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Abstract
We investigate the creation of corpora from web-harvested data following a scalable approach that has linear query complexity.
Individual web queries are posed for a lexicon that includesthousands of nouns and the retrieved data are aggregated. A lexical network
is constructed, in which the lexicon nouns are linked according to their context-based similarity. We introduce the notion of semantic
neighborhoods, which are exploited for the computation of semantic similarity. Two types of normalization are proposed and evaluated
on the semantic tasks of: (i) similarity judgement, and (ii)noun categorization and taxonomy creation. The created corpus along with a
set of tools and noun similarities are made publicly available.
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1. Introduction

Semantic similarity is the building block for numer-
ous applications of natural language processing, such as
grammar induction (Meng and Siu, 2002) and affective
text categorization (Malandrakis et al., 2011). Distri-
butional semantic models (DSMs) (Baroni and Lenci,
2010) are based on the distributional hypothesis of mean-
ing (Harris, 1954) assuming that semantic similarity be-
tween words is a function of the overlap of their lin-
guistic contexts. DSMs can be categorized into un-
structured (unsupervised) that employ a bag-of-words
model (Iosif and Potamianos, 2010) and structured that
employ syntactic relationships between words (Grefen-
stette, 1994; Baroni and Lenci, 2010). DSMs are typ-
ically constructed from co-occurrence statistics of word
tuples that are extracted on existing corpora or on corpora
specifically harvested from the web. The main utility of
DSMs is the computation of semantic similarity between
word pairs. A popular method for web corpus creation
that has been shown to perform quite well for this task
(Iosif and Potamianos, 2010) is to search for conjunctive
AND web queries in search of documents where word
pairs co-occur. However, this methodology suffers from
scalability issues, since it requires a quadratic number of
queries with respect to the size of the lexicon. In this
work, we investigate the estimation of semantic similar-
ity using lexical networks, following a corpus-based ap-
proach. In particular, a web corpus is created using indi-
vidual queries, i.e., “wi”. Individual queries have linear
complexity with respect to the lexicon size, and thus they
are scalable to large lexicons (unlike conjunctive AND
queries). Creating a corpus with large lexical coverage
is critical for semantic models that estimate the similar-

ity of polysemous words as the similarity of their clos-
est senses. In order to improve the lexical (and sense)
coverage of our corpus, we propose the aggregation of
data harvested by a large number of individual queries.
In addition, we encode the corpus information by con-
structing a network of words, in particular nouns, linked
according to their semantic similarity. Using a network
two main advantages are provided: (i) associations are
revealed through network edges that can not be directly
identified, and (ii) it is a parsimonious representation of
the corpus. Semantic neighborhoods are exploited for the
computation of semantic similarity. Two types of nor-
malization are proposed that are shown to significantly
improve performance. Two semantic tasks were adopted
for the evaluation of the computation of semantic sim-
ilarity: (i) judgement of noun similarity, and (ii) noun
categorization and taxonomy creation. In addition, our
data, including the created corpus, the noun similarities
and a set of tools are available for downloading.

2. Semantic Similarity Computation
The basic idea here is the computation of semantic sim-
ilarity between words, for the construction of a lexical
network. The similarities were estimated according to
the unsupervised paradigm of DSMs, where no linguis-
tic knowledge is required. The fundamental assump-
tion here is thatsimilarity of context implies similarity of
meaning: we expect words that share similar lexical con-
texts will be semantically related (Harris, 1954). A com-
mon representation of contextual features is the “bag-of-
words” model that assumes independence between fea-
tures (Sebastiani and Ricerche, 2002).
For context-based metrics, a contextual window of size
2H + 1 words is centered on the word of interestwi and
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lexical features are extracted. For every instance ofwi

in the corpus, theH words left and right ofwi are taken
into consideration, i.e.,

[fH,l ... f2,l f1,l] wi [f1,r f2,r ... fH,r],

wherefk,l andfk,r represent the featurek positions to
the left of right ofwi. For a given value ofH , the feature
vector forwi is built asTwi,H = (twi,1, twi,2, ..., twi,Z),
wheretwi,k is a non-negative integer. The feature vec-
tor has length equal to the vocabulary sizeZ. Non-zero
feature valuetwi,k indicates the occurrence of vocabu-
lary word tk within the left or right context ofwi. Note
that the value oftwi,k is set by considering all occur-
rences ofwi in the corpus. The value oftwi,k can be
defined according to a binary scheme (Iosif and Potami-
anos, 2010). This scheme assigns1 to twi,k if vocabulary
word tk occurs withinH positions left or right of word
wi, otherwise,twi,k = 0. The context-based semantic
similarity metricsH between wordswi andwj is com-
puted as the cosine distance between their corresponding
feature vectors:

sH(wi, wj)=

∑Z

k=1
twi,k twj ,k

√

∑Z

k=1
t2wi,k

√

∑Z

k=1
t2wj ,k

, (1)

for context sizeH and vocabulary sizeZ. For wordswi,
wj that share no common context (completely dissimilar
words) the corresponding semantic similarity score is0.
Also sH(w, w) = 1. In this work, the pairwise similar-
ities of 8,752 nouns were computed according to (1) for
several values ofH .

3. Corpus Creation using Web Queries
There are two main types of web queries that can be used
for corpus creation: (i) conjunctive AND queries, and (ii)
individual (IND) queries. AssumingN words in our lex-
icon, in the first case all pairwise AND conjunctions are
formed and the corresponding queries are posed to a web
engine, e.g., “wi AND wj”. Corpus creation via AND
queries leads to quadratic query complexityO(N2) in
the number of words in the lexicon. Alternatively, one
can download documents or snippets with linear query
complexityO(N) using IND queries, i.e., “wi”.
The main advantage of AND queries is that they con-
struct a corpus that is conditioned on word-pairs, ex-
plicitly requesting the co-occurrence of word-pairs in
the same document. Co-occurrence is a strong indica-
tor of similarity and corpora created via AND queries
have been shown to provide very good semantic similar-
ity estimates (Iosif and Potamianos, 2010). To better un-
derstand the role of co-occurrence as a feature in seman-
tic similarity computation, we need to revisit the very
definition of semantic similarity, as it pertains to words
and their senses. According to the information-theoretic

approach proposed in (Resnik, 1995), the similarity of
two concepts can be estimated as the similarity of their
two closest senses. This is also in agreement with our
“common sense” (cognitive) model of semantic similar-
ity, when two words are mentioned, their closest senses
are activated1. We believe that an important contribution
of the co-occurrence feature to semantic similarity com-
putation is thatco-occurrence acts as a semantic filter
that only retains the two closest senses.
Unfortunately the attempt to build corpora and DSMs us-
ing conjunctive AND queries does not scale to thousands
of words due to the quadratic query complexity. We are
thus forced to investigate the alternative of using IND
queries and face the sense disambiguation issues associ-
ated with such corpora. Corpora created via IND queries
are similar to a typical text corpus with one important
difference: the frequency of occurrence of the words in
our lexicon is somewhat normalized, assuming that the
same number of snippets is downloaded for each word in
the lexicon. Given the requested number of snippets, we
expect that rare words will be well-represented within the
corpus. In addition, the information content of the cor-
pus pertaining to the words in the lexicon is expected to
increase, i.e., the entropy rate of a unigram (zeroth order
Markov process) model.

4. Lexical Network
Using a web corpus created via IND queries on a lex-
icon L we construct next a semantic network encoding
the relevant corpus statistics. The links between words
in this network are determined and weighted according to
the pairwise semantic similarity. The network is defined
as an undirected (under a symmetric similarity metric)
graphG = (N, E) whose the set of verticesN includes
the members of the lexiconL, and the set of edgesE
contains the links between the vertices.
The network is a parsimonious representation of corpus
statistics as they pertain to the estimation of semantic
similarities between word-pairs in the lexicon. In addi-
tion, the semantic network can be used to discover rela-
tions that are not directly observable in the data; such re-
lations emerge via thesystematic covariation of features
and similarity metrics. Semantic neighborhoods play an
important role in this process. The members of the se-
mantic neighborhoods of two words are expected to con-
tain features of these words capturing diverse informa-
tion at the syntactic, semantic and pragmatic level.
The identification of semantic features is also a way for
performing sense discovery. Word senses play a central
role in semantic similarity estimation. However, sense

1The maximum sense similarity assertion is widely em-
ployed by many similarity metrics, such as the WordNet-based
metrics (Budanitsky and Hirst, 2006), achieving good results.
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discovery through semantic neighborhoods is not feasi-
ble if the corpus has limited lexical coverage. In this
work, we alleviate this issue by aggregating data that
are harvested for a lexiconL containing thousands of
words. Also, given a largeL, instances of a wordwi

can be found implicitly, i.e., within data retrieved forwj ,
wherewi 6= wj . This enables the discovery of less fre-
quent senses for polysemous words, as well as, relations
in which rare words participate.

4.1. Semantic Neighborhoods

For each word (reference word) that is included in the
lexicon, wi ∈ L, we consider a subgraph ofG, Gi =
(Ni, Ei), where the set of verticesNi includes in totaln
members ofL, which are linked withwi via edgesEi.
The Gi subgraph is referred to as the semantic neigh-
borhood ofwi. The members ofNi (neighbors ofwi)
are selected fromL according to the semantic similarity
metric, defined by (1), with respect towi, i.e., then most
similar words towi are selected.

Reference Neighbors selected by
noun sH=1 metric

auto, truck,vehicle,
automobile car, engine, bus,

boat, [aviation], tractor, [lighting]
truck,vehicle, travel,

car service, price, business,
home, city, game, quality

water, health, family,
food service, industry, product,

market, life, quality, home
nigger, slavery, servant,

slave manumission, beggar, [nationalism],
society, [democracy], [aristocracy]

Table 1: Excerpt of semantic neighborhoods.

Some of the neighbors for four nouns computed accord-
ing to (1) usingH = 1 are presented in Table 1. The
neighbors that are emphasized using bold fonts denote
(lexicalized) senses of the respective reference nouns.
In general, the neighborhoods are semantically diverse,
capturing word senses, as well as, other types of seman-
tic relations. We observe that the discovery of a num-
ber of senses via its neighborhoods is feasible for some
nouns, e.g., “automobile” and “car”. However, this is
not true for other nouns (‘food” and “slave”), for which
their respective senses can not be easily described by sin-
gle words. In addition to synonymy, taxonomic relations
are encoded within the neighborhoods, e.g., IsA(vehicle,
car), PartOf(automobile, engine). Relations of associa-
tive nature, e.g., ProducedBy(industry, food), are also
denoted by some neighbors. Given that the neighbor-

hoods are computed according to contextual similarity,
there is no need for the neighbors to co-occur with the
reference nouns. In practice, the majority of them co-
occur at the sentence level. The exceptions are enclosed
in square brackets in Table 1. In such cases, the respec-
tive relations seem to have a broader semantic/pragmatic
scope, e.g., the concept of slave is somehow related with
democracy.

5. Normalization of Neighborhoods
The semantic network is not a metric space under seman-
tic similarity (1) because the triangle inequality is not
satisfied. Moreover, we expect that different words will
have different neighborhood statistics. Based on our as-
sumption that the neigborhoods capture (to some extent)
the semantics of words, we suggest that the neighbor-
hood differences should be taken into account during the
computation of semantic similarity. We investigated two
normalization schemes in order to address this issue.
Local Normalization. Motivated by similar approaches
from the area of multimedia (Lagrange and Tzanetakis,
2011) we applied the N-normalization (or local scaling)
(Zelnik-Manor and Perona, 2004), defined as

sN (n1, n2; H) =
s(n1, n2; H)

√

s(n1, n1,N ; H)s(n2, n2,N ; H)
,

(2)
wheres(ni, nj; H) is the similarity score betweenni and
nj for a contextual window of sizeH (computed by (1)),
N is the number of neighbors included in the neighbor-
hood, andni,N is theN th neighbor ofni.
Global Normalization. Z-normalization (Cohen, 1995)
is employed as a type of global normalization, by con-
sidering all the nouns of the network as members of the
semantic neighborhood. The Z-normalized similarity be-
tween two nouns is defined as

sZ(n1, n2; H) =
s(n1, n2; H) − µ1

σ1

, (3)

whereµ1 andσ1 are the arithmetic mean and the stan-
dard deviation, respectively, of the similarity scores be-
tween n1 and the rest nouns of the network. Also,
s(ni, nj ; H) is the similarity score betweenni andnj

for a contextual window of sizeH (computed by (1)).
The similarity computed by (3) is not symmetric, i.e.,
sZ(n1, n2; H) 6= sZ(n2, n1; H), since

sZ(n2, n1; H) =
s(n1, n2; H) − µ2

σ2

, (4)

whereµ2 andσ2 are the arithmetic mean and the stan-
dard deviation, respectively, of the similarity scores be-
tweenn2 and the rest nouns of the network. The similar-
ity scores(n1, n2; H) is identical to the score used in (3).
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In this work, a symmetric similarity score was defined as

sM
Z (n1, n2; H)=max{sZ(n1, n2; H), sZ(n2, n1; H)}.

(5)

6. Experimental Procedure and
Parameters

The experimental procedure consists of the follow-
ing steps. 1) Query formulation and corpus creation.
As a lexicon we used8, 752 English nouns taken
from the SemCor32 corpus. For each noun an
individual query was formulated and the1, 000 top
ranked results (document snippets) were retrieved us-
ing the Yahoo! Search API (2 Feb.’11). The corpus
was created by aggregating the snippets for all nouns.
2) Computation of semantic similarity. The pairwise
noun similarities were computed according to (1) for
H = 1, 2, 3, 5. 3) Network creation. The se-
mantic neighborhoods of nouns were computed, fol-
lowing the procedure described in Section 4.1. 4)
Similarity computation using normalization. Local and
global normalization schemes were applied. We experi-
mented withH =1, 2, 3, 5, and with various values ofN
ranging from10 up to200.

7. Evaluation
In this section, we evaluate the performance of the nor-
malization schemes with respect to two tasks: (i) sim-
ilarity judgement between nouns, and (ii) noun catego-
rization. The normalization-based approaches are also
compared to the baseline method for semantic similarity
computation.

7.1. Similarity Judgement

The baseline and the normalized similarity scores were
evaluated against human ratings using two standard
datasets of noun pairs, MC (Miller and Charles, 1998),
and RG (Rubenstein and Goodenough, 1965). The first
dataset consists of28 noun pairs, while for the second
dataset we used57 nouns pairs, also in SemCor3. The
Pearson’s correlation coefficient was used as evaluation
metric. The performance of the normalized similarities
(solid line) in comparison with the baseline performance
(dashed line) is shown in Fig.1. The correlation results
for the case ofsN (local norm.) forH = 1 are depicted
in Fig.1(a) and (b), for MC and RG datasets, respectively.
The correlation is plotted as a function of the number
of neighbors (N ). The performance of similarity scores
normalized bysM

Z (global) with respect to MC and RG
datasets, is presented in Fig.1(c) and (d), respectively.
The correlation scores are plotted against different values

2http://www.cse.unt.edu/ ˜ rada/
downloads.html

of H . Overall, the performance of similarities normal-
ized by the global scheme is significantly higher com-
pared to baseline, and similarities normalized by the lo-
cal scheme3 . The reported correlation scores are lower
compared to the state-of-the-art results: (i)0.88 for CM
(Iosif and Potamianos, 2010), where conjunctive AND
queries are used, and (ii)0.85 for RG (Baroni and Lenci,
2010), where linguistic knowledge is exploited. To our
knowledge, these are the best reported results using indi-
vidual queries, i.e., with linear query complexity.

7.2. Noun Categorization and Taxonomy Creation
The performance of the similarities computed by the
baseline metric and the global normalization schemes
were evaluated on noun categorization and taxonomy
creation tasks. The similarity scores were used for the
construction of a similarity matrix upon which thek-
means clustering algorithm was applied. The experimen-
tal datasets are presented in Table 2. Regarding noun cat-
egorization we used the Battig (Baroni et al., 2010) and
the AP (Almuhareb and Poesio, 2005) datasets. We ex-
perimented with those nouns included in the set of8, 752
nouns:49 nouns classified into10 classes for the Battig
dataset, and21 classes including240 nouns for the AP
dataset. For the task of taxonomy creation we used the
ESSLLI dataset (Baroni et al., 2008), which is a three-
level hierarchy (2−3−6 classes). The lowest level of the
hierarchy (6 classes) is presented in Table 2. The middle
level includes the classesanimals, vegetables, andarti-
facts, while the upper level is distinguished inliving be-
ings, andobjects. We considered31 nouns included in
the set of8, 752 nouns.
The purity of clusters,P , was used as evaluation metric,
defined as (Baroni and Lenci, 2010):

P =
1

c

k
∑

i=1

max
j

(cj
i ), (6)

wherec
j
i is the number of nouns assigned to theith clus-

ter that belong to thejth groundtruth class. The number
of clusters is denoted byk, while c is the total number
of nouns included in the dataset. Purity expresses the
fraction of nouns that belong to the true class, which is
most represented in the cluster (Baroni and Lenci, 2010),
taking values in the range[0, 1], where1 stands for per-
fect clustering. The results are presented in Table 3 for
the baseline similarities and the normalized similarities
according tosM

Z (global norm.) for several values ofH .
The performance of the normalized similarities is consis-
tently better than the performance of the baseline similar-
ities. These results are close enough to the state-of-the-

3Also, we experimented with various linear combinations
of the similarity scores computed by the two normalization
schemes without any significant improvement in performance.
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Figure 1: Correlation for the task of similarity judgement.Baseline and normalized similarities usingsN (local) for:
(a) MC, (b) RG datasets. Baseline and normalized similarities usingsM

Z (global) for: (c) MC, (d) RG datasets.

Dataset # of nouns # of classes Description of classes

Battig 49 10 mammals, birds, fish, vegetables, fruit
tress, vehicles, clothes, tools, kitchenware

animal, assets, atmospheric phenomenon, chemical element, creator,
AP 240 21 district, edible fruit, feeling, game, illness1,

illness2, legal document, monetary unit, pain, physical property,
social occasion, social unit1, social unit2, solid, tree, vehicle

ESSLLI 31 6 (lowest level) birds, land animals, fruit, greens, vehicles, tools

Table 2: Datasets for noun categorization and taxonomy creation.

art results (Battig:0.96, AP:0.79, ESSLLI:1−1−0.91,
(Baroni and Lenci, 2010)), which are obtained by meth-
ods exploiting linguistic knowledge.

8. Data, Tools and Resources
In this section, we briefly describe the data that are made
publicly available4.
Data (SemSim Corpus). This is the corpus of snip-
pets that were aggregated for the8, 752 English nouns.

4http://www.telecom.tuc.gr/ ˜ iosife/
downloads.html

Overall, the SemSim corpus consists of approximately
8, 752, 000 snippets that correspond to12, 435, 600 sen-
tence fragments. In general, a snippet may include
more than one sentence fragment. The vocabulary
size is 1, 413, 775, while in total the corpus contains
199, 510, 174 tokens.

Tools (CParse & CosSim). CParse parses the SemSim
corpus and creates the context feature vectors. CosSim is
fed with the feature vectors and computes similarities in
a computational efficient manner (18K/s on a2.66GHz
Pentium). Both tools are re-usable, e.g., for enriching
the existing pool of similarities, or for other corpora.
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Contextual Dataset
Window Battig AP ESSLLI Taxonomy

Size Level 0 Level 1 Level 2
(H) (10 classes) (21 classes) (2 classes) (3 classes) (6 classes)

1 0.86/0.96 0.53/0.53 0.65/1 0.87/0.90 0.77/0.84
2 0.80/0.94 0.45/0.48 0.65/0.87 0.84/0.84 0.74/0.81
3 0.67/0.92 0.41/0.45 0.65/0.87 0.81/0.81 0.74/0.77
5 0.71/0.86 0.38/0.41 0.58/0.81 0.74/0.81 0.61/0.68

Table 3: Purity of classes: baseline similarities/similarities normalized bysM
Z (global).

Resources (SemSim Repository). This is a repository
that includes the pairwise semantic similarities of the
8, 752 nouns. The baseline similarities were computed
according to (1) forH = 1, 2, 3, 5. Also, the repository
includes the normalized (local and global) similarities,
for a total of919, 170, 048 scores.

9. Conclusions

In this work, we followed an unsupervised approach for
the computation of semantic similarity using individual
queries (linear query complexity). More importantly, we
showed how to construct a large lexical network that
can reveal useful information regarding the linked words.
Also we investigated two normalization schemes show-
ing significant performance improvement. Last but not
least, we make available large resources and tools, fos-
tering their re-usability.
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