
Kitten: a tool for normalizing HTML and extracting its textual content

Mathieu-Henri Falco, Véronique Moriceau, Anne Vilnat

LIMSI-CNRS
University Paris-Sud
91403 Orsay, France

firstname.surname@limsi.fr

Abstract
The web is composed of a gigantic amount of documents that can be very useful for information extraction systems. Most of them are
written in HTML and have to be rendered by an HTML engine in order to display the data they contain on a screen. HTML files thus
mix both informational and rendering content. Our goal is to design a tool for informational content extraction. A linear extraction with
only a basic filtering of rendering content would not be enough as objects such as lists and tables are linearly coded but need to be read
in a non-linear way to be well interpreted. Besides these HTML pages are often incorrectly coded from an HTML point of view and
use a segmentation of blocks based on blank space that cannot be transposed in a text file without confusing syntactic parsers. For this
purpose, we propose the Kitten tool that first normalizes HTML files into unicode XHTML files, then extracts the informational content
into a text file with a special processing for sentences, lists and tables.

Keywords: HTML, content extraction, question-answering

1. Introduction
The motivation for coding the Kitten tool came during
the question-answering system evaluation as part of the
QUAERO program as it showed that the data extracted
from web pages were confusing the systems based on lin-
guistic features (language model or dependancy grammar
notably) (Quintard et al., 2010). The QUAERO corpus is
composed of 2 million HTML files (for French and for
English) and only a subset is used for the evaluation cam-
paigns: 499,736 files for French and 498,678 for English;
from now these subsets will be referred to as the QUAERO
corpus. Participants were using textual files that had been
linearly extracted without any kind of filtering or linguistic
processing (Figure 1). It was inadequate mainly because
HTML files contain visual blank spaces for segmenting
blocks of text where systems expects punctuation marks.

Figure 1: Example of a linear extraction.

A correct extraction must focus on extracting textual con-
tent with respect to the limitations of a text file that is read
from left to right, line by line and where sentences are de-
limited by punctuation marks; otherwise texts from differ-
ent blocks would be merged. The Lynx software allows

the dump of an HTML file faithfully to its rendering aspect
(Figure 2) but a very difficult segmentational processing has
to be done for syntactic parsers to work on correctly delim-
itated sentences.

Figure 2: HTML file dumped with Lynx.

In this article, we present the Kitten (Kitten Is a Textual
Treatment for Extraction and Normalization) tool that al-
lows normalization of an HTML file and the extraction of
its content into a basic text file. It focuses notably on tables
and lists as they need particular attention for their extrac-
tion: a simple extraction would not be enough to obtain
exploitable textual data for information extraction. Kitten
is composed of two main steps (Figure 3): after a compu-
tational treatment aiming at normalizing the HTML code
by combining existing tools (HTMLCleaner1, jTidy2 and
jChardet3), a linguistic processing takes place for extraction

1http://htmlcleaner.sourceforge.net/
2http://jtidy.sourceforge.net/
3http://jchardet.sourceforge.net/

2261

http://htmlcleaner.sourceforge.net/
http://jtidy.sourceforge.net/
http://jchardet.sourceforge.net/


of the informational content into a basic text file. Produc-
ing a file at each step makes the use of these existing tools
easier. We were not aiming at a spam detector, a removal
of boilerplate text (Kohlschütter et al., 2010) or a web page
cleaner (Baroni et al., 2008). Our first objective of nor-
malization is very close to the work of Beautifulsoup4 but
the use of BeautifulSoup on the Quaero corpus showed too
many losses of files at the time we tested it (19.11% were
not completed with the 3.1.0.1 version in January 2010; no
file was lost with the more recent version 3.2.0 of Novem-
ber 2010 but Kitten was already developped at that time).

We wanted to normalize the way an HTML file was coded
to correctly extract its informational content (including for
the moment SPAM and boiler plate content) and finally
adapt it to a text file with sentence boundaries so that syn-
tactic parsers can correctly process it.

Kitten processed both the English and French corpus: we
provide here figures for the French one. The examples are
written in English: some come from the English corpus and
those from the French one have been translated.

Section 2 will present the HTML normalization processing
and section 3 will focus on the statistical and linguistic pro-
cessing during the extraction of informational content. Sec-
tion 4 will present the evaluation of a question-answering
system on the QUAERO corpus preprocessed by Kitten,
thus giving an indirect evaluation of Kitten.

Figure 3: Kitten architecture.

4http://www.crummy.com/software/
BeautifulSoup

2. From crawled HTML to normalized
XHTML

The main goal of the computational processing is to obtain
a normalized and UTF-8 encoded XHTML source code.
This normalized file must then be XHTML compliant ac-
cording to the W3 consortium and thus have a valid tree
structure for allowing HTML parsing.

2.1. Specific preprocessing
The Kitten architecture (Figure 3) shows three steps: a file
exclusion, a direct extraction and a preprocessing. The file
exclusion rejects sitemap files as they only contain urls, are
very time-consuming and seem to be relevant more for a
document classification task (Qi and Davison, 2009) than
for a question-answering system. The direct extraction han-
dles already converted binary files (swf, doc, rtf): after hav-
ing crawled the QUAERO corpus, Exalead5 converted the
binary files into XML files using four tags (header, doc-
ument, textfield, page); these XML files are thus ready to
be extracted and do not need to be preprocessed. Almost
all files of the QUAERO corpus are preprocessed (99,50%)
while only 0,003% sitemap files are excluded and 0.5%
XML files directly extracted.

2.2. Fixing HTML errors
HTMLCleaner and jTidy share a lot of common options
for fixing HTML errors but we proceeded to several exper-
iments that showed it was better to use them sequentially.
HTMLCleaner aims notably at:

• replacing the &apos; entity by its character ’ (simple
quote): its use is valid in XML and XHTML but not
in HTML,

• regarding the content of the tags <script> and
<style> as plain text. It escapes entity like “<” in
javascript code that could be confused with an open-
ing tag,

• replacing special HTML entities (i.e. &ocirc;, &per-
mil;) with unicode characters they represent (ô, h),

jTidy also aims notably at:

• fixing incorrect tag sequence: for example, <b> <i>
</b> </i> becomes <b> <i> </i> </b>,

• closing unclosed tags,

• setting the indentation length within the source file to
zero (as it would otherwise insert new carriage-returns
inside textual content that will cut sentences).

2.3. Normalizing the files
By fixing incorrectly ordered or non-closed tags, jTidy also
allows the normalization of HTML files into XHTML. We
use jChardet6 to detect the most likely encoding of the
HTML file allowing thus jTidy to produce an XHTML file
encoded in UTF-8.

5http://www.exalead.com/search/: one of the QUAERO par-
ticipant

6java port of the source from Mozilla automatic charset

2262

http://www.crummy.com/software/BeautifulSoup
http://www.crummy.com/software/BeautifulSoup


Both HTMLCleaner and jTidy work on transformation of
entities in order to return an unicode file. Non-ascii char-
acters can be encoded on the web in three different ways:
for example, the numeric entity &#230;, the character en-
tity &aelig; and the special character æ represent the same
character. As we want to use only numeric entities after
jTidy, a final conversion has to be done for the range of nu-
meric entities from &#128; to &#159; as they are invalid in
XHTML.
It was impossible to produce a normalized XHTML file for
5 files. In this situation, a textual dump of these files has
been produced with the Lynx browser.

3. From normalized XHTML to exploitable
text

The main goal during the extraction of textual content is
to produce a text file that can be read directly by syntactic
parsers. By doing so, we had to find a way to transform
content using layout (once rendered by an HTML browser)
such as tables, lists and blocks of textual content. The ex-
amples cited in this section come from needs of Question-
Answering applications but all of these features can be set
before launching Kitten.

3.1. HTML tables
A table often contains precious informational content and
a linear extraction would be particulary inadequate as it is
coded linearly in an HTML file, i.e from left to right and
row by row (Figure 4) but has to be read by linking seman-
tically a data cell content with its header cell.

Figure 4: A data leaf-table: source code and once rendered.

3.1.1. Detecting data tables from layout tables
Kitten targets only leaf-tables: a leaf-table is a table tag
not containing itself a table tag. Websites can use recur-
sively the table tag to display information on a page with
a depth of 10 nested tables so we decided to focus only on
leaf-tables (the non-leaf-table are linearly extracted for the
moment). A leaf-table can be a data table or a table used
for layout (Figure 5). As this information is not explicitly
coded, we use a classifier: a decision tree was built using
the machine learning sofware collection WEKA (Hall et al.,
2009) based on the features used by (Wang and Hu, 2002)
and some others that we added :

Figure 5: Layout table.

• rate of empty cases for a line and a row,

• has a <form> tag,

• has a <caption> tag,

• number of <th> tags,

• is a leaf of an embedded table.

An annotated corpus composed of 2,850 layout and 638
data leaf-tables is used for the learning phase:

• 549 layout and 281 data leaf-tables come from 118
files of the corpus annotated by (Wang and Hu, 2002)
(we kept only one webpage by website). Their an-
notated corpus is available7 and is composed of web
documents from 2001: we integrated it to reinforce
the robustness of our detection,

• 2,301 layout and 357 data leaf-tables come from 294
files of the QUAERO corpus that we annotated,

• finally we randomly chose among the Wang and
QUAERO corpus 614 layout leaf-tables to build the
model.

Type Precision Recall F-Score
layout 0.979 0.933 0.947

data (Kitten) 0.917 0.965 0.951
data (Wang) 0.942 0.973 0.957

Table 1: Categorization of 614 layout and 614 data leaf-
tables.

The first pass with 10 cross-validations on the annotated
corpus showed encouraging results (table 1).

3.1.2. Categorizing the cells of data tables
For all the data leaf-tables identified, a second decision tree
was built in order to classify each cell among six categories
(table 2):

• data and header are explicit and obligatory,

• neutral is an empty cell for rendering purposes (not for
missing data),

7http://gsl.lab.asu.edu/doc/webtable.html

2263

http://gsl.lab.asu.edu/doc/webtable.html


• thema is the caption of a table or information regard-
ing all the cell data within the table,

• finalImportant acts like thema but for information lo-
cated at the bottom of the table (legend for example),

• finalNonImportant is for duplicated header within the
table.

This decision tree was also built with WEKA and also
based on the features used by (Wang and Hu, 2002) and
some others that we added :

• heigth and length of the cell,

• rate of merged cells on a given line and row,

• number of carriage-returns in the cell.

Once cells are typed, we use manual heuristics to fix some
incorrect identification like, for example, a cell identified as
data while all the others on the same line were identified as
header.

Class (nb of instances) Prec. Rec. F-score
header (8,542) 0.975 0.967 0.971
data (60,648) 0.995 0.997 0.996

neutral (4,468) 0.975 0.966 0.971
finalImportant (140) 0.897 0.732 0.806

finalNonImportant (34) 0.889 1 0.941
thema (254) 0.874 0.867 0.871

Table 2: Precision, recall and F-score for the identifica-
tion of cells for the 614 data tables (10-fold cross valida-
tion).

Figure 6: Table example with correctly identified cells:
header, data, thema (top case), neutral (empty).

Our goal is to extract the table content in order to build a
clause which can be parsed by information extraction sys-
tems. We combine each data cell content on the same row
with its header cell(s) in the same sentence by using the fol-
lowing pattern (the pattern uses regexp symbols): thema?
;;? finalImportant? ;;? (header? ;? header ; data /?)+ .
Figure 6 shows the data leaf-table correctly identified and
its extraction is the following:

• Dimensions comparison ;; DS Lite ; Length:
133.0mm / Original DS ; Length: 148.7mm / PSP ;
Length: 170.0mm.

• Dimensions comparison ;; DS Lite ; Width: 73.9mm
/ Original DS ; Width: 84.7mm / PSP ; Width:
74.0mm.

• Dimensions comparison ;; DS Lite ; Depth: 21.5mm
/ Original DS ; Depth: 28.8mm / PSP ; Depth:
23.0mm.

• Dimensions comparison ;; DS Lite ; Weight: 218g /
Original DS ; Weight: 275g / PSP ; Weight: 260g.

3.2. Lists
List objects can also confuse syntactic parsers as the items
can be clauses syntactically related to the introductory
clause (Gala, 2003), (Aı̈t-Mokhtar et al., 2003). To that
purpose, a typology of lists was created and extraction is
guided according to rules specific to each type :

• conditional removal of hyperlinks in a hyperlink list,

• conditional removal of item bullets,

• list flattening,

• list flattening and introductory clause duplication for
each item.

We only consider lists coded using the expected tag such as
<ul> (list), <ol> (ordered list) and <dl> (definition list);
hardcoded lists using layout tags such as <br> or <p> are
too difficult to identify for the moment. For the flattening
operation, we only focus on the lists that are not embed-
ded (only one level) and that have an explicit introductory
clause (i.e ending by a colon).

3.2.1. Hyperlinks in a hyperlink list
First we removed particular items from hyperlink lists
which are lists composed solely of hyperlinks. They can
begin or not by an introductory clause. If an hyperlink item
is composed of less than five words, it is removed as it is
not likely to contain an answer. Each removal is archived
and log exploration showed that on the nearly three million
removed items, only 481,115 were different and the top-4
occurrences illustrates the purpose of this removal:

• empty words from menu or forum such as Home
(30,847 occurrences), Cite (21,638),

• empty item used for layout (21,468),

• blog item from a calendar such as september 2007
(8,442).

3.2.2. Hardwritten bullet removal
Inside a list, bullets are sometimes hardwritten by develop-
ers and need to be removed for not confusing the parser. A
couple of regular expressions is used on the most common
such as *, -, 1), a) .

3.2.3. List flattening
List flattening removes the carriage-return layout by putting
each item in the same sentence than the introductory clause
in two ways :

2264



The following list contains a general guideline of differ-
ent body styles and wedding dress styles to consider:

• Hourglass-shaped brides

• Pear-shaped brides

• Petite brides

• Plus-size brides

• Tall brides

Figure 7: Example of a list where a linear extraction would
move away the item from the introductory clause.

• if the median length of (non-empty) item is lower than
60 characters, the list is flatten to a unique sentence; if
an allowed punctuation mark (full stop, question mark,
exclamation mark, semi-colon, comma) does not end
an item, a comma is added,

• if the median length is greater than 60 characters, we
consider that each item should be a sentence so we add
a full stop at the end ot the item (when a final punctua-
tion mark is missing) or replace any non-ending punc-
tuation mark by a full stop (except brackets and dash).

For example, the list on Figure 3.2.3. is flattened into the
following sentence, improving the probability to answer a
question about the terminology of wedding dress style : The
following list contains a general guideline of different body
styles and wedding dress styles to consider: Hourglass-
shaped brides, Pear-shaped brides, Petite brides, Plus-size
brides, Tall brides.

Figure 8: Example of syntactically related items.

Additionally to list flattening, introductory clauses can
be repeated with each item (each pair forming a unique
sentence) when a trigger word is ending the introductory
clause. This happens when a syntactic dependancy links
each beginning of the item to the end of the introductory
clause. If this clause is not repeated, parsers can be con-
fused as the sentence would not be syntactically correct.
The trigger words are thus composed of prepositions (in,
to, ...), auxiliary verbs (may, can, ...) and the adverb not.
For example, the list in Figure 8 would be extracted into
the following sentences :
Before selecting a college, parents need to determine
how much funding can be available from conventional

sources such as savings, income from the family budget,
trusts, and part-time jobs, if more money is needed.
Before selecting a college, parents need to explore the
availability of scholarships, low-interest student and
parent loans, second mortgages, and conventional loans.
Before selecting a college, parents need to examine their
own life insurance policies and retirement programs to
ensure that college funds will be available in the event of
their death.

This type of repetition can be a problem as it reduces the
number of items following the introductory clause to one:
if the introductory clause specifies the number of expected
items, the question-answering system should be able to dig
around a sentence composed of the merged pair (introduc-
tory + item) in order to gather all the mentionned items.
For example, this would be the case if the introductory
clause of Figure 8 was : There are three important crite-
ria to check out before selecting a college, parents need to:.

3.3. Segmentation
The basic unit of syntactic parsers is the sentence delimited
by punctuation marks. Without them, giant segments of text
would be considered as a unique sentence. On the contrary,
separated segments of the same sentence written on two
consecutive lines would be considered as two sentences. To
optimize the syntactic parsing of textual extracted data, we
added a full period when missing: for example between a
title and a paragraph or between two paragraphs.
We also need to join two parts of a sentence cut with the
<br> tag for rendering result as showned in Figure 9. In
a case of a linear extraction, each <br> tag would trans-
form the current line (from the source code) into a unique
sentence: the linear extraction would then produce six sen-
tences whereas there are only three.

Figure 9: Example of cut clauses due to incorrect use of the
<br> tag (source code above, linear extraction below).

Figure 10: Example of the <acronym> tag that displays
informational content New South Wales on mouseover near
NSW.

HTML code contains informational content that would be
displayed only with a user interaction like the event “on

2265



mouseover” for <abbr> and <acronym>. If the content
is to be extracted, it will be placed between brakets. The
extraction of the Figure 10 will be:
Accessible Arts is the peak arts organisation in NSW
(New South Wales) promoting creative expression and
participation in arts and cultural activities by people with
disabilities. This site provides information on art and
disability in NSW (New South Wales).

Around 89,000 abbreviations and 15,000 acronyms were
extracted. Logs showed that abbreviation was massively
used by a calendar widget of a blog generator: for exam-
ple, we found 9,318 occurrences of mon (monday)). Ab-
breviation tag also contains sometimes a very precious in-
formation for question-answering using temporal inference
as a relative temporal expression is associated with an ab-
solute date (e.g. 25 days ago (Wed, 07 May 2008 06:13:06
-0700)).
On the contrary, some informational content such as the op-
tion selected attribute from a <form> tag should not be ex-
tracted (from a question-answering point of view it should
not be extracted as it would generate noise). With the same
goal of removing link lists, the tag <div> can be set to be
removed if the value of the attribute id contains the sub-
string menu.

4. Evaluation
A global evaluation of normalization and textual extrac-
tion is quite difficult to obtain. We saw that the nor-
malization part was effective but the evaluation depends
on the purpose of the extraction. A global evaluation of
the question-answering system QAVAL (using a machine
learning approach for answer validation) was performed on
the QUAERO corpus processed by Kitten and showed a
significant improvement (Grappy et al., 2011). Since, Kit-
ten was improved with list flattening and manual heuristics
for table cell identification. We then decided to perform a
fine-grained evaluation regarding the contribution on tables
on one side and lists on the other. For that purpose, we
used the FIDJI question-answering system based on syn-
tactic dependencies (Moriceau and Tannier, 2010) hoping
a significative gain since FIDJI relies in its core on well
formed sentences. FIDJI was evaluated on different pro-
cessings made on the French Quaero corpus:

• the linear extraction of the corpus done by Exalead
(”Baseline”),

• the cleaning of the corpus made by Boiler-
Pipe (Kohlschütter et al., 2010) (”BoilerPipe”),

• a processing of the corpus by Kitten only for tables
(”Kitten - Tab”), lists (”Kitten - List”) and segmenta-
tion (”Kitten - Seg”),

• a complete processing of the corpus by Kitten
(”Kitten-Full”).

We used the 500 questions of Quaero 2010 evaluation
without filtering the question categories which were
boolean, definition, factual, list and complex (why, how).
We wanted to evaluate the performance of FIDJI on

supporting passage extraction (i.e. a passage containing
the correct answer). For each question, FIDJI proposes 3
ranked answers with their supporting passage.

Results on table 3 show a gain on the corpora processed by
Kitten regarding the baseline (around 24,64% for answers
at first rank and 20,18 % for answers at the top-3 ranks)
and the runs show that the most significative improvement
is given by the segmentation processing.

Corpus First rank Top-3 ranks
Baseline 69 109
BoilerPipe 75 116
Kitten-Tab 80 125
Kitten-List 80 123
Kitten-Seg 86 126
Kitten-Full 86 131

Table 3: FIDJI results for the 500 Quaero 2010 questions:
number of questions correctly answered.

5. Conclusion
Kitten is a tool aiming at making exploitable HTML cor-
pus for information extraction. To make HTML corpus ex-
ploitable, Kitten integrates:

• existing tools in order to normalize the HTML code
and the encoding of the files,

• tools that we developed in order to extract its textual
content with a focus on tables, lists, and sentence seg-
mentation.

Textual corpus can thus be processed efficiently by syntac-
tic parsers. Besides, by keeping informational content, Kit-
ten allows web-based question-answering systems to pro-
duce better results.
Future works on Kitten will include a module of detecting
both SPAM and boilerplate text for removal if asked. It will
also focus on improving table header detection (Tajima and
Ohnishi, 2008) and multiple header-tab extraction.

Acknowledgement
This work has been partially financed by OSEO under the
Quaero program.

6. References
S. Aı̈t-Mokhtar, V. Lux, and E. Bánik. 2003. Linguistic

parsing of lists in structured documents. In Proceed-
ings of the EACL Workshop on Language Technology
and the Semantic Web (3rd Workshop on NLP and XML,
NLPXML-2003), Budapest, Hungary.

M. Baroni, F. Chantree, A. Kilgarriff, and S. Sharoff. 2008.
Cleaneval: a competition for cleaning web pages. In
Proceedings of the Conference on Language Resources
and Evaluation (LREC), Marrakech.

Nuria Gala. 2003. Un modèle d’analyseur syntaxique ro-
buste fondé sur la modularité et la lexicalisation de ses
grammaires. Ph.D. thesis, Université Paris-Sud.

2266



Arnaud Grappy, Brigitte Grau, Mathieu-Henri Falco, Anne-
Laure Ligozat, Isabelle Robba, and Anne Vilnat. 2011.
Selecting answers to questions from web documents by
a robust validation process. In IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten. 2009.
The weka data mining software: An update;. In
SIGKDD Explorations, volume Volume 11, Issue 1.

C. Kohlschütter, P. Fankhauser, and W. Nejdl. 2010. Boil-
erplate detection using shallow text features. In Proceed-
ings of the third ACM international conference on Web
search and data mining, pages 441–450. ACM.

Véronique Moriceau and Xavier Tannier. 2010. FIDJI: Us-
ing Syntax for Validating Answers in Multiple Docu-
ments. Information Retrieval, Special Issue on Focused
Information Retrieval, (10791).

X. Qi and B. D. Davison. 2009. Web page classification:
Features and algorithms. In ACM Computing Surveys,
41(2), February.

L. Quintard, O. Galibert, G. Adda, B. Grau, D. Lau-
rent, V. Moriceau, S. Rosset, X. Tannier, and A. Vilnat.
2010. Question answering on web data: the qa evalu-
ation in quæro. In Proceedings of the Seventh confer-
ence on International Language Resources and Evalua-
tion (LREC’10), Valletta, Malta.

Keishi Tajima and Kaori Ohnishi. 2008. Browsing large
html tables on small screens. In UIST, pages 259–268.

Y. Wang and J. Hu. 2002. A machine learning based ap-
proach for table detection on the web. In Proceedings
of the 11th international conference on World Wide Web,
pages 242–250. ACM.

2267


	Introduction
	From crawled HTML to normalized XHTML
	Specific preprocessing
	Fixing HTML errors
	Normalizing the files

	From normalized XHTML to exploitable text
	HTML tables
	Detecting data tables from layout tables
	Categorizing the cells of data tables

	Lists
	Hyperlinks in a hyperlink list
	Hardwritten bullet removal
	List flattening

	Segmentation

	Evaluation
	Conclusion
	References

