, Animesh
Mukherjee, Sudeshna Sarkar and Anupam Basu. 2007.
Investigation and modeling of the structure of texting
language. International Journal on Document
Analysis and Recognition. Volume 10, Numbers 3-4,
157-174, DOI: 10.1007/s10032-007-0054-0

Davis, Clodoveu A., Emerson de Salles. (2007).
Approximate String Matching for Geographic Names
and Personal Names. In Proceedings of GeoInfo'2007.
pp.49-60.

Hajič, J., Smrž, O., Buckwalter, T., and Jin, H. (2005).
Feature-Based Tagger of Approximations of
Functional Arabic Morphology. In: The 4th Workshop
on Treebanks and Linguistic Theories (TLT 2005),
Barcelona, Spain.

Hassan, Ahmed, Sara Noeman and Hany Hassan. (2008).
Language Independent Text Correction using Finite
State Automata. IJCNLP. Hyderabad, India

Hulden, Mans. (2009). Fast Approximate String Matching
with Finite Automata. Proceedings of SEPLN.

Hulden, Mans. (2009). Foma: a Finite-state compiler and
library. EACL '09 Proceedings of the 12th Conference
of the European Chapter of the Association for
Computational Linguistics. Association for
Computational Linguistics Stroudsburg, PA, USA

Kernigan, M., Church, K., Gale W. (1990). A Spelling
Correction Program Based on a Noisy Channel
Model. AT & T Laboratories, 600 Mountain Ave.,
Murray Hill, NJ.

Kiraz, G. A. (2001). Computational Nonlinear
Morphology: With Emphasis on Semitic Languages.
Cambridge University Press.

Levenshtein, V. I. (1966). Binary codes capable of
correcting deletions, insertions, and reversals. In:
Soviet Physics Doklady, pp. 707-710.

Magdy, Walid and Kareem Darwish. (2006). Arabic OCR
error correction using character segment correction,
language modeling, and shallow morphology. EMNLP
'06 Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing.

Mitton, Roger (1996). English spelling and the computer.
Harlow, Essex: Longman Group

Oflazer, K. (1996) Error-tolerant finite-state recognition
with applications to morphological analysis and
spelling correction. Computational Linguistics 22(1):
73-90

Watson, J. (2002). The Phonology and Morphology of
Arabic, New York: Oxford University Press.

Wintner, Shuly. (2008). Strengths and weaknesses of
finite-state technology: a case study in morphological
grammar development Natural Language Engineering
14(4):457-469, October 2008.

725

