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Abstract
This paper reports on the design and implementation of a morphological analyzer for Wolof. The main motivation for this work is to
obtain a linguistically motivated tool using finite-state techniques. The finite-state technology is especially attractive in dealing with
human language morphologies. Finite-state transducers (FST) are fast, efficient and can be fully reversible, enabling users to perform
analysis as well as generation. Hence, I use this approach to construct a new FST tool for Wolof, as a first step towards a computational
grammar for the language in the Lexical Functional Grammar framework. This article focuses on the methods used to model complex
morphological issues and on developing strategies to limit ambiguities. It discusses experimental evaluations conducted to assess
the performance of the analyzer with respect to various statistical criteria. In particular, I also wanted to create morphosyntactically
annotated resources for Wolof, obtained by automatically analyzing text corpora with a computational morphology.

Keywords: Wolof, Morphology, Finite-State Techniques.

1. Introduction
This paper presents work on the creation of a morphologi-
cal analyzer for Wolof1 using finite-state techniques. Wolof
has only recently become the object of NLP investigations
and lacks publicly available natural language resources and
tools. There are no tools or resources dealing with this lan-
guage’s morphology or syntax, so that morphosyntactically
annotated corpora are not available. Likewise, multilingual
applications linking Wolof to European languages are still
out of reach.
The current research is situated in CLARA, a Marie Curie
ITN on common language resources and their applications.
The main goal of my research in this context is the con-
struction of theoretically motivated computational gram-
mars and lexicon for Wolof. To that end, fundamental lin-
guistic aspects of this language are investigated and a mor-
phological tool is built as a first step towards a computa-
tional grammar for the language in the LFG framework.
An important tool supporting LFG development is the Xe-
rox Linguistic Environment (XLE). XLE has an architec-
ture that makes it easy to combine LFG specifications with
externally developed lexical resources. It integrates finite-
state techniques for morphological analysis with processing
algorithms for parsing and generation with LFG grammars
(Kaplan et al., 2004; Butt et al., 1999).
The paper is structured as follows. Section (2.) addresses
some of Wolof’s linguistic properties which pose special
challenges for constructing the morphological analyzer.
Then, the section (3.) describes the design and concrete
implementation of the finite-state system. These will be il-
lustrated and motivated with these challenging properties.
Furthermore, section (4.) discusses the strategies used to
limit ambiguities. Finally, section (5.) presents the results
achieved on test corpora.

1A West-Atlantic language mainly spoken in Senegal by ca. 10
million people.

2. The Wolof Language
Wolof is an agglutinative language which is phonologi-
cally characterized by a large number of phonemes (be-
tween 53 and 59 phonemes2). The language has a very
rich verbal and nominal morphology, both inflectional and
derivational (Ka, 1981; Church, 1981). Verbal derivation
uses a huge number of distinct suffixes which permit al-
terations to the category, valence and semantics of a ver-
bal base (Ka, 1981). This derivation type can be regular or
marginal3 whereas the regular form distinguishes between
denominal, deverbal and ambivalent4 derivation. The nomi-
nal derivation is particularly complex due to the parallel use
of reduplication and compounding (e.g. noun-noun, verb-
verb, noun-verb, verb-noun and ideophone). Both deriva-
tion forms (nominal and verbal) may trigger complex mor-
phophonological processes in terms of vowel coalescence
(Ndiaye, 1992), consonant and vowel mutation, epenthesis,
(de-) gemination, compounding and reduplication.
Wolof distinguishes two types of reduplication (Ka, 1994):
(i) one that is called “ordinary” reduplication (ii) and an-
other one that is used within the secret code Kàll (Ka,
1990). The “ordinary” form is a case of total reduplica-
tion, i.e. “there is no copying of parts of a morpheme such
as phoneme, syllable or metrical foot” (Ka, 1990, p. 108),
and “stems are always copied regardless of their phone-
mic makeup or syllable structure” (Ka, 1990, p. 110). To-
tal reduplication in this language involves a wide range of

2In the literature, the exact number of Wolof phonemes is con-
troversial. For reference see (Diouf, 2009, p. 13) and (Ka, 1994).

3The term marginal is borrowed from (Ka, 1981) meaning that
the derivation starts from an ideophonic stem. Ideophones can be
described as words used by speakers to evoke a vivid impression
of certain sensations or sensory perceptions. In Wolof, the ideo-
phonic stems never appear in isolation, they are always redupli-
cated (Ka, 1994, p. 123).

4The derivation starts from a stem which can be a noun as well
as a verb.
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Derivation Type Root Gloss Category (+ Suffix) Reduplication Gloss

Nominal
deverbal tàkk “to catch fire” V tàkk-tàkk “light”
denominal Ndar “Saint-Louis” N Ndar-Ndar “inhabitants of Ndar”
marginal nes “*nes” ideophone nes-nes “brightness”

Verbal
denominal góor “man” V + -lu “benefactive-refl.” góor-góor-lu “to try to do well”
deverbal bey “to cultivate” V + -aat “iterative” bey-bey-aat “to cultivate repeatedly”
marginal nes “*nes” ideophone + -i “verbalizing” nes-nes-i “to scintillate”

Table 1: Examples of verb and noun derivation using reduplication

syllable types, excluding only the syllable shapes CV and
CVCVV (Ka, 1990, p. 106). In contrast, the second type of
reduplication allows the copying of prosodic constituents
such as the syllable, the foot, or the prosodic word. How-
ever, the morphological tool described in this paper only
handles the “ordinary” form. As Table 1 illustrates, the “or-
dinary” reduplication is used for both noun and verb deriva-
tion. For instance, to derive nouns, the entire stem is copied;
it can be a noun (denominal derivation), a verb (deverbal
derivation) or an ideophone (marginal derivation). For de-
nominal derivation the noun stem used mostly refers to a
region, city or ethnic group. Unlike the noun derivation, the
verb derivation using reduplication requires suffixation.
Moreover, there is vowel harmony in Wolof based upon the
advanced and retracted tongue root (ATR) feature. The har-
mony process is extensively discussed in (Ka, 1994; Sy,
2006; Unseth, 2009; Takahashi, 1996).

3. System Design
The morphological analyzer uses the Xerox finite-state tool
(fst, (Beesley and Karttunen, 2003)) for creating lexicons
and lexical transducers. The analyzer is designed as a tradi-
tional two-level network which maps between two regular
languages: 1) a lower or surface and 2) an upper or lexi-
cal language. The tool handles the input in both directions:
analysis and generation, as shown in Figure 1. For instance,
in case of analysis, it takes as input a surface form which is
transformed into a lexical form (stem plus morphosyntactic
features).

Lexical: fas+V+Trans+Inv+Iter+Past
m

Intermediate: fas :i :aat :oon
m

Surface: fecciwaaton ‘untied again’

Figure 1: Lexical/surface pairs with intermediate forms.

Applying the network upwards matches the input string fec-
ciwaatoon (“untied again”) against the lower side and trans-
forms it into an intermediate form (i.e. fas+:i+:aat+:oon).
The latter form has a complex morphosyntactic structure
that consists of a transitive verbal root (fas ‘tie’) and several
affixes. Whereas the verbal suffixes -i and -aat are deriva-
tional and refer respectively to an inversive and iterative
process, the ending -oon is used to inflect verbs in the past
tense. After the intermediate transformation, the temporary
string is passed to the lexicon which compares the root with
its entries. At this level, the analyzer adds the derivational

and inflectional features and outputs the full lexical analysis
(e.g. fas+V+Trans+Inv+Iter+Past).
Generation occurs similarly by applying the network down-
wards. However, the alternation process from the regular
root fas to the inversive stem fecci (“untie”) requires an
intermediate stage represented by a finite-state transducer.
The latter one is designed as several sub-transducers which
encode the particular morphophonological alternations5.
If a given lexical form is ambiguous, then generation will
provide more than one output. Similarly, if a particular lex-
ical entry corresponds to more than one analysis, then all
possible surface forms that match this input are generated.
The main grammatical categories handled by the analyzer
are listed in the appendix.

3.1. Architecture
As in classical FST architectures (e.g. in the FOMA6 in-
terface), the construction of the Wolof transducer is broken
down into two large components: (i) a lexicon and a compo-
nent for morphotactics (in the sense of (Beesley and Kart-
tunen, 2003)), and (ii) a rule-based component. The idea is
to produce a final single FST that is the composite of dif-
ferent rule transducers and the lexicon/morphotactic trans-
ducer, as illustrated in Figure 2.

3.2. Wolof Lexicon and Morphotactics
Both the lexicon and morphotactics transducers are con-
structed through regular expressions, rather than with the
lexc-formalism (Beesley and Karttunen, 2003), though the
latter is well-suited for expressing morphotactics.

3.2.1. Lexicon
In order to obtain data for the analyzer, the existing
Wolof dictionaries and grammars (e.g. (Diouf, 2003; Diouf,
2009)) are used as a guidance. I take the root (and in some
cases the stem) as the base form to build a lexicon with ca.
8300 lemmas (3500 verbs, 3800 common nouns, and 1000
proper nouns). The nominal stems are divided into stems
for common and proper nouns. For instance the lexicon dis-
tinguishes between person names and locations, since the
noun type is relevant for the nominal derivation (see sec-
tion 4.). In addition, stems for closed classes are directly en-
coded in the lexicon since most of these have a wide range
of forms due to agreement with the noun class.

3.2.2. Handling Wolof Morphotactics
Concatenative morphology, also called ‘concatenative mor-
photactics’ (Beesley and Karttunen, 2003)), is used very

5see section 3.3.
6http://code.google.com/p/foma/

895



Figure 2: Single Wolof lexical transducer as composite of
the lexicon/morphotactics and alternation rule components.

productively in Wolof, especially in the verbal derivation.
Because concatenation itself is a finite-state operation, this
process is relatively easy to model using finite-state ma-
chines. The software component constrains morphemes to
appear in certain combinations and orders and, as results,
produces abstract, morphophonemic, though not yet correct
words. So, for each grammatical category (e.g. verb, noun,
adverb, etc.) a finite-state network is created. Complex net-
works are composed of several transducers. For instance,
the verb transducer is built up as a sequence of transducers
for the derived and inflected verb forms. In turn, the trans-
ducer for the verbal derivation calls several sub-transducers
for deverbal, denominal and marginal derivation.
However, the language does not form his words exclu-
sively via concatenation. Similar to Malay, Indonesian and
many other languages, Wolof exhibits non-concatenative
morphotactics, including the phenomenon sometimes re-
ferred as to full-stem reduplication (Beesley and Karttunen,
2003). Full-stem reduplication is a challenge in natural-
language morphology, because its modelization requires
a formalism that goes beyond the finite-state power. As
Beesley and Karttunen (2003, p. 419) pointed out, “the for-
mal language containing all reduplicated strings αα, where
the first half and second half of each word are identical,
cannot be described by finite-state or even context-free for-
malisms. This αα language is in fact context-sensitive in
power, and the corollary is that this language cannot be en-
coded in a finite-state network”.
Nevertheless, the XEROX regular syntax provides a solu-
tion that combines meta-morphotactic descriptions and the
compile-replace algorithm to uniformly describe the prob-
lem over some finite set of valid stems. This combination
has been successfully used to handle closely related tasks
in other languages like Malay and Indonesian (Beesley
and Karttunen, 2003). Therefore, I treated the Wolof phe-
nomenon in a similar way, as shown in (1) and (2).

(1) a. define REDUP {ˆ2};
b. define START “ˆ[”;
c. define FullStemRE PATTERN7 @→ “[” ...

“%ˆREHYPH” “]” REDUP || START ;

(2) a. define REStem 0:“ˆ[”
[tàkk]
[“+Noun”:0 “+Common”:0]
0:“ˆ]”;

b. regex REStem .o. FullStemRE;
c. set retokenize off
d. compile-replace lower

The examples base on the finite-sate solution proposed by
Beesley and Karttunen (2003). The first example in (1a)
formalizes the full reduplication of any Wolof string α in
finite-state terms as αˆ2, where 2 is denotes the number of
concatenations of α. The network ‘FullStemRE’ wraps (the
operation is specified by the symbol ‘@→’) the substring
matching the pattern PATTERN into square brackets and
adds the reduplication operator ‘...’.
Next, the ‘REStem’ lexicon in (2a)8 is defined with a root
‘tàkk’ enclosed in braces, and an initial ˆ[ and final ˆ] on
the lower-side in anticipation of the call to compile-replace
later on. Also, the lexicon specifies for each stem the related
morphosyntactic features (e.g. +Noun). The regex line (2b)
applies ‘FullStemRE’ to the lexicon. At this point, the net-
work contains paths such as shown in (3).

(3) t à k k +Noun +Common
ˆ[ [ t à k k ] ˆ2 ˆ]

As next step, the command set retokenize off is called in
(2c) in order to prevent the compiler from turning the lower-
side symbols into a string and retokenizing it. This is neces-
sary because the network is defined with lower-side strings
that are built by straightforward concatenation of the prefix
ˆ[. This retokenization process would fail because the spe-
cial symbols, ˆ[ and ˆ], would need to be in double quotes.
Finally, the command ‘compile-replace lower’ in (2d) re-
places all the expressions on the lower side of the network.
The path above will be replaced by the path in (4)9.

(4) t à k k +Noun +Common
t à k k - t à k k

3.3. Alternation Rules
The component described in section (3.2.) assumes,
naively, that words are just concatenations of morphemes.
Because a raw concatenation may give words that are not

7A possible pattern for Wolof that takes into account the per-
missible syllable shapes is (V) C+ (V+) (C+) (C+) (V).

8The ‘REStem’ lexicon contains stems that may undergo full-
stem reduplication.

9Note that in the standard orthography, such reduplicated
words are written with a hyphen specified by the expression
(“%ˆREHYPH”), e.g. tàkk-tàkk, that has to be handled with spe-
cial hyphenation rules (not shown in this paper).
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valid, it is therefore necessary to take into account interme-
diate processes that hold between abstract morphophone-
mic words and well-formed surface words. The inversive
derivative in Wolof (see section 3.3.1.) is an example of
such processes that trigger different phonological or or-
thographical alternations, including root-internal changes.
Whereas most of these alternations can be handled in fst us-
ing replacement contexts, there are more complex linguistic
phenomena (e.g. vowel harmony) known as left-to-right or
right-to-left processes in which the result of a replacement
itself serves as the context for another replacement (Beesley
and Karttunen, 2003). This section discusses the implemen-
tation of the inversive derivation and vowel harmony.

3.3.1. Handling The Inversive Derivation
Wolof exhibits a derivation morphology for verb that trig-
gers root-internal changes as in the inversive, completive
and corrective formation (Ka, 1994; Church, 1981). These
morphophonological changes include, among other things:
(i) mutation of the stem-final consonant followed by a
gemination process, (ii) shortening of a long root-internal
vowel, (iii) vertical and horizontal vowel gradation, etc.
Such alternations are handled using a rule-based compo-
nent that consists basically of 16 transducers. Figure 3 il-
lustrates the transducer handling the inversive derivation.

define Inversive [
VerbRoot
.o. vowelGradHoriz
.o. fortitionFinalCons
.o. geminationFinalCons
.o. vowelGradationVert
.o. vowelShortening

] InversiveSuffix;

Figure 3: A cascade of alternation rules (with ‘.o.’ as com-
position operator), compiled into finite-state transducers to
handle Wolof inversive derivation.

The transducer in (3) applies the finite-state network ‘Ver-
bRoot’ to several sub-transducers which encode the partic-
ular consonant/vowel alternations. In fst, these alternations
can be formulated as rewrite rules with specified contexts
(‘||’), as illustrated in (5) and (6).

(5) define fortitionFinalCons [
f → pp || .#.
.o.
s → cc || .#.
.o.
0 → kk || CVV .#.
.o.
x → q || .#. ];

The fst rule in (5) replaces each specified fricative found
in word-final position by its strong correspondent10. The
underscore ‘ ’ refers to the position of the character that

10Note that the special epenthesis (Ø is replaced by kk after VV)
is formulated in such a way that the replacement takes place only

should be replaced. The part to the left of ‘||’ defines the
replacements, whereas the part to the right of the symbol
defines the context in which these replacements take place.
If the context is not appropriate, no replacement is made,
and the output of the rule is equal to its input.

(6) define geminationFinalCons [
b → bb, c → cc, ... || [ \Cons | .#. ] .#.

];

Likewise, the gemination rule in (6) maps a simple conso-
nant located at the absolute word end position to its gemi-
nated counterpart. The operator ‘\’ is used for term nega-
tion to define the replacement context. Thus, this rule stip-
ulates that the character in question should not be preceded
by a simple consonant specified by the use of the term com-
plement11 of ‘Cons’ (i.e. ‘\Cons’); it should neither be lo-
cated at the absolute word beginning nor followed by any
symbol. This is specified by the use of ‘.#.’ which, depend-
ing on its position relative to the underscore ‘ ’, marks the
absolute beginning/end of the string.
Similar to consonant mutation and fortition, vowel muta-
tion is handled using three separate transducers which re-
spectively deal with horizontal (7) and vertical gradation
(8) and vowel shortening (9).

(7) define vowelGradHoriz [
a → e || [ Cons | .#. ] StrongCons
.o.
[ a → o || Nasal Cons .#.]
];

(8) define vowelGradVert [
ë → i, ó → u, a → à || [ Cons | .#. ] StrongCons
];

(9) define vowelShortening [
aa → à, ee → e, ée → e, ii → i, oo → o,
óo → ó, uu → u || [StrongCons | r .#.]
];

The transducers in Figure 3 are applied successively. The
output of the first level is fed into the following levels. The
examples in Table 2 illustrate the application of the succes-
sive transformations given in Figure 3 to derive the surface
forms fecci “untie” and sippi “unload”.

0. From fas ‘tie’ sëf ‘load’
1. Fortition fac sëp
2. Gemination facc sëpp
3. H. Gradation fecc -
4. V. Gradation - sipp
5. Vowel short. fecc sipp
6. Inversive deriv. fecci ‘untie’ sippi ‘unload’

Table 2: Successive transformations for the inversive.

if the stem is an open monosyllabic stem (e.g. CVV). The idea is
to avoid overgeneration when applying this rule.

11‘\Cons’ denotes all single symbol strings other than simple
consonants.
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3.3.2. Handling Vowel Harmony
Another typical example for phonological alternation is
vowel harmony. In this work, the harmony process is an-
alyzed on the basis autosegmental theory proposed by (Ka,
1994, p. 35-36) and according to four basic rules.

1. Morpheme Structure Constraint (MSC): a high vowel
in stem initial position must be associated with the
[+ATR] feature.

2. Vowel Harmony Rule (HR): the [+ATR] autosegment
is spread from left to right to all unassociated vowel
within a domain.

3. High Default Rule (HDR): all non-linked high vowel
have to be specified as [+ATR].

4. Default Rule (DR): every segment left unassociated
must have the [-ATR] feature associated with it.

The examples (10) and (11) from Unseth (2009, p. 3)
(emphasis mine) show the progressive pattern of vowel
spread. These examples illustrate a derivation with the neu-
tral vowel [u] and the opaque vowel [-kat] respectively.

(10) tAxUlEEn ’you did not cause’

Underlying Rule [tAxUlEEn]
MSC N/A
Harmony Rule N/A
High Default [+A]

tAxulEEN
Default Rule [+A]

tax

[-A]

ul

[+A]

l EE n
taxul EEn ‘you did not cause’

(11) lIgEEy-kat-Am ‘his/her worker’

Underlying Rule [-A]

[lIgEEy-kat-Am]
MSC [+A]

lig EEy

[-A]

kat Am
Harmony Rule [+A]

@@��
lig eey

[-A]

kat Am
High Default N/A
Default Rule [+A]

@@��
lig eey

[-A]

kat

[-A]

am
ligeeykatam ‘his/her worker’

The transducer handling the vowel harmony in Wolof is im-
plemented as shown in (12).

(12) define vowelHarmony[
MSC .o. HR
.o.
HDR .o. DR

];

The four processing rules are designed as a cascade of
transducers with a well-defined ordering: MSC > HR >
HDR > DR. The concrete implementation of each trans-
ducer is shown in (13).

(13) define MSC [I→i, U→u // .#. [Cons|PreN|$]* ];
define HR [A→ë, E→é, O→ó, I→i, U→u

// [i|u|ó|é|ë] [ConsSet]* ];
define HDR [I→i, U→u

// [O—A—E] ConsSet* ];
define DR [A→a, E→e, O→o // ConsSet* ];

In the fst concept, the analysis process moves from left to
right inside a word. First, the MSC rule is applied. It intro-
duces the ‘//’ operator indicating that the left context must
match on the lower or output side, while the right context
must match on the upper or input side. The domain of appli-
cation of this rule is a root or stem specified by the bound-
ary symbol ‘$’. This rule takes into account the word begin-
ning ‘.#.’ as well as zero or multiples occurrences of simple
consonant(s) (Cons) or prenasal (PreN). Subsequently, the
HR rule applies by progressively assigning the autosegment
[+ATR] to any unassociated vowels within a domain. In a
third step the high default transducer converts any remain-
ing high vowel into [+ATR] vowels. Finally, by means of
the default rule, the [-ATR] value is given by default to any
segment left unassociated.

4. Heuristics Followed in Limiting
Ambiguity

The system attempts to produce all and only the valid solu-
tions and avoid spurious solutions. To achieve this goal, dif-
ferent strategies have been used. First, the lexical entries are
annotated with specific constraint features. Thus, the lexi-
cal network encodes for each verbal stem the specifications
about the verb type, status and transitivity. For instance the
ending -al in Wolof is homophonous. It can be applicative
or causative. However, the applicative derivation is compat-
ible with transitive verbs, while the causative derivation is
only possible for intransitive verbs. The features are also
used to indicate that a verbal root may undergo specific
phonological processes (i.e. the inversive formation) which
are possible for only a subset of the verbs. Likewise, the
nominal entries encode the noun type (i.e. common vs. lo-
cation) since this is relevant for the nominal compounding
and reduplication. For instance, noun stems referring to a
region or a city or ethnic group can be reduplicated to get
the meaning “inhabitant of, originated from”.
Second, the morphosyntactic features are encoded as flag
diacritics (Beesley and Karttunen, 2003). The flag diacrit-
ics allow (i) to control long-distance dependencies, (ii) con-
strain overgeneration in the network (iii) and to avoid size
explosions. They are recognized and applied at runtime,

898



and resolved before composing the final lexical transducer.
The examples (14-16) illustrate the use of flag diacritics.

(14) define VerbRoot {fas}

“@U.POS.Verb@” “@U.Type.Main@”
“@U.Status.Act@” “@U.Trans.+@”
“@P.ApplAL.-@” “@P.Inversive.-@”

...;

The example (14) shows a part of the lexical entry fas.
Here, the unification type (@U.feature.value@) is used
to state that the surface form is a verbal root, main,
active and transitive verb. Additionally, the P command
(@P.feature.value@) is used as a “mnemonic POSITIVE
(RE)SETTING” (Beesley and Karttunen, 2003, p. 354) for
stating that the root can additionally be unified with the
specified features (i.e. applicative and inversive). This “pos-
itive set” action always succeeds.

(15) define InversiveSuffix 0:i

“@R.Inversive.-@” “@P.Inversive.+@”;

The notation in (15) first requires the attribute inversive to
have a negative ‘-’ value which is specified only by stems
that undergo this derivation form. The action succeeds just
in case the attribute has already been set to the given value.
If the attribute has not been set to any value or if it has an
incompatible value, the required action fails. Additionally,
the attribute ‘Inversive’ is set to the positive value.

(16) define ResolveFlagDiacritics [
“@R.Inversive.+@” “+Inv”:0 |
“@D.Inversive.+@”
...
];

Finally, the flag diacritics are resolved in (16). Here,
there are two possibilities: (1) on the one hand the an-
notation “@R.Inversive.+@” requires the ‘Inversive’ value
to be positive and (2) on the other hand the annota-
tion “@D.Inversive.+@” disallows the attribute having this
value. In the first case, the required action fails if the at-
tribute does not have a value or has a value different from
the positive value ‘+’. Otherwise, it succeeds, adding the
feature ‘+Inv’ to the output string. In the second case how-
ever, the action fails if the attribute has the given value. If
the attribute has not been set to any value or if it has an
incompatible value, the disallow action succeeds.
The lexical and morphological ambiguities are handled us-
ing the discriminant-based disambiguation techniques to
LFG grammars (Rosén et al., 2007). Consider the examples
(17) from (Diouf, 2003, p. 120), (18) and (19).

(17) Xanaa
Certainly

xam-u-loo
know-neg-2sg

fas
tie

sa
poss.2sg

sér.
loincloth.

‘Couldn’t you tie your loincloth?’

(18) Won
show

ma
1sg

fas
amulet

g.i
cl.def

nga
2sg

jënd.
buy.

‘Show me the amulet you bought.’

(19) Won
show

ma
2sg

fas
horse

w.i
cl.def

nga
2sg

jënd.
buy.

‘Show me the horse you bought.’

The word form fas may be either a noun or a verb. Table
3 illustrates a lexical discriminant with fas and its lexical
category. Here the traditional part of speech (e.g. N, V) is
the lexical category specified in the discriminant.

fas: Verb
fas: Noun

Table 3: Representation of lexical discriminants for fas

The examples (18) and (19) illustrate the case where the
same word form fas is ambiguous between different lex-
emes within the same part of speech (e.g. Noun). In (18)
the word has the meaning ‘amulet’, belongs the noun class
‘-g-’ (specified by the index) and refers to an inanimated
object. In contrast, in the example (19) the same form has
the meaning ‘horse’, belongs to the class ‘-w-’ and refers to
an animated object. A morphological discriminant for the
word form fas is illustrated in Table 4.

fas+Noun+Common+g-cl+NonAnim
fas+Noun+Common+w-cl+Anim

Table 4: Morphological discriminants for fas

The discriminants are ‘anchored’ in string position to make
the occurrences of a same word form distinct. They are
then computed with an efficient algorithm that uses packed
solutions. In particular, the lexical and morphological are
calculated on the basis of packed constituent-structures (c-
structures), which are represented as directed graphs, where
each node is assigned a context for which it is valid. A
context is defined as a set of solutions (or of compatible
choices in XLE). For the computation, the algorithm tra-
verses the packed graphs and examines all c-structures for
possible discriminant candidates. For instance, a candidate
for a morphological discriminant of fas is the concatena-
tion of the base form and all features that can be read off
of the sublexical nodes12 for the given word and a given
solution. All distinct candidates are represented in such a
way that users can easily relate them to words in the string.
For more details about the used discriminant-based disam-
biguation techniques see Rosén et al. (2007).

5. Evaluation
Automatic evaluation of the Wolof transducer is a challenge
due to the lack of gold standard annotated corpora and in
general inconsistencies in spelling conventions which are
frequently encountered (Dione et al., 2010). Therefore, I
conduct a small-scale manual evaluation using short sto-
ries in Cissé (1994) as a test corpus. The test set contained
a total of 1168 words types (i.e. unique words). Then the
morphological tool is tested with respect to accuracy on the
one hand and precision and ambiguity on the other hand.

12Each morphological feature gives rise to a branch of a sub-
lexical subtree.

899



5.1. Test
The evaluation is performed using the Xerox lookup utility,
a runtime program that applies pre-compiled transducers to
look up words. In order to measure the system coverage, the
input words are looked up in the single Wolof transducer.
By applying the utility, the system could find 993 words of
1168 total words, yielding 85.02% coverage accuracy on
unseen data. The results are summarized in Table 5.

Criteria Frequency Accuracy
Found 993 85.02 %
Not found 175 14.98 %

Table 5: System accuracy on the Wolof test corpus

The ambiguity rate was measured on the 993 words types
that were recognized by the morphology. For each word
that was found, the solutions for this word are summed up.
That was a total of 1948 solutions. Then the total solutions
are normalized by excluding words that were not found (i.e.
the normalization yields a total of 1773 solutions). The am-
biguity rate is then given by the ratio of the normalized total
solutions to the total of unique words that were found. To
test the precision, a detailed manual analysis of the output
from the test data is performed. In this experiment, the pre-
cision represents the number of correct solutions divided
by the number of all returned solutions. The manual analy-
sis revealed that from the total of 1773 retrieved solutions,
1719 were correct. The precision and ambiguity level for
the Wolof morphology are shown in Table 6.

Total Solutions for 1168 words 1773
(after excluding 175 not found)
Ambiguity rate 1.78
Precision 0.96%

Table 6: Ambiguity rate of the Wolof transducer

5.2. Tuning
By inspecting the data that were not found, it turns out that
from the 175 words, 52 were indeed spelling or tokeniza-
tion errors. The remaining words had the right spelling,
but couldn’t be found by the system. These were mostly
proper names, words that begin with a capital letter or have
a complex derivation (i.e. a preposition or a determiner is
morphologically integrated in the verb as an affix), lexical
compounds and Multi Word Expressions (MWE). In order
to avoid spurious scores in this experiment, a set of strate-
gies for increasing the system coverage are used. First, cor-
recting manually the spelling and tokenization errors in the
text corpora improves the coverage from 85% to ca. 89%.
This variance could be used as an indication of how much
coverage could be achieved by correcting the data before
the evaluation13. So each word in misspelling was replaced

13Note that a data correction before evaluation would reduce
the corpus size to 1152 word types and allow to find one or more
solution(s) for 1023 words with a total number of 1946 solutions.
This would give a system accuracy of 88.80% with 129 not found
items and an ambiguity level of 1.77.

with the target word. This procedure reduced the corpus to
1152 words14. Second, adding the missed verbal and nomi-
nal stems (e.g. stems for proper nouns) in the lexicon raised
the coverage to more than 92%. Third, tuning the transducer
for verb derivation to allow other Part-Of-Speech tags like
prepositions or a determiners to be morphologically bound
to a verb. Finally, for words with variant spelling stems in
alternative spelling were included in the lexicon.
The system performance has been investigated after tun-
ing. Again, first the single analyzer is applied on the text
corpora (strategy 0). However, a lookup based on a single
FST may be limited; e.g. only surface forms in lowercase
may be found. So, to find surface forms in different cases,
the Wolof transducer is extended to a second strategy which
includes capitalization (strategy1). The strategies (strategy0
and strategy1) are tried one-at-a-time in the specified top-
to-bottom order and simulated as compositions of transduc-
ers. Thus, the first strategy applies, if and only if that fails,
then lookup is performed using a simulation of the regular
analyzer and the transducer for capitalization. The evalua-
tion results are given in Table 7.

Strategy Frequency Accuracy
strategy 0 1122 97.40%
strategy 1 23 2.00%
not found 7 0.60%
corpus size 1152 100

Table 7: System accuracy on the test corpus after tuning.

Combining both strategies, the analyzer achieves a total of
99.40% accuracy on the Wolof test corpus. The use of capi-
talization allows to find a solution for 2.00% of the input
words after the main transducer fails. For the remaining
words that were not found, the related morphosyntactic fea-
tures are encoded directly in the lexical entry, since not all
words go through morphological preprocessing.

6. Conclusion
The paper discussed the design and implementation
of a morphological analyzer for a lesser-studied lan-
guage. The approach combined finite-state techniques and
discriminant-based disambiguation methods. The analyzer
achieved quite good accuracy scores on a relatively small
corpus with spelling variations. I plan to use the tool and
resource for experimenting with LFG grammars.
An important consideration has been that this research has
implications beyond tool development for Wolof itself. This
follows from the taken approach which only builds on
language-independent formal properties of finite-state au-
tomata. Thus, it would be possible to extend the system de-
sign, architecture and implementation to other languages’
morphologies, as many aspects of the Wolof scenario are
quite comparable to these languages.

14Since I was interested in word types rather than in word to-
kens, I removed duplicated words (i.e. target words that were al-
ready contained in the list).
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A List of Parts of Speech and Morphological
Features

Tag Features Value

Noun

Noun Class -b-, -g-, -j-, -k-, -l-, -m-, -s-, -w-,
-y-, ñ

Number singular, plural
Humanness human, non-human
Inflectional
form

std, genitive, possessive

Proper name pers, loc, org
Anim +, -

Verb

Person 1st, 2nd, 3rd
Number sg, pl
Status main, primary / modal aux
Type active, stative
Transitivity trans., intrans., ditrans.
Tense base form, past, temporal-

conditional, impersonal
Mood decl, impe
Aspect perf, imperf
Polarity pos, neg
Voice middle, caus, appl, antipass

Adverb

Class -f-, -n-, -c-
Type manner, loc, temp
Deixis prox., dist.
Reference immediate, remote

Pronoun

Number sg, pl
Definiteness def, indef
Aspect perf, imperf
Deixis prox, dist
Type personal, rel, int
Person 1st, 2nd, 3rd
Strength strong, weak
Noun Class -b-, -g-, -j-, -k-, -l-, -m-, -s-, -w-,

-y-, -ñ-
Aspect perf, imperf
Deixis prox, dist

Determiner

Noun Class -b-, -g-, -j-, -k-, -l-, -m-, -s-, -w-,
-y-, -ñ-

Number sg, pl
Aspect perf, imperf
Definiteness def, indef
Deixis prox, dist
Types rel, demons, poss, int, quant
Reference immediate, remote
Aspect perf, imperf

Inflectional Marker

Person 1st, second, third
Number sg, pl
Aspect perf, imperf
Copula form -a, l- or da- copula
Focus subject, verb, compl, neutral
Polarity pos, neg
Mood decl, impe, opt

Clitics

Person 1st, 2nd, 3rd
Number sg, pl
Aspect perf, imperf
Type sub, obj, loc, tense
Mood decl, impe, opt

Complementizer
Type std, free rel, rel, int
Form ‘ba’, ‘ni’, ‘bi’...

Number
Type card, ord
Number sg, pl
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