
RIDIRE-CPI: an Open Source Crawling and Processing Infrastructure for
Web Corpora Building

Alessandro Panunzi, Marco Fabbri, Massimo Moneglia, Lorenzo Gregori, Samuele Paladini

University of Florence

alessandro.panunzi@unifi.it, marco.fabbri@drwolf.it, moneglia@unifi.it, loregreg@gmail.com,
samuelepaladini@drwolf.it

Abstract

This paper introduces the RIDIRE-CPI, an open source tool for the building of web corpora with a specific design through a targeted
crawling strategy. The tool has been developed within the RIDIRE Project, which aims at creating a 2 billion word balanced web
corpus for Italian. RIDIRE-CPI architecture integrates existing open source tools as well as modules developed specifically within the
RIDIRE project. It consists of various components: a robust crawler (Heritrix), a user friendly web interface, several conversion and
cleaning tools, an anti-duplicate filter, a language guesser, and a PoS tagger.
The RIDIRE-CPI user-friendly interface is specifically intended for allowing collaborative work performance by users with low skills
in web technology and text processing. Moreover, RIDIRE-CPI integrates a validation interface dedicated to the evaluation of the
targeted crawling. Through the content selection, metadata assignment, and validation procedures, the RIDIRE-CPI allows the
gathering of linguistic data with a supervised strategy that leads to a higher level of control of the corpus contents. The modular
architecture of the infrastructure and its open-source distribution will assure the reusability of the tool for other corpus building
initiatives.

Keywords: web corpora, crawling, LRs construction.

1. Introduction

1.1 Web corpora: a brief state of the art
In recent years, different practices about using the web as
linguistic data source broke into the scientific community.
The idea to use the web itself as a corpus “surrogate” gave
rise to an interesting discussion between its supporters
and detractors. The building of “reference” corpora
starting from web materials might be considered
inadequate due to the lack of representation of the
“language of the web” and the low level of control on data
(Ide et al., 2002). On the other hand, the web can be
considered the largest linguistic corpus in the world
(Kilgariff & Grefenstette, 2003).
Due to the enormous growth of the Internet, the language
data collected in the web is not exclusively “the language
of the web”. As a matter of fact, texts from many different
sources can be found therein: literature, newspapers,
academic and bureaucratic prose. Therefore, a collection
of its linguistic data can exploit the huge richness and
variety of the sources. Its balancing is not a problem
related to the data sources, but, rather, depends on the
methods of collection.
Different kinds of projects have been carried out in order
to exploit the language data that populates the web. Some
of them focused on the direct exploitation of the Internet
through search engine techniques (e.g. WebCorp, Renouf
et al., 2007). Others were interested in massive language
collections (with an almost absence of further control and
processing of data) for strict computational purposes (e.g.
Clarke et al., 2002, 53 billion words).

Still others tried to extract more controlled corpora from
the web, using methods that involve various steps of
cleaning and tagging (e.g. CUCWeb, Boleda et al., 2006;
Sharoff, 2006). Among these latter ones, the WaCky
initiative (Baroni et al., 2009) represents the main effort
by a group of linguists to produce mega corpora suitable
for linguistic research. Four very large corpora have been
collected for English, French, German and Italian, each
one between 1.6 and 2 billion tokens. Within this
initiative, an interesting and fully automated method has
been designed in order to assure a certain degree of
balancing and representativeness, exploiting
corpus-based frequency lists and basic dictionaries to
perform the web queries from which the data collection
derives.

1.2 RIDIRE: project and tools
An even more controlled method has been developed in
the RIDIRE project (Moneglia & Paladini, 2010), which
aims to build a web-derived repository for the Italian
Language (2 billion words), with a specific corpus design.
The whole resource is composed of a set of sub-corpora,
each one collecting texts of a specific functional or
semantic domain (news, law/administration, economy,
literature, fashion, architecture/design, food, sport,
religion, fine arts, cinema, music).
The gathering of linguistic data for each sub-corpus
requires a targeted crawling strategy. The content
restrictions are directly undertaken by the corpus collector
who selects, from an “expert” point of view, a starting
webography that is supposed to be representative of a
given domain.

2274

This paper describes the tool that has been developed
within the RIDIRE project for the crawling and the
processing of the web resources: the RIDIRE Crawling
and Processing Infrastructure (henceforth, RIDIRE-CPI).
This tool will be delivered as an open source package and
will be available for the development of other corpora.
The infrastructure can be used for the building of
domain-specific corpora for whatever computational
purpose. Moreover, its user-friendly interface is
specifically intended for allowing collaborative work
performed by users with low skills in web technology and
text processing.
The infrastructure has a modular architecture (see figure

1), that consists of the following main components:

1) a web crawler;

2) a web interface for crawling management and
validation;

3) conversion tools;

4) HTML cleaner tools;

5) anti-duplicate filters;

6) a language guesser;

7) a PoS tagger.

Figure 1: RIDIRE-CPI architecture

2275

1.3 Infrastructure general design
RIDIRE-CPI is based on a JBoss/Seam application
designed and developed expressly for this project. The
application is written in Java and follows the JavaEE
specifications.
The infrastructure provided by the JBoss/Seam
framework allows an easy integration of repositories
stored on RDBMSs, Business Logic and web interfaces.
At this moment the application exploits JBoss 5.1, Seam
2.2.0 and Oracle Java 1.6.20.
The Business Logic inside the application coordinates and
controls several tasks, namely:

- the crawling process (see paragraph 2);

- the mapping process (see paragraph 3);

- the user interaction via web interface.

Apart from the web interface, that is built “inside” the
application (actually, following JavaEE specifications,
Java code and web resources are clearly separated in
different packages), the other tasks are performed by
external “actors” (tools, applications, programs, web
services) that run independently from the main
application. This loose design gives great flexibility and
allows the substitution of one or more of the external tools
with little effort. Besides this, an error, a malfunction or
simply an upgrading of one of the actors doesn't stop the
whole system. For example, if some jobs are in crawling
state (i.e. web resources are being collected) and an
upgrade to the main application is needed, the
administrator of the server can simply shutdown the JBoss
application and perform the necessary upgrading task,
which could take some time, while running jobs continue
working; then, after restarting, the application will fetch
updated data from the crawler. This loose binding
operates in both ways, as, for example, the main
application will work without complaining if the crawler
is not running: the operations, activities and data that the
crawler provides simply won't be available to users.

2. Crawling process

2.1 Heritrix
The crawling activity in RIDIRE-CPI is based on Heritrix
(version 3.1.1), an open-source (Apache license ver. 2.0)
and reliable crawler that is used extensively worldwide.
Heritrix is a Java application based on the Spring
framework, and it was chosen among other open-source
crawlers (e.g. Nutch) for its great degree of customization
and because of the number of applications using it at the
time of design.
Heritrix copes with the huge amount of technical
problems that the web crawling process has, such as:

- politeness; the crawler should not generate too
much traffic on a crawled host;

- robots.txt; the crawler should respect
specifications about resources’ crawling
permissions;

- missing resources; web pages may have broken
links;

- loops; some web sites can be designed with link
loops;

- multiple URLs for same resource; the crawler
should not download the same resource twice;

- load balancing; if multiple jobs have to be run,
the crawler takes care of distributing CPU
resources and bandwidth so each one of them
can work.

2.2 Web interface for crawling
RIDIRE-CPI configures Heritrix via its REST API, by
means of the web interface. The crawling activity is
structured in “jobs”, i.e. fully configured crawling
sessions. To configure a crawling session, the user has to
specify three sets of parameters in the interface (figure 2).
First, the user selects the seeds i.e. the set of URLs from
which the activity starts. Heritrix saves the seeds in the
“URL queue”. Given this, the crawling activity proceeds
along the following recursive steps:

1) the crawler accesses the web page relative to the
first URL in the queue;

2) it extracts all the links and saves them in the
“URL queue”;

3) it downloads the web page content and saves it
into the file system;

4) it goes back to the first step.

The second set of parameters given to the crawler is the
formats (MIME types) of the resources that the user wants
to download (Heritrix can discriminate among the MIME
types of processed resources, and store only the ones
chosen in the configuration). In addition to HTML,
RIDIRE-CPI is able to process documents in TXT, RTF,
DOC, and PDF. This feature is crucial, since many
linguistically relevant resources in the web are not
contained in web pages, but in documents with various
formats.
The third set of parameters provides an additional strategy
for the content selection of a web site. In this step, the user
selects and/or discards the “resources” (i.e. web pages and
documents in various formats) exploiting the regularities
of the URLs which refer to them. The given parameters
consist of two sets of strings that can be expressed either
as enumerated lists or as regular expressions. The user
gives this information to the crawler after the analysis of
the web site URL structure. The two sets of strings
specify:

2276

- which URLs the crawler has to add to the queue
(“URL to be navigated”);

- which resources the crawler has to download to
the file system (“URL to be saved”).

3. Mapping process

3.1 Conversion to HTML and cleaning
It is well known that, for the aim of building a corpus that
is adequate for linguistic research, the crawled data has to
be processed by a complex procedure that includes, for
instance, text cleaning, duplicate removal, and
POS-tagging (Baroni et al., 2009).
To this aim, RIDIRE-CPI implements the “mapping”
process, which corresponds to an automatic processing
pipeline (i.e. a series of cascading procedures) on the
downloaded resources in order to extract the running text
that will constitute the corpus itself.
For each terminated job, the RIDIRE-CPI stores an ARC
archive in the file system that contains the downloaded
resources in different formats. To proceed to the
subsequent steps, all the resources are first converted into
HTML. For this task, several tools are used depending on
the input format:

1) “Apache TIKA” for DOC, RTF and TXT

conversions;

2) “pdftohtml” plus an ad hoc cleaner (LABLITA
PdfCleaner) for the PDF conversion.

The conversion is embedded in a common Java
application (that can be executed on the command line,
passing some parameters) that runs outside the main
JBoss application. Again the loose coupling is made so
that if the conversion ends in error or, worse, crashes, the
main application is not affected.
Apache TIKA is used as a programming library by the
conversion application. On the contrary, pdftohtml and
PdfCleaner are, in turn, used as external programs: the
first tool is used for the main conversion, while the second
has been specifically developed for discarding tables,
indexes, page numbers and notes from the converted
HTML file.
After the conversion, the text cleaning is performed. Web
pages, as is well known, contain text that is not relevant
for the constitution of a corpus i.e. advertising, navigation
menus, disclaimers, credits etc. (the so called
“boilerplate”). This kind of text is removed using two
external tools:

1) Readability;

2) Alchemy API.

Figure 2: Job configuration interface

2277

Both are embedded in a Java cleaning application
controlled by the JBoss main application.
Readability is normally used as a browser plugin to obtain
more readable texts from web pages filled with
uninteresting banners and links around the main text.
Readability is actually a Javascript program that is
launched when the user presses the plugin icon. In
RIDIRE this behavior is simulated using HTMLUnit, a
Java programming library commonly used to test web
pages. As HTMLUnit contains a Javascript engine
(Mozilla Rhino), in RIDIRE it is used to execute the
Readability script against the HTML resource as in a
common browser.
Even if Readability has been evaluated as the best HTML
cleaner among the ones taken into account, it is possible
that it won't yield results or will output an error. The
Alchemy API has been chosen as a second chance
cleaner, and is a web service that exposes a REST API and
provides a Java (and other programming languages)
Software Development Kit to embed Alchemy calls in
Java code. The SDK is used by the cleaning application.

3.2 Mapping the resources onto the RDBMS
The plain text documents that output from the cleaning
stage are then processed by a simple MD5 digester to get
their signature. This signature is used to name the
resource and acts as the first anti-duplication system.
Before storing the resource, the application checks the DB
to see if another resource with the same signature exists; if
so, the new resource is discarded. If the resource is
actually new, the resulting file is written to the file system.
The mapping process will also integrate a near duplicate
remover (to be implemented) based on a keyword
extractor (Panunzi et al., 2006).
After this, and before a crawled resource can be created in
the database (RDBMS), the language of the resource must
be retrieved. It's not possible to assign this to a job during
the definition, or to trust language information provided
by web servers or HTML pages, since they are highly
unreliable. Thus, a statistical language guesser is used:
NGramJ. NGramJ is an open-source (LGPL) language
guessing Java library. It's very fast, complete, and,
because of its reliability, is directly embedded in the main
application.
With this new information the JBoss application can
create a so-called CrawledResource, which is simply a
record in the RDBMS that stores metadata information
regarding the resource. For metadata storage RIDIRE
uses MySQL (version 5.1).
The last phase of the mapping procedure is the part of
speech tagging of the plain text resource. PoS tagging is
performed by TreeTagger, which is run by the main
application as an external executable. The PoS-tagged file
is directly created in the correct location by TreeTagger.

4. Supervision and validation
At the end of the mapping process, each resource has its
own record in the RDBMS. Such a record contains:

- the original URL of the resource;

- the MIME type of the resource;

- the reference to the extracted text in the file
system;

- the reference to the PoS-tagged text in the file
system;

- the language of the text;

- the number of words (excluding non-word
tokens) of the PoS-tagged text;

The RIDIRE-CPI web interface shows all of this
information to the user, who can use it to verify the results
of the crawling job.
Through the interface, the user is also provided with
control functions on the downloaded resources.
Exploiting the metadata on word numbers, he can choose
to delete from his job all of the texts that contain less than
100 words, with the aim of avoiding an
over-fragmentation of the resulting corpus. He can also
assign content metadata to the resources, which can be
used for creating and balancing sub-corpora within a
larger collection.
Moreover, RIDIRE-CPI integrates a validation interface
dedicated to the evaluation of the targeted crawling. The
validation procedure creates a random sample of the
resources contained in a job. The user can check whether
the job resources are adequate with respect to the corpus
design or content restrictions. A job can be considered
“valid” if it contains non adequate resources under a
certain percentage.
Through the content selection, metadata assignment, and
validation procedures, the RIDIRE-CPI allows the
gathering of linguistic data with a supervised strategy that
leads to a higher level of control. The modular
architecture of the infrastructure and its open-source
distribution will assure the reusability of the tool for other
corpus building initiatives.

5. References
Baroni, M., Bernardini, S., Ferraresi, A. and Zanchetta, E.

(2009). The WaCky Wide Web: A Collection of Very
Large Linguistically Processed Web-Crawled Corpora.
Language Resources and Evaluation 43(3), pp.
209--226.

Boleda, G., Bott, S., Meza, R., Castillo, C., Badia, T. and
Lopez, V. (2006). CUCWeb: A Catalan corpus built
from the web. In A. Kilgarriff & M. Baroni (Eds.),
Proceedings of the 2nd International Workshop on the
Web as Corpus. East Stroudsburg (PA): ACL, pp.
19--26.

Clarke, C., Cormack, G., Laszlo, M., Lynam, T. and Terra,
E. (2002). The impact of corpus size on question
answering performance. In Proceedings of the 25th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
New York (NY): ACM, pp. 369--370.

Ide, N., Reppen, R. and Suderman, K. (2002). The
American National Corpus: more than the Web can

2278

provide. In Proceedings of the 3rd Language Resources
and Evaluation Conference, LREC 2002. Paris: ELRA,
pp. 839--844.

Kilgarriff, A. and Greffenstette, G. (2003). Introduction to
the Special Issue on Web as Corpus. Computational
Linguistics 29(3), pp. 1--15.

Moneglia, M. and Paladini, S. (2010). Le risorse di rete
dell’italiano. Presentazione del progetto “RIDIRE.it”.
In E. Cresti & I. Korzen (Eds.), Language, Cognition
and Identity. Firenze: Firenze University Press, pp.
111--128.

Panunzi, A., Fabbri, M. and Moneglia, M. (2006).
Integrating Methods and LRs for Automatic Keyword
Extraction from Open-Domain Texts”, in Proceedings
of the 5th Language Resources and Evaluation
Conference, LREC 2006. Paris, France: ELRA, pp.
2205--2208.

Renouf, A., Kehoe, A. and Banerjee, J. (2007). WebCorp:
an integrated system for web text search. In C.
Nesselhauf, M. Hundt & C. Biewer (Eds.), Corpus
Linguistics and the Web. Amsterdam: Rodopi, pp.
47--67.

Sharoff, S. (2006). Creating general-purpose corpora
using automated search engine queries. In M. Baroni &
S. Bernardini (Eds.), Wacky! Working papers on the
Web as Corpus. Bologna: Gedit, pp. 63--98.

Project sites and Tools
Alchemy API. http://www.alchemyapi.com/
Apache Tika. http://tika.apache.org/
CucWeb. http://ramsesii.upf.es/cucweb/about.en_US.htm
Heritrix. http://crawler.archive.org/
HTMLUnit. http://htmlunit.sourceforge.net/
Leeds collection of Internet corpora.

http://corpus.leeds.ac.uk/internet.htm
NGramJ. http://ngramj.sourceforge.net/
pdftohtml. http://pdftohtml.sourceforge.net/
Readability. http://www.readability.com/
TreeTagger.

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeT
agger/

WaCky. http://wacky.sslmit.unibo.it/doku.php
WebCorp. http://www.webcorp.org.uk/

Figure 3: Validation interface

2279

