
Empty Argument Insertion in the Hindi PropBank

Ashwini Vaidya, Jinho D. Choi, Martha Palmer, Bhuvana Narasimhan

Institute of Cognitive Science
University of Colorado at Boulder

{vaidyaa,choijd,mpalmer,narasimb}@colorado.edu

Abstract
This paper examines both linguistic behavior and practical implications of empty argument insertion in the Hindi PropBank. The Hindi
PropBank is annotated on the Hindi Dependency Treebank, which contains some empty categories but rarely the empty arguments
of verbs. In this paper, we analyze four kinds of empty arguments, *PRO*, *REL*, *GAP*, *pro*, and suggest effective ways of
annotating these arguments. Empty arguments such as *PRO* and *REL* can be inserted deterministically; we present linguistically
motivated rules that automatically insert these arguments with high accuracy. On the other hand, it is difficult to find deterministic
rules to insert *GAP* and *pro*; for these arguments, we introduce a new annotation scheme that concurrently handles both semantic
role labeling and empty category insertion, producing fast and high quality annotation. In addition, we present algorithms for finding
antecedents of *REL* and *PRO*, and discuss why finding antecedents for some types of *PRO* is difficult.

Keywords: Hindi, PropBank, dependency structure, semantic role labeling, empty category insertion

1. Introduction
The Hindi PropBank is part of the multi-representational
and multi-layered resource creation project for the Hindi-
Urdu language (Bhatt et al., 2009). It is a corpus in which
arguments of verbal predicates (including complex predi-
cates such as light verbs) are annotated with their seman-
tic roles. Two aspects distinguish the Hindi PropBank
from other PropBanks. First, the annotation is done on
top the Hindi Dependency Treebank (Begum et al., 2008),
whereas PropBanks in most other languages are annotated
on constituent-based Treebanks (Palmer et al., 2005; Xue,
2008; Zaghouani et al., 2010). One clear advantage of us-
ing dependency structure for annotating predicate argument
structure is that it is possible to find mappings between syn-
tactic and semantic dependencies and use these mappings
to automatically identify semantic arguments of verb pred-
icates from their syntactic dependents (Vaidya et al., 2011).

The other unique aspect of the Hindi PropBank is moti-
vated by dropped arguments. Hindi is a language that reg-
ularly drops required arguments that are recoverable from
prior discourse (e.g., “(vo) kitaab paRegaa”; “(He) will read
the book”). The Hindi Dependency Treebank does not rep-
resent such dropped arguments although it includes some
other empty categories such as empty nouns (e.g., ellipsis),
empty verbs (e.g., gapping, sluicing), empty conjunctions,
etc. (Bhatia et al., 2010). Thus, to give complete represen-
tations of predicate argument structures including dropped
arguments, the annotation task for the Hindi PropBank con-
sists of semantic role labeling as well as empty argument in-
sertion. The empty argument insertion not only captures the
semantic information contained in elided arguments (Sec-
tion 2.), but also aids in the automatic conversion from de-
pendency structure to phrase structure (Xia et al., 2009).

Although inserting empty arguments gives richer seman-
tic representations, it presents some practical difficulties for
annotation. Empty argument insertion usually requires in-
tensive syntactic analysis with expert linguistic knowledge
that is not necessarily required for semantic role labeling.

Thus, it takes a lot of time to train annotators for accom-
plishing both tasks, which slows down the whole annota-
tion process. Our first approach was to carry out both tasks
in a pipeline, inserting all empty arguments first then anno-
tating semantic roles given the empty arguments. We found
this pipeline approach to be impractical: manual insertion
of empty arguments was so time consuming that it often
became a bottleneck to semantic role labeling. Further-
more, inserting empty arguments without considering their
semantic roles caused over-generation of these arguments.

Our second approach was to insert all empty arguments
automatically using linguistically motivated rules. This ap-
proach gave very good results for certain kinds of empty
arguments (e.g., empty relative pronouns), but not all (Sec-
tion 3.). For the empty arguments that our rules did not han-
dle well, we designed a new annotation scheme that con-
currently handled both semantic role labeling and empty
argument insertion (henceforth, we refer to this as a “joint
annotation” of these two tasks). This required a bit more
training for annotators but resulted in a much simpler and
more efficient annotation process, producing higher qual-
ity annotation (Section 4.). The joint annotation was car-
ried out using a single annotation tool, Jubilee (Choi et al.,
2010), which provided verb frame information; this frame
information helped annotators to decide whether or not an
empty argument was required for a particular verb.

Our next challenge was to facilitate this annotation pro-
cess by applying automatic antecedent resolution. We came
up with algorithms for finding antecedents of automatically
inserted empty arguments, which showed high accuracy for
certain cases but had difficulties with others (Section 5.).
By applying automatic empty category insertion and au-
tomatic antecedent resolution, we gained more consistent
annotation while still taking less annotation time.

2. Descriptions of empty arguments
The Hindi PropBank extends the structural analysis of the
Hindi Dependency Treebank by adding arguments missing

1522

from predicate argument structure. Four kinds of empty
arguments have been added. Note that all the empty argu-
ments inserted in the Hindi PropBank are core arguments,
i.e., the subjects, objects or in some cases indirect objects
of verbs. Thus, they are always annotated as ARG0, ARG1,
or ARG2 in PropBank, which correspond to the prototypi-
cal agent, patient, or recipient, respectively (Vaidya et al.,
2011). The following examples show descriptions of each
empty argument (for more details, Bhatia et al. (2010)).

• *PRO*: The subject of a non-finite clause (controlled
by either its subject or object) which is obligatorily ab-
sent. The non-finite clause can be either a complement
or adjunct clause. Figure 1 shows an example of subject
control in a complement clause. *PRO* is inserted as an
argument of the verb read and co-referenced to Mohan.

मोहन_%i क' ताब

Mohan_ERG book

*PRO*i पढ़नी चाही
read_INF want_PERF(he)

Figure 1: An example of *PRO*: “Mohan wanted *PRO*
to read the book” in Hindi.

• *REL*: The subject or object of a participial relative
clause that is obligatorily absent and refers to the modi-
fied noun. In Figure 2, *REL* is inserted as an argument
of the verb run.

REL भागता_ %आ

run_INF_be(who)

 लड़का

boy

*ब

apple

खा_रहा_/

eat_CONT_be

Figure 2: An example of *REL*: “The *REL* running
boy is eating an apple” in Hindi.

• *GAP*: The subject, object, or indirect object that is
elided, usually in a co-ordination structure. In Figure 3,
GAP is inserted as an argument of the verb sleep and
co-referenced to Mohan.

मोहन_%i क' ताब *GAP*i
Mohan_ERG book

सो_गया

sleep_go_PERF

पढ़ी

read_PERF

और

and (he)

Figure 3: An example of *GAP*: “Mohan read the book
and *GAP* slept” in Hindi.

• *pro*: The subject, object, or indirect object elided for
discourse-pragmatic reasons. In Figure 4, the subject of
the verb buy is elided because it can be recoverable from
prior discourse or context.

इस# बाद (*pro*) खरीदी
This_GEN after

गाडी
car buy_PST

भी
also(he)

Figure 4: An example of *pro*: “After this, *pro* also
bought a car” in Hindi.

3. Linguistically motivated rules
Table 1 shows an algorithm using linguistically motivated
rules for inserting *PRO* and *REL*. VGNF, VGINF,
and VGNN represent POS tags of non-finite verbs, infiniti-
val verbs, and gerunds, respectively (Bharati et al., 2006).
k1 represents a dependency relation for the “locus of activ-
ity”, and nmod *inv represents any dependency relation
for noun modifiers of inverse type (for more details, see
Sharma et al. (2009)). For each verb, *PRO* and *REL*
are inserted as children of the verb. In line 5, a pre-defined
dictionary is used to identify intransitive verbs; this dictio-
nary is generated by analyzing the general behavior of verb
predicates. The dictionary also contains information about
the type of argument for intransitive verbs, which is used to
check the condition in line 6.

Input: t, where t is a dependency tree.
Post: *PRO* and *REL*are inserted in t.
begin

1: foreach v in t: # v is a verb predicate
2: if v.pos = VGNF|VGINF|VGNN:
3: if v.deprel = nmod *inv:
4: v.addChild(*REL*);
5: elif v is an intransitive verb:
6: if v’s required dependent doesn’t exist:
7: v.addChild(*PRO*);
8: else: # v is a (di)transitive verb
9: if not v.existChild(k1):
10: v.addChild(*PRO*);

end

Table 1: An algorithm for inserting *PRO* and *REL*.

Table 2 shows how accurately this algorithm inserts *PRO*
and *REL* in our corpus. 37K and 47K are two separate
batches from the same corpus containing about 37K and
47K word-tokens, respectively. We evaluate these batches
separately because dependency trees in 37K are checked
very thoroughly whereas trees in 47K are not checked as
thoroughly; in other words, dependency trees in 47K con-
tain more annotation errors than ones in 37K, which af-
fect the evaluation of automatic empty argument insertion.
Given the rich set of dependency relations provided by the
Hindi Dependency Treebank, we achieve 100% precision
for *REL* in both batches. Furthermore, from our error
analysis, we verify that most recall errors for *REL* are
caused by inconsistent annotations in the Treebank. We
also obtain good results for *PRO*; especially for recall.
It may be possible to improve the precision of *PRO* by
refining our dictionary and discovering more rules, which
we will explore in future work.

Type Precision Recall F1-score

37K *PRO* 87.79 93.69 90.64
REL 100.00 94.32 97.08

47K *PRO* 85.02 91.91 88.33
REL 100.00 89.92 94.69

Table 2: Insertion accuracies of *PRO* and *REL* (in %).

1523

Table 3 shows the distributions of empty arguments in
both 37K and 47K (37K consists of 2,710 verb predicates
and 47K consists of 3,055 verb predicates). *PRO* and
REL are the most frequently occurring empty arguments
whereas *GAP* and *pro* occur less frequently.

Corpus *PRO* *REL* *GAP* *pro*
37K 490 176 33 96
47K 553 238 24 76

Table 3: Numbers of empty arguments in our corpus.

4. Joint annotation of semantic role labeling
and empty argument insertion

For *GAP* and *pro*, we devised rules that made use of
the valency requirements of a given verb and cues like coor-
dination structure for automatic insertion. However, our ap-
proach resulted in over-generation of these arguments with
low precision. Inserting elided *pro* required the iden-
tification of the relevant sense of the predicate, which our
rules could not access. In the case of *GAP*, the coordina-
tion structure provided an important cue, but the identifica-
tion of a shared argument context, where the *GAP*had an
antecedent in the coordinated clause, was difficult.

Since automatic insertion was not successful for these
cases, we decided to annotate them manually using a new
annotation scheme, called a joint annotation of semantic
role labeling and empty argument insertion, that concur-
rently handled these two tasks. For the case of shared ar-
guments such as *GAP*, we carried out joint annotation
on their antecedents. In Figure 5, the presence of *GAP*
for the verb sleep is indicated on its antecedent, Mohan,
such that the dependency relation GAP-ARG0 is assigned
to Mohan from sleep. The subsequent post-processing step
automatically inserts *GAP* as a dependent of sleep, and
assigns the semantic role ARG0 to it. The co-reference be-
tween Mohan and *GAP* is also deterministically retrieved
during this post-processing step.

मोहन_% क' ताब
Mohan_ERG book

सो_गया
sleep_ go_PERF

पढ़ी
read_PERF

और
and

ARG1
ARG0

GAP-ARG0

मोहन_% क' ताब *GAP*
Mohan book

सो_गया
sleep_go

पढ़ी
read

और
and (he)

ARG0
ARG1

ARG0COREF

Figure 5: A joint annotation of *GAP*: “Mohan read the
book and *GAP* slept” in Hindi (from Figure 3).

In contrast to *GAP*, the case of *pro* does not have an
antecedent in the clause. In such a case, joint annotation
is done on the verb predicate. In Figure 6, the verb buy

has a missing subject so it is indicated on the verb itself
with the label pro-ARG0. The subsequent post-processing
step automatically inserts *pro* as a dependent of buy and
assigns the semanic role ARG0 to it. The positions of empty
arguments are determined by their semantic roles: ARG0 to
be the first, ARG1 to be the last, and ARG2 to be the second
last child of the verb.

इस# बाद खरीदी
This_GEN after

गाडी
car buy_PST

भी
also

ARG1 pro-ARG0

इस# बाद खरीदी
This_GEN after

गाडी
car buy_PST

भी
also

ARG1

pro
(he)

ARG0

Figure 6: A joint annotation of *pro*: “After this, *pro*
also bought a car” in Hindi (from Figure 4).

This joint annotation scheme can also be used for *PRO*
and *REL* in cases where the algorithm in Table 1 cannot
identify them correctly. Several advantages have been ob-
tained from this approach. First, considering semantic roles
of these empty arguments during the insertion improves
precision, producing much higher quality annotation. Sec-
ond, both semantic role labeling and empty argument inser-
tion can be done using one annotation tool, Jubilee (Choi et
al., 2010), which makes it easier to maintain different layers
of annotations consistently. Third, verb frame information
provided by Jubilee helps annotators in deciding whether
or not a particular empty argument is required for a given
verb predicate, the information that was not available when
the insertion was done as a separate pass.

5. Discussion
While our results for *REL* show 100% precision in Ta-
ble 2, recall for *REL* is not nearly as perfect. Most of
these recall errors are caused by label errors in the Tree-
bank where the dependency label nmod (noun modifier) is
given instead of nmod *inv (noun modifier of inverse
type) in which case, the rules for *REL* insertion fail.
Furthermore, many errors for *PRO* are caused by non-
finite verbs with k1 dependents (locus of activity), which
are skipped by our insertion rules. These are cases where
either the Treebank uses the k1 label erroneously, or the
non-finite verb belongs to the class of ‘experiencer verbs’
whose objects are marked with the k1 label.

In addition to automatic insertion of empty categories, we
also carry out antecedent resolution as this allows annota-
tors to quickly locate the shared arguments. Tables 4 and
5 show algorithms for finding antecedents of *REL* and
PRO. Our experiments show good results for *REL*
(an F1-score of 99.30%) but poor results for *PRO* (an
F1-score of 54.35%). One of the difficulties with an-
tecedent resolution for *PRO* is the presence of the ‘ar-
bitrary’ PRO. This is a special subtype of *PRO* which
does not have an antecedent (e.g. “*PRO* Drinking milk is

1524

healthy”). In this example, the *PRO* for the verb Drink-
ing can refer to any person in general such that it cannot
be co-referential with another element in the sentence. At
this point, we have not found clear rules to distinguish be-
tween the cases of arbitrary PRO and the typical cases of
subject/object controlled PRO. Other complications include
cases where *PRO* is co-referential with *pro*. Such
cases are difficult to resolve when no prior annotation of
pro exists.

Input: t, where t is a dependency tree.
Post: Antecedents of all *REL* in t are found.
begin

1: foreach *REL* in t:
2: let v be the verb predicate of *REL*
3: let h be the dependency head of v
4: *REL*.antecedent← h

end

Table 4: An algorithm for finding antecedents of *REL*.

In Table 4, given a *REL* and its verb predicate v, the de-
pendency head of v becomes the antecedent of the *REL*.

Input: t, where t is a dependency tree.
Post: Antecedents of subject/object controlled *PRO*

in t are found.
begin

1: foreach *PRO* in t:
2: let v be the verb predicate of *PRO*
3: let h be the nearest dependency ancestor of v

whose POS is VGF
4: if h exists:
5: d← null
6: if h.existChild(k1): d← k1 of h
7: elif h.existChild(k4a): d← k4a of h
8: elif h.existChild(k4): d← k4 of h
9: if d 6= null and d is prior to v:

10: *PRO*.antecedent← d
end

Table 5: An algorithm for finding antecedents of *PRO*.

In Table 5, given a *PRO* and its verb predicate v, the
algorithm first finds a finite verb (VGF) that is the nearest
dependency ancestor of v, and checks if the finite verb has
a k1 (locus of activity), k4a (experiencer), or k4 (bene-
ficiary) dependent. If there is such a dependent d whose
word-order is prior to v, the algorithm makes d the an-
tecedent of the *PRO*.

6. Conclusion
We present an algorithm for automatic insertion of the two
most frequently occurring empty arguments in the Hindi
PropBank, *PRO* and *REL*, with high accuracy. This
algorithm involves analyzing linguistic behavior of these
empty arguments as well as exploiting the rich set of depen-
dency relations in the Hindi Dependency Treebank. The au-
tomatic insertion of *PRO* and *REL* covers nearly 83%
of the total number of empty arguments in the representa-
tive corpus. For *GAP* and *pro*, we propose a joint

annotation scheme that efficiently combines the annotation
tasks of semantic role labeling and empty argument inser-
tion. This annotation scheme can also be used for *PRO*
and *REL*, where the automatic system cannot identify
them correctly. The joint annotation scheme has resulted in
faster productivity with higher quality annotation compared
to our previous pipeline approach.

As a pilot study, we present algorithms for finding an-
tecedents of *REL* and *PRO*. Automatic antecedent
resolution for *REL* can be done very accurately whereas
more work is required to achieve good accuracy for finding
antecedents of *PRO*. Once we have enough annotation,
we will explore the possibility of using machine learning
techniques to improve automatic empty argument insertion
and antecedent resolution.

7. References
Rafiya Begum, Samar Husain, Arun Dhwaj, Dipti Misra

Sharma, Lakshmi Bai, and Rajeev Sangal. 2008. De-
pendency Annotation Scheme for Indian languages. In
Proceedings of the 3rd International Joint Conference on
Natural Language Processing, IJCNLP’08.

Akshar Bharati, Rajeev Sangal, Dipti Misra Sharma, and
Lakshmi Bai. 2006. AnnCorra : Annotating Corpora
Guidelines For POS And Chunk Annotation For Indian
Languages. Technical Report TR-LTRC-31, IIIT, Hyder-
abad.

Archna Bhatia, Rajesh Bhatt, Bhuvana Narasimhan,
Martha Palmer, Owen Rambow, Dipti Misra Sharma,
Michael Tepper, Ashwini Vaidya, and Fei Xia. 2010.
Empty Categories in a Hindi Treebank. In Proceedings
of the 7th International Conference on Language Re-
sources and Evaluation, LREC’10, pages 1863–1870.

Rajesh Bhatt, Bhuvana Narasimhan, Martha Palmer, Owen
Rambow, Dipti Misra Sharma, and Fei Xia. 2009. A
Multi-Representational and Multi-Layered Treebank for
Hindi/Urdu. In Proceedings of ACL-IJCNLP Workshop
on Linguistic Annotation, LAW’09, pages 186–189a.

Jinho D. Choi, Claire Bonial, and Martha Palmer. 2010.
Propbank Instance Annotation Guidelines Using a Dedi-
cated Editor, Jubilee. In Proceedings of the 7th Interna-
tional Conference on Language Resources and Evalua-
tion, LREC’10, pages 1871–1875.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005.
The Proposition Bank: An Annotated Corpus of Seman-
tic Roles. Computational Linguistics, 31(1):71–106.

Dipti Misra Sharma, Rajeev Sangal, Lakshmi Bai, and
Rafiya Begam. 2009. AnnCorra : TreeBanks for Indian
Languages (version - 2.0). Technical report, IIIT, Hyder-
abad.

Ashwini Vaidya, Jinho D. Choi, Martha Palmer, and Bhu-
vana Narasimhan. 2011. Analysis of the hindi proposi-
tion bank using dependency structure. In Proceedings
of ACL workshop on Linguistic Annotation, LAW’11,
pages 21–29.

Fei Xia, Rajesh Bhatt, Owen Rambow, Martha Palmer,
and Dipti Misra Sharma. 2009. Towards a Multi-
representational Treebank. In Proceedings of the 7th In-
ternational Workshop on Treebanks and Linguistic The-
ories, TLT’7, pages 159–170.

1525

Nianwen Xue. 2008. Labeling Chinese predicates with
semantic roles. Computational Linguistics, 34(2):225–
255.

Wajdi Zaghouani, Mona Diab, Aous Mansouri, Sameer
Pradhan, and Martha Palmer. 2010. The Revised Arabic
PropBank. In Proceedings of ACL workshop on Linguis-
tic Annotation, LAW’10, pages 222–226.

1526

