
A Framework for Evaluating Text Correction

Robert Dale and George Narroway

Centre for Language Technology
Macquarie University

Sydney, Australia
Robert.Dale@mq.edu.au,George.Narroway@students.mq.edu.au

Abstract
Computer-based aids for writing assistance have been around since at least the early 1980s, focussing primarily on aspects such as
spelling, grammar and style. The potential audience for such tools is very large indeed, and this is a clear case where we might expect to
see language processing applications having a significant real-world impact. However, existing comparative evaluations of applications
in this space are often no more than impressionistic and anecdotal reviews of commercial offerings as found in software magazines,
making it hard to determine which approaches are superior. More rigorous evaluation in the scholarly literature has been held back in
particular by the absence of shared datasets of texts marked-up with errors, and the lack of an agreed evaluation framework. Significant
collections of publicly available data are now appearing; this paper describes a complementary evaluation framework, which has been
piloted in the Helping Our Own shared task. The approach, which uses stand-off annotations for representing edits to text, can be used
in a wide variety of text-correction tasks, and easily accommodates different error tagsets.

Keywords: Evaluation frameworks, error correction, replicability

1. Introduction
Computer-based aids for detecting and correcting errors in
text have been around almost as long as the most primi-
tive text processing applications. Spell checking techniques
have been continually developed and improved since the
1960s; see (Kukich, 1992) for a still-pertinent review of
techniques up to the late 1980s, and (Dale, to appear) for a
survey of more recent work. The the set of tools known as
the Unix Writer’s Workbench (WWB; (Macdonald et al.,
1982)) represented a significant step forward in the early
1980s, providing a collection of programs which used rela-
tively simple pattern-matching techniques to detect a broad
range of errors and infelicities in text; these quickly in-
spired a number of commercial applications that met the
demand for proofing tools on the newly-appearing PC and
Mac desktops. The technology took another leap later in the
1980s with IBM’s development of the EPISTLE and CRI-
TIQUE grammar checkers (Heidorn et al., 1982), the first
broad coverage tools that used what we would today recog-
nize as real parsing; these subsequently led to the grammar
checker in Microsoft Word (Heidorn, 2000), probably the
NLP application with the largest number of installed copies
in the world.
The last two decades have seen a range of small-scale ex-
plorations of innovative grammar-checking techniques, but
as far as broad-coverage grammar checking is concerned,
progress appears to have stalled. This might be because
the market dominance of the Microsoft product has killed
any incentive that competitors might have to produce some-
thing better;1 or it might be because further advances in the
state of the art are just too difficult to achieve using the
‘old school’ rule-based techniques that underlie most ap-
proaches. But one other possible contributing factor is the
difficulty of demonstrating that a new solution does indeed
perform better than what has gone before. To do this re-

1See (Dale, 2004) for an analysis along these lines.

quires both a shared dataset of spelling, grammar or style
errors and their corrections, and an agreed framework for
evaluating performance; unfortunately, both of these re-
sources have been conspicuously absent.
But things are looking up. In particular, publicly-available
datasets of texts marked-up with second-language learner
errors have started to appear, a timely development given
the significant interest in the last few years in building ap-
plications that aim to help this audience. In part motivated
by these developments, this paper presents an attempt to
provide a complementary resource in the form of a flexible
evaluation framework that is tailored to the specific needs
of the task of text correction, while allowing the use of a
wide range of error annotation schemas. The code and var-
ious sample data sets are freely available.2

2. Desiderata
The framework presented here was developed in the con-
text of the HOO (Helping Our Own) shared task, whose
pilot run was reported on as part of the 2011 Generation
Challenges at the European Natural Language Generation
Workshop (see (Dale and Kilgarriff, 2011). The stated aim
of HOO is to encourage the development of technologies
that help members of the NLP community write better pa-
pers about NLP (hence ‘helping our own’); we set up the
initiative (see (Dale and Kilgarriff, 2010)) in the hope that
focussing on this particular user community would result in
greater ‘buy-in’ by both developers and potential users. Our
vision encompasses a very broad range of assistive tech-
nologies to help with aspects of the writing task at many
levels; but for the initial rounds of the shared task, we chose
to focus on what we might consider to be ‘tactical’ aspects
of writing, conventionally referred to as spelling, grammar
and style.
For the pilot run of the HOO shared task, we used texts
that had been produced by non-native speakers of English;

2See www.correcttext.org.

3015

<edit type="IJ" index="0001-0006"
start="771" end="782">

<original>electronics</original>
<corrections>

<correction>electronic</correction>
</corrections>

</edit>
<edit type="RP" index="0001-0007"

start="1387" end="1388">
<original>;</original>
<corrections>

<correction>.</correction>
</corrections>

</edit>
<edit type="MY" index="0001-0004"

start="631" end="631">
<original><empty/></original>
<corrections>

<correction/>
<correction>both </correction>

</corrections>
</edit>
<edit type="RV" index="0001-0005"

start="713" end="718">
<original>carry</original>
<corrections>

<correction/>
<correction>contain</correction>

</corrections>
</edit>

Figure 1: Some gold-standard edit structures.

these were marked up using an error tagset that had been
designed with this kind of text in mind. However, from the
outset we have been mindful that different text correction
tasks might warrant different tagsets at varying granular-
ities, so our annotation scheme has been deliberately de-
signed to offer flexibility on this front; this is described in
Section 3.

Our inclusion of stylistic aspects of text correction imme-
diately brings to the fore some difficult questions for eval-
uation. It might be argued that, where spelling and gram-
mar are concerned, there is indeed a correct answer, and so
a system can be evaluated on both whether it detects the
incorrect usage and whether it provides the stipulated cor-
rection. Stylistic questions, however, are much less clear
cut;3 consequently, our evaluation framework allows for
both multiple possible corrections and for optional correc-
tions for a given error or infelicity. Given these phenomena,
it may be more appropriate to think of the general task we
are interested in as being more generally about ‘text mas-
saging’ rather than ‘text correction’, and more appropriate
to use the term ‘infelicity’ rather than the term ‘error’. Our
evaluation metrics are described in Section 4.

3In fact, questions of spelling and grammar are not always so
‘black and white’ either, of course.

3. Annotating Infelicities
To use our framework, texts are marked up using inline an-
notations that indicate the extent of an identified infelicity
in the text, along with the assignation of a type, and zero
or more possible corrections.4 These inline annotations are
then automatically extracted from the texts to produce a set
of stand-off annotations that can be used for evaluation pur-
poses. Figure 1 shows some example annotations.5

Each <edit> element has an index attribute that uniquely
identifies the edit, a type attribute which indicates the type
of the error found or correction made,6 and a pair of off-
sets that specify the character positions in the source text
file of the start and end of the character sequence that
is affected by the edit. The set of types to be used is de-
fined independently of the annotation schema, so that other
tagsets can be used. The embedded <original> element
contains the text span that is subject to correction. Each
<edit> element usually also contains a <corrections>

element, which lists one or more possible corrections for
the problematic text span.
There are a number of complicating circumstances we have
to deal with. First, there may be multiple valid correc-
tions. This is not just a consequence of our desire to include
classes of infelicitious usage where there is no single best
correction. The requirement is already present in any at-
tempt to handle grammatical number agreement issues, for
example, where an instance of number disagreement might
be repaired by making the affected items either singular or
plural. Also, it is usually not possible to consider the list of
corrections we provide as being exhaustive.
A correction may also be considered optional. In such
cases we view the first listed correction as a null correction
(in other words, one of the multiple possible corrections is
to leave things as they are); the last two edits in Figure 1
provide examples. When an edit contains an optional cor-
rection, we call the edit an optional edit. if the edit contains
no optional corrections, then it is a mandatory edit. Note
that deletions and insertions, as well as replacements, may
be optional.
Sometimes edits may be interdependent: making one
change requires that another also be made. Edits which are
connected together in this way are indicated via indexed
cset attributes (for consistency set). The most obvious
case of this is where there is requirement for consistency
in the use of some form (for example, the hyphenation of a
term) across a document; each such instance will then be-
long to the same cset (and consequently there can be many
members in a cset). Another situation that can be handled
using csets is that of grammatical number agreement. In

4We allow the possibility of zero corrections to cater for cir-
cumstances where the annotator has determined that something is
wrong, but is not able to determine what an appropriate correction
would be.

5The types here are: IJ = incorrect adjective inflection, RP
= replace punctuation, MY = missing adverb, and RV = replace
verb.

6The set of types used here is borrowed, with some very mi-
nor changes, from the Cambridge University Press Error Coding
System described in (Nicholls, 2003), and used with permission
of Cambridge University Press.

3016

such a case, there are usually two possible corrections, but
the items affected may be separated in the text, requiring
two separate edits to be made; these are connected in the
annotations by a cset.
Finally, there are cases where our annotators have deter-
mined that something is wrong, but are not able to deter-
mine what the correction should be. There are two com-
mon circumstances where this occurs: (1) a word or frag-
ment of text is missing, but it is not clear what the missing
text should be; or (2) a fragment of text contains a complex
error, but it is not obvious how to repair the error. These
two cases are represented by omitting the corrections

element.
All of these phenomena complicate the process of evalua-
tion, which we turn to next.

4. Evaluation
The annotation schema used and the evaluation metrics to
be applied are related but logically separate, allowing ad-
ditional metrics to be added. In the current release of the
evaluation software, the approach we take borrows much
from the evaluation of named-entity recognition tasks. A
number of characteristics of the present task mean that it is
not straighrforward to evaluate performance:

1. Reasonable people may disagree as to whether an edit
indicated in the gold standard is necessary.

2. Reasonable people may disagree as to whether the
gold standard contains all the edits that should be
made.

3. Even where there is an agreement that an edit should
be made, reasonable people may disagree as to what
the correction should be, and participating systems
may offer corrections other than those provided in the
gold standard.

4. A system’s view of the extent corresponding to an edit
may not agree with the extent indicated in the gold
standard.

In what follows, we approach evaluation much as if it was
a named-entity-mention recognition task, where the mark-
ables are the named-entity mentions to be detected in the
source text. This allows us to use fairly standard approaches
to measuring success in recognizing the presence of mark-
ables in the source.
There are a number of aspects of system performance for
which we can derive scores. Detection measures a system’s
ability to determine that an edit is required at some point in
the text; Recognition measures whether the extent of the
source text that requires editing is identified correctly; and
Correction measures a system’s ability to offer a correc-
tion that is amongst the corrections provided in the gold
standard. Detection is effectively ‘lenient recognition’, al-
lowing for the possibility that the system and the gold stan-
dard may not agree on the precise extent of a correction.
Systems can be scored on a text-by-text basis, on a data set
as a whole, or on the basis of individually specified error
types.

For each pairing of gold standard data and system out-
put,we compute two alignment sets, recording the corre-
spondences between the two sets of edits. The strict align-
ment set contains those alignments whose extents match
perfectly; the lenient alignment set contains those align-
ments that involve some overlap. Unaligned edits are ed-
its which do not appear in the lenient alignment set: an
unaligned system edit corresponds to a spurious edit, and
an unaligned gold-standard edit corresponds to a missing
edit. Note that missing edits are of two types, depending on
whether the gold-standard edit corresponds to an optional
edit or a mandatory edit. A system should not be penalised
for failing to provide a correction for a markable where the
gold standard considers the edit to be optional. To manage
the impact of this on scoring, we keep track of the number
of missing optional edits.

4.1. Detection

For a given pair of edit sets, a gold standard edit is con-
sidered detected if there is at least one alignment in the
lenient alignment set that contains that edit. We calculate
Precision as the proportion of edits found by the system that
correspond to gold-standard edits,7

P =
detected edits

spurious edits + # detected edits
(1)

and Recall is calculated as:

R =
detected edits

gold edits
(2)

as the proportion of gold-standard edits that were detected.
However, under this regime, if all the gold edits are optional
and none are detected by the system, then the system’s Pre-
cison and Recall will both be zero. This is arguably unfair,
since doing nothing in the face of an optional edit is per-
fectly acceptable; so, to accommodate this, we also com-
pute scores ‘with bonus’, where a system also receives re-
ward for optional edits where it does nothing.

P =
detected + # missing optional

spurious + # detected + # missing optional
(3)

R =
detected + # missing optional

gold edits
(4)

This has a more obvious impact when we score on a text-
by-text basis, since the chances of a system proposing no
edits for a single text are greater than the chances of the
system proposing no edits for all texts.
The Detection score is then the harmonic mean (F-score).

DetectionScore = 2× Precision × Recall
Precision + Recall

(5)

7In all computations of Precision (P) and Recall (R) we take
the result of dividing zero by zero to equal 1, but for the compu-
tation of F-scores we take the result of dividing zero by zero to be
zero.

3017

4.2. Recognition
We consider a gold-standard edit to be recognized if it ap-
pears in the strict alignment set. RecognitionScore is de-
fined to be 0 if there are no recognized edits for a given
document; otherwise, we compute Precision as the propor-
tion of system edits which correspond to gold-standard ed-
its, and Recall as the propertion of gold-standard edits that
are recognized. The Recognition score is again the har-
monic mean; as for Detection, we compute a ‘with bonus’
variant that gives credit for missed optional edits.

4.3. Correction
For any given gold-standard edit, there may be multiple
possible corrections. A system edit is considered a valid
correction if it is strictly aligned, and the correction string
that it contains is identical to one of the corrections pro-
vided in the gold standard edit. CorrectionScore is defined
to be 0 if there are no recognized edits for a given docu-
ment; otherwise, we compute Precision as the proportion of
system edits for which the provided correction is valid, and
Recall as the proportion of gold standard edits for which
a valid correction is provided. The correction score is, as
before, the harmonic mean, and we once again compute
‘with-bonus’ variants.

4.4. Type-based Evaluation
The metrics just described can be applied to all the anno-
tated errors in an individual file or in a collection of files;
however, we recognize that in some circumstances only er-
rors of a particular type may be of interest. The evaluation
of specific types of corrections is facilitated by the use of a
control file that provides a one-to-many mapping between
reportable types and annotated types. The idea here is
that the annotations provided in the gold standard may be
a finer level of granularity than we require for evaluation
purposes; for example, the CLC tagset provides a number
of different tags for errors that are concerned with the use
of determiners, but we may prefer to collapse these into a
single type. This information is recorded in a configuration
file, which can be specified as a command line argument to
the evaluation tool. Here’s a typical line from a configura-
tion file:

aggregate PUNCT RP MP UP

This indicates that the listed CLC error tags RP (replace
punctuation), MP (missing punctuation) and UP (unneces-
sary punctuation) should be reported as PUNCT errors; a
configuration file which contains only this line will result
in scores being reported only for punctuation errors, and
all other errors being ignored. A configuration file may list
multiple reportable types, thus allowing for different ap-
proaches to taxonomising the space of errors.

5. Conclusions and Future Work
The evaluation framework described here was used suc-
cessfully in the HOO Pilot Shared Task, in which six teams
took part; see (Dale and Kilgarriff, 2011). The pilot used a
a small collection of corrected text fragments drawn from
the ACL Anthology, and used with the kind permission of
their authors. Recently, two large corpora of error-tagged

second language learner data have been publicly released:
the CLC FCE Dataset contains 1,244 exam scripts from the
Cambridge ESOL First Certificate in English (FCE) exami-
nation,8 and the NUS Corpus of Learner English (NUCLE)
contains 1,400 essays written by university students at NUS
on a wide range of topics.9 These two corpora use differ-
ent tagsets, but can be straightforwardly converted into the
annotation schema described here. At the time of writing,
the second HOO Shared Task, which focuses on correct-
ing preposition and determiner usage in second language
learner texts (drawn from the FCE dataset) is underway: the
high proportion of ESL errors that fall into these categories
has led to significant interest in addressing these problems,
but so far much of this work remains hard to compare be-
cause of the use of different data sets and evaluation proce-
dures. The framework provided here, in conjunction with
the newly available data sets, provides an opportunity for
robust and objective comparisons of current and new ap-
proaches.

6. References
R Dale and A Kilgarriff. 2010. Helping Our Own: Text

massaging for computational linguistics as a new shared
task. In Proceedings of the 6th International Natural
Language Generation Conference, pages 261–266, 7th-
9th July 2010.

R Dale and A Kilgarriff. 2011. Helping our own: The
HOO 2011 pilot shared task. In Proceedings of the 13th
European Workshop on Natural Language Generation,
28th–30th September 2011.

R Dale. 2004. Industry watch. Natural Language Engi-
neering, 10:91–94.

R Dale. to appear. Automated writing assistance. In
R Mitkov, editor, Oxford Handbook of Natural Language
Processing. Oxford University Press, second edition.

G E Heidorn, K Jensen, L A Miller, R J Byrd, and
M Chodorow. 1982. The EPISTLE text-critiquing sys-
tem. IBM Systems Journal, 21:305–326.

G Heidorn. 2000. Intelligent writing assistance. In R Dale,
H Moisl, and H Somers, editors, Handbook of Natural
Language Processing, pages 181–207. Marcel Dekker.

K Kukich. 1992. Techniques for automatically correcting
words in text. ACM Computing Surveys, 24(4):377–439.

N Macdonald, L Frase, P Gingrich, and S Keenan. 1982.
The Writer’s Workbench: Computer aids for text analy-
sis. IEEE Transactions on Communications, 30(1):105–
110.

D Nicholls. 2003. The Cambridge Learner Corpus—
error coding and analysis for lexicography and ELT. In
D Archer, P Rayson, A Wilson, and T McEnery, editors,
Proceedings of the Corpus Linguistics 2003 Conference,
pages 572–581, 29th March–2nd April 2001.

8http://ilexir.co.uk/applications/clc-fce-dataset.
9http://nlp.comp.nus.edu.sg/corpora.

3018

