
A Scalable Architecture For Web Deployment of Spoken Dialogue Systems

Matthew Fuchs1, Nikos Tsourakis2, Manny Rayner2

1 Paideia Inc, 2225 E. Bayshore Rd, Suite 200, Palo Alto, CA 94303, California
2 University of Geneva, TIM/ISSCO, 40 bvd du Pont-d’Arve, CH-1211 Geneva 4, Switzerland

mattfuchs@paideiacomputing.com, {Nikolaos.Tsourakis,Emmanuel.Rayner}@unige.ch
Abstract

We describe a scalable architecture, particularly well-suited to cloud-based computing, which can be used for Web-deployment of
spoken dialogue systems. In common with similar platforms, like WAMI and the Nuance Mobile Developer Platform, we use a
client/server approach in which speech recognition is carried out on the server side; our architecture, however, differs from these systems
in offering considerably more elaborate server-side functionality, based on large-scale grammar-based language processing and generic
dialogue management. We describe two substantial applications, built using our framework, which we argue would have been hard to
construct in WAMI or NMDP. Finally, we present a series of evaluations carried out using CALL-SLT, a speech translation game, where
we contrast performance in Web and desktop versions. Task Error Rate in the Web version is only slightly inferior that in the desktop
one, and the average additional latency is under half a second. The software is generally available for research purposes.

Keywords: Speech recognition, web, evaluation, CALL

1. Introduction and motivation

Since the mid-90s, both Web and speech technology have
made huge strides, but they have only recently started to
come together in earnest. Although the advantages of de-
ploying spoken dialogue systems on the Web hardly require
elaboration, the technical problems involved have been sur-
prisingly hard to overcome.
In this paper, we describe a scalable architecture, particu-
larly well-suited to cloud-based computing, which can be
used for Web-deployment of spoken dialogue systems. In
common with similar platforms, like WAMI ((Gruenstein
et al., 2008); http://wami.csail.mit.edu) and the
Nuance Mobile Developer Platform (NMDP; http://
dragonmobile.nuancemobiledeveloper.com),
we use a client/server approach in which speech recog-
nition is carried out on the server side; our architecture,
however, goes further than these systems by performing
dialogue management, application integration, and large-
scale grammar-based language processing in the cloud,
rather than just returning the results of recognition to
the client. Another important difference is that speech is
passed to the recognition processes in the form of files,
rather than using streaming audio. Although this goes
against the currently prevailing wisdom, we have found
that there are compensating advantages, and that the
performance hit, with a little care, can be reduced to an
acceptable level.
Our exposition will be based on two large applications built
using our framework, which we argue would have been
hard to construct in WAMI or NMDP. Although both ap-
plications are speech-enabled games, they differ in several
respects, both in terms of functionality and architecture.
Minion Dominion (Chua and Rayner, 2010), the first one
built, was commercial in nature, and was deployed as part
of the marketing for the Universal Studios movie Despica-
ble Me; it allowed two animated characters to be controlled
by spoken or typed commands, using a vocabulary of about
400 words. The game was visited by over one million peo-

ple, and at its peak, shortly after release of the movie in
July 2010, was getting more than 50K hits a day. The game
was developed together with a third party who was respon-
sible for the animation aspects, and the speech and dialogue
processing modules were accessed through a Web client de-
ployed by the third party.
CALL-SLT ((Rayner et al., 2010); http://callslt.
org) is in contrast a language-learning application devel-
oped at Geneva University, which implements a version of
the “translation game” idea from (Wang and Seneff, 2007):
the system prompts students with abstract representations
of what they are supposed to say, and uses speech transla-
tion technology to compare the result with the correct an-
swer. This system uses a Flash-based client, also developed
by Geneva University, which connects directly to the other
components.
We used CALL-SLT to perform a series of evaluations,
where we contrasted performance in Web and desktop ver-
sions. Task Error Rate in the Web version was only slightly
inferior to that in the desktop one, and the average addi-
tional latency was under half a second.
The rest of the paper is organised as follows. Section 2. de-
scribes the architecture and Section 3. the evaluation. Sec-
tion 4. concludes.

2. Architecture
This section presents an overview of the architectural
framework. Applications, including in particular the two
we focus on here, contain four core types of runtime com-
ponents: a Speech Router, one or more Dialogue Servers,
one or more Recognition Servers, and several Clients. This
is designed to be extensible; as we will see, adding addi-
tional components, such as TTS servers, is straightforward.
The first two types of components are both application-
independent and run on the server machines. The Speech
Router is the top-level process; it handles the connection
to the internet and mediates message traffic between the
Clients, the Dialogue Servers and the Recognition Servers.

1309



Figure 1: Top-level architecture of the framework (config-
uration used for Minion Dominion).

The Dialogue Servers perform language analysis and dia-
logue processing. The Recognition Servers are third-party
software, and also run on the server machines; so far, we
have used the Nuance Toolkit, but any recognition en-
gine capable of supporting the MRCP protocol would work
equally well. The Client is an application-specific process
running on the user’s internet-enabled device.
As already noted, the top-level configurations of the two
sample applications are slightly different. Figures 1 and 2
give a schematic pictures of the message flow between
components in each case. We now describe both the com-
ponents and the message flow in more detail.

2.1. The Speech Router
The Speech Router is an embedded web server designed to
connect the Clients to cloud-based recognition and appli-
cations. It is the front end of a multi-tiered architecture
permitting any number of Clients to talk to any number
of applications with any number of languages and gram-
mars; if load considerations require multiple Recognition
Servers and Dialogue Managers, the Speech Router is re-
sponsible for passing speech files and recognition results
between them, performing associated load balancing.
We will first discuss the basic flow of messages in the sys-
tem and then describe the changes to support Flash. Note

Figure 2: Top-level architecture of the framework (config-
uration used for CALL-SLT).

that we describe the passage of messages through this sys-
tem in a fairly bare-bones manner — more complex appli-
cations will have more involved session start up and tear
down, but that doesn’t affect the basic flow. The responsi-
bilities of the different components are discussed here:

1. The Speech Router embedded web server receives an
HTTP POST message from a client. The message, at
a minimum, must identify the application it is for. If
it is for a new session, then a session ID is created,
otherwise a session ID will be included. There may
other parameters attached, such as a voice file or other
user actions. We have adopted JSON as the format for
all non-speech data. With more sophisticated applica-
tions and clients, there may be user information in a
database or memcached to use for further processing.
Finally, a message ID is generated.

Once it has enough information, the Speech Router
specifies a processing pipeline for the message. For
a spoken message this would include a Recognition
Server, a Dialogue Server, and the address of the cur-
rent Speech Router instance — the response must
eventually arrive back at the same front end to respond
to the remote client. Without a speech payload, the
pipeline will go directly to the Dialogue Server and
then back to the front end. These choices are based
on configuration files specifying host and process IDs
for all recognisers and applications. Currently all pro-
cesses communicate via HTTP. We plan to move con-
figuration information into memcached and replace
HTTP with reliable queues to support greater reliabil-
ity and flexibility.

1310



If there is a speech payload and it is not in the required
format for the recogniser, (for example, MP3 instead
of WAV), the front end performs the relevant conver-
sion before sending the message to the next layer.

2. At the Recognition Server there is a Java process
which performs the following:

(a) receive the message,

(b) store the speech file,

(c) determine the grammar to be used,

(d) communicate with the recogniser using MRCP,

(e) when it receives the recognition response, for-
ward that to the next process in the chain — usu-
ally the Dialogue Server if there are no errors

3. The Dialogue Server receives its input either from the
Recognition Server, if there was speech, or from the
Speech Router. It uses the session ID to retrieve the
state, if any, for the session, processes it, and sends
the results along to the next process in the chain, which
is usually back to the original Speech Router process.
The Dialogue Server consists of a Java process that
communicates with the rest of the system and the Reg-
ulus server (see below).

4. At the end, the message returns to the Speech Router.
The results are passed to the servlet thread handling
this communication, which logs some performance
data and then returns the results from the Dialogue
Server to the client in the response to the initial POST.

This architecture is designed to support the straightforward
addition of more levels. For example, we did not require
TTS for the Despicable Me application, but it could easily
have been added by inserting a TTS process into the chain
after the Dialogue Sever and before the results return to the
Speech Router. Other application components could like-
wise be inserted along the way.
Flash is handled, as usual, through another layer of indi-
rection. A small Java process sits between the Flash Media
Server and the front end described above. This layer com-
municates with FMS using XML messaging, cracks open
Adobe’s proprietary FLV format to retrieve the embedded
mp3 speech file, and then communicates with the server
like any other HTTP POST client.

2.2. The Dialogue Server
The Dialogue Server is a process implemented on top of
the Open Source Regulus Platform (Rayner et al., 2006),
which encapsulates the platform’s runtime functionality in
a way that makes it easy to integrate into a distributed ap-
plication. At an abstract level, the Regulus dialogue man-
agement framework (Rayner et al., 2006, Chapter 6) imple-
ments a version of Update Semantics (Larsson and Traum,
2000). The central concepts are those of dialogue move,
information state and dialogue action. At the beginning of
each turn, the dialogue manager is conceptually in an infor-
mation state. Inputs to the dialogue manager are by defini-
tion dialogue moves, and outputs are dialogue actions. The

Figure 3: CALL-SLT application running on the Samsung
Galaxy Tab.

behaviour of the dialogue manager over a turn is completely
specified by an update function f of the form

f : State×Move → State×Action

Thus if a dialogue move is applied in a given information
state, the result is a new information state and a dialogue
action. The important point here is that dialogue process-
ing is completely side-effect free: behaviour is determined
just by the state and the dialogue move. This means that
the dialogue server can easily maintain multiple parallel di-
alogue sessions, associating each one to a separate state ob-
ject, which is saved in a database between turns under a
unique session ID.
The Dialogue Server communicates with other processes
using JSON messages sent over a socket. The use of
Unicode-based JSON makes it easy to support speech and
language processing for languages with non-ASCII charac-
ter sets. The CALL-SLT application, in particular, has ver-
sions which require handling of text in Japanese, Chinese,
Arabic and Greek.

2.3. Recognition Servers

Recognition for our two applications uses Nuance 9.0 for
Despicable Me and Nuance 8.5 for CALL-SLT; the cur-
rent modules are able to communicate with any recogniser
platform capable of handling MRCP and either GrXML
or GSL. It would not in fact be difficult to allow use of
other platforms, which would only require rewriting the
current MRCP client to use some different protocol. We
have in particular been considering extending the frame-
work to support the Sphinx recogniser ((Lee et al., 1990);
http://cmusphinx.sourceforge.net/). Here,
we might link directly to the Java library.

1311



2.4. Clients
Using the framework described earlier, it is straightforward
to implement speech clients that follow uniform design
principles. The developer is concerned with the following
tasks: 1) creating the graphical user interface, 2) maintain-
ing the application’s state logic, 3) performing recording
and playback of audio, and requesting services from the re-
mote peer. All applications are developed using Flash 11 in
combination with ActionScript 3.0. For the Android plat-
form, where access to the microphone is, annoyingly, not
available inside the browser, we had to create a standalone
application using the Adobe AIR 2.6 runtime. Figure 3
shows a screenshot of the GUI for the mobile version of
the CALLSLT system.
When the user types the application’s link in the browser,
the remote web server delivers the requested page that in-
cludes the ”.swf” file of our flash client. The latter takes
control and communicates directly using Remote Proce-
dures Calls (RPC) with the remote Flash Media Server,
which is the entry point of any client’s request. As the Flash
framework dictates, the end user must allow our application
to access the microphone before it can start using it.
An important aspect of the GUI is the way the recognition
button is used. Due to the limitations of the target platform
(lack of an endpointing mechanism), we have adopted a
push-and-hold solution, where the user has to keep the but-
ton pressed while speaking. The recorded audio packets are
streamed to the server until the button is released. The latter
signifies the end of the user speech, triggering the transition
to the next step of the processing chain; recognising using
the remote audio file, processing the result and returning a
response to the client.

3. Experiments
We carried out three simple experiments using the CALL-
SLT application, which we now describe.

3.1. Recognition accuracy
The first experiment was designed to compare recognition
accuracy in the Web-based and desktop versions of the app.
We asked eight subjects to interact with the English-for-
French-speakers version of CALL-SLT, running on desk-
top, Web and mobile platforms in a quiet office environ-
ment. The mobile version was run on a Samsung Galaxy
tablet using the onboard microphone. All subjects were
good but non-native speakers of English, and either native
French speakers or strong second-language speakers. The
subjects were asked to do 10 examples for each of three dif-
ferent lessons. Responses were typically about 5 to 7 words
long for the first two lessons, and about 10 to 12 words long
for the third one.
The results are summarised in Figure 4 (Word Error Rate)
and 5 (Task Error Rate). It is apparent that average WER is
better on the desktop than on the Web version (6.2% versus
7.5%), though TER was closer; two of the seven users in
fact scored better TER on the Web version. The mobile
version was marginally worse than the Web one.
The main factor responsible for these differences appears
to be a divergence in user interface functionality: the desk-
top version is push-to-talk, while the Web and mobile ver-

Figure 4: WER for desktop, Web and mobile versions of
English CALL-SLT.

Figure 5: Task performance on desktop, Web and mobile
versions of English CALL-SLT, out of 30 examples at-
tempted, on 8 non-native speakers.

sions are push-and-hold. It is clear that subjects find push-
and-hold less user-friendly, a problem which has also been
noted in the WAMI framework.

3.2. Server utilisation
The second experiment focussed on server utilisation. We
took 10 session logs from an evaluation exercise (Bouil-
lon et al., 2011) using the French-for-Chinese-speakers ver-
sion. Session lengths varied from 6 minutes to an hour and
a half, averaging 52 minutes. Figure 6 shows the results of
replaying the logged server commands offline to estimate
server load for the commands used in each session. Util-
isation varies from 4% to 14%, depending mainly on the
extent to which subjects interacted with the system, with a
mean value of 7%. This agrees with the intuitive observa-
tion that the system is habitable with up to about ten con-

Figure 6: Box plot for server utilisation, expressed as a per-
centage, for 10 sample sessions using the French-Chinese
version of CALL-SLT. The blue box is constructed to con-
tain the 50% of sessions closest to the mean.

1312



Figure 7: Average latency of “recognise” messages.

Figure 8: Average latency of “next prompt” messages.

current users.

3.3. Latency
In the third experiment, we implemented a Flash client
which simulated running a standardised CALL-SLT session
from a variety of remote locations and measured latency for
the three most common types of message: “recognition and
match”, “next prompt” and “get help for current prompt”.
In each case, latency was defined as the time between the
client’s sending the message and receiving a reply. We used
nine different locations, ranging in distance from inside the
University building (leftmost column) to over 10 000 kilo-
metres away, and ran the simulated session at three differ-
ent times of day for each location, with times chosen to get
varied levels of internet load. The rightmost column shows
results for an Android device used on the University Wifi
network.
Figures 7 to 9 summarise the results. There is only weak
correlation with location. Latency varies from about 0.1 to

Figure 9: Average latency of “help” messages.

0.5 sec for “next”, from about 0.3 to 1.0 sec for “help”, and
from about 1.5 to 2.0 sec for “recognition and match”. Of-
fline tests with recorded files showed that server processing
times for ‘recognition and match” averaged around 1.3 sec;
this suggests that the extra recognition response latency re-
sulting from the Web framework is about 0.2 to 0.7 sec.
Since audio files average about 3 seconds in length, and
recognition speed is about 0.08×RT, fully streaming audio
would have reduced this by about 3000×0.08 = 240ms. The
minor performance hit associated with our solution seems
in practice entirely acceptable.

4. Summary and conclusions
We have described a framework for deploying speech-
enabled dialogue applications over the web, and shown how
it has been used to build two substantial systems of this
kind. The framework has several distinguishing features
which differentiate it from similar offerings, like WAMI
or NMDP. In particular, it includes extensive support for
recognition using large grammar based language models
and server-side (cloud-based) dialogue management; it al-
lows easy scalability; and it uses a file-based protocol to
communicate with the recognition server, instead of using
streaming audio throughout.
It is not obvious that either of the sample applications could
easily have been constructed using WAMI or NMDP. Both
apps, particularly CALL-SLT, require substantial medium-
vocabulary grammars (hundreds of words and thousands
of rules), which is incompatible with the other platforms’
approaches to recognition: NMDP only offers a general
large-vocabulary solution, and WAMI is not designed to be
used with large recognition grammars. Both apps, particu-
larly Minion Dominion, also needed to support a substantial
number of parallel conversations. If we had used WAMI,
the lack of support for scalability would have posed many
problems.
Although fully streaming audio would have reduced recog-
niser latency a little, as discussed in Section 3.3., it would
have been extremely expensive to acquire servers and li-
censes sufficient to support the large number of channels
we required. Partially file-based processing gave us an
acceptable solution at a low cost; since recognition speed
was about 15 to 20 times real-time, a single channel could
comfortably handle about ten parallel users per recognition
server.
In fact, if we back off from the narrow issue of communi-
cation with the recognition server and consider the appli-
cation as a whole, it is entirely possible that use of WAMI
or NMDP would have resulted in greater latency. Both our
apps include significant server-side application processing,
and recognition results are immediately available for fur-
ther processing in the cloud. The alternatives would re-
quire first returning recognition results to the client and
then shipping them up to a server for dialogue management
and other processing. These two additional hops over the
public internet, perhaps using 3G, 4G, or wifi connections,
are the slowest links in the system and would probably add
more latency than file-based processing does. Anecdotally,
when we have demonstrated CALL-SLT in public, we have
usually received positive comments about the fast response

1313



times.
The one place where we really felt that we could have
won by using NMDP was in endpointing. NMDP con-
tains support for client-side endpointing, something that
our framework conspicuously lacks. The result is that we
are forced to use a push-and-hold interface; as discussed in
Section 3.1., users do not like this, and it impacts negatively
on performance. We are currently investigating ways to
integrate third-party endpointing solutions into the frame-
work.

Availability of software
Paideia has made the speech router components available
to the University of Geneva on a research-only license. For
similar arrangements, contact the authors.

5. References
P. Bouillon, M. Rayner, N. Tsourakis, and Q. Zhang. 2011.

A student-centered evaluation of a web-based spoken
translation game. In Proceedings of the SLaTE Work-
shop, Venice, Italy.

C. Chua and M. Rayner. 2010. What’s the Magic Word?
In Proceedings of the Thirteenth Australasian Interna-
tional Conference on Speech Science and Technology,
Melbourne, Australia.

A. Gruenstein, I. McGraw, and I. Badr. 2008. The WAMI
toolkit for developing, deploying, and evaluating web-
accessible multimodal interfaces. In Proceedings of the
10th international conference on Multimodal interfaces,
pages 141–148. ACM.

S. Larsson and D. Traum. 2000. Information state and dia-
logue management in the TRINDI dialogue move engine
toolkit. Natural Language Engineering, Special Issue on
Best Practice in Spoken Language Dialogue Systems En-
gineering, pages 323–340.

K.F. Lee, H.W. Hon, and R. Reddy. 1990. An overview of
the sphinx speech recognition system. Acoustics, Speech
and Signal Processing, IEEE Transactions on, 38(1):35–
45.

M. Rayner, B.A. Hockey, and P. Bouillon. 2006. Putting
Linguistics into Speech Recognition: The Regulus Gram-
mar Compiler. CSLI Press, Chicago.

M. Rayner, P. Bouillon, N. Tsourakis, J. Gerlach,
M. Georgescul, Y. Nakao, and C. Baur. 2010. A multi-
lingual CALL game based on speech translation. In Pro-
ceedings of LREC 2010, Valetta, Malta.

C. Wang and S. Seneff. 2007. Automatic assessment of
student translations for foreign language tutoring. In
Proceedings of NAACL/HLT 2007, Rochester, NY.

1314


