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Abstract 

We have developed a new OSGi-based platform for Named Entity Recognition (NER) which uses a voting strategy to combine the 
results produced by several existing NER systems (currently OpenNLP, LingPipe and Stanford). The different NER systems have been 
systematically decomposed and modularized into the same pipeline of preprocessing components in order to support a flexible selection 
and ordering of the NER processing flow. This high modular and component-based design supports the possibility to setup different 
constellations of chained processing steps including alternative voting strategies for combining the results of parallel running 
components. 
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1. Introduction 

We describe a flexible and dynamic architecture for 

developing platform independent Named Entities (NE) 

processors based on existing open source tools. It provides 

a lightweight framework, called NER-Hub, for integrating 

and combining reusable text processing components like 

sentence detectors, tokenizers and NE extractors. 

Compared to similar platforms like GATE (Cunningham, 

2011), the system provides an extended functionality of 

pulling together the result of comparable components for 

producing better precision and higher recall than the best of 

the individual components. This distinctive feature uses a 

voting mechanism to combine the results of several NE 

extractors and it can be easily extended to cover other 

combination approaches. 

 

The NER-Hub framework described in this paper covers 

both processing tools mandatory for NE recognition and a 

voting mechanism for combining results at different stages 

in the workflow. Along with the framework come 

implementations of every processing step, namely 

paragraph selection, sentence detection, tokenization and 

NE extraction wrapped around components from 

open-source projects like LingPipe [1], OpenNLP [2] and 

Stanford NLP [3]. The voting framework delivers a simple 

implementation of statistics-based methods for combining 

the results of different NE extraction systems and it can be 

easily extended to the other stages of processing.  

2. System Architecture 

The NER-Hub framework is based on a blackboard 

architectural model (Figure 1), similar to systems such as 

Hearsay-II (Erman, 1980), where the communication 

between modules happens through a shared knowledge 

structure that is iteratively updated by a group of specialist 
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Figure 1. System Architecture 
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knowledge sources. As such, the framework consists of 

two major components: 

• the specialist modules, also called knowledge 

sources, which provide specific linguistics 

expertise (i.e., paragraph and sentence detectors, 

tokenizers, NE recognizers) and voting 

functionality; 

• the blackboard, representing a shared structure of 

partial solutions and contributed information. 

We distinguish between two types of specialist modules: 

those enriching the information structure of the blackboard 

with linguistic knowledge and those reducing partial 

solutions to a final solution. These last modules, also called 

voters, combine the output of similar processes (several NE 

recognizers, for example) into a single one with better 

evaluation figures such as precision and recall. 

The shared data structure (blackboard) is a pointer-based 

representation of linguistic information provided by 

individual specialist modules for the input text (Figure 2). 

Every knowledge source enriches the blackboard with 

character-based positional annotations relative to the whole 

document and to the previous processing stage where 

necessary (tokenization). This general representation of 

annotations makes it straightforward to extend the 

processing line with further modules like co-reference 

resolution and the corresponding voters, and allows for 

using the framework in the context of other languages as 

well. 

 

The NER-Hub framework and its reference 

implementation for the defined modules are realized as 

Java OSGi bundles leveraging the benefits of a very mature 

component system. As the most beneficial aspects of using 

such a system in the context of text engineering are its high 

adaptability and dynamicity. Regarding adaptability, OSGi 

is designed from ground up to allow mixing and matching 

of components. For our framework mixing available voters 

it benefits the quick development of complex voting 

methods and evaluating the contribution of each individual 

based on the whole result. Matching of components is 

relevant when adding new implementation of a given 

specialist module (i.e., NE recognizer) that are 

automatically found and bound in the voting process. The 

OSGi model is a dynamic model as it allows installing, 

starting, stopping, updating and uninstalling components 

without bringing down the whole system. For our 

framework it means that new system configurations can be 

run simultaneously without being required to have several 

instances of the same whole environment run in different 

memory spaces (JVM) or even different machines, as next 

releases are announced to support a distributed model as 

well. 

3. User interface 

The user interface (Figure 3) is divided into three sections: 

for providing the input text from which NEs are to be 

extracted, selecting the different pre-processing and NER 

tasks, and the format in which the output will be presented. 

The interface offers two possibilities for specifying the 

input: it can be provided in the form of a plain text file, or 

directly entered in a text field. 

 

There are four different options for displaying or returning 

the result. The first two of them (see below) involve 

displaying the original text with some mark-up denoting 

the NEs which were recognized on the web page itself. 

Therefore they are more suitable for smaller texts. 

 

1. text with mark-up - NEs are highlighted in 

different colours with the help of XSLT 

transformations. The actual NE label can be seen 

when the mouse cursor is over the highlighted 

span (Figure 3). 

2. inline XML - NEs are marked with the inline 

XML tag <label>, which contain the attribute 

“value” to denote the type of NE this label 

represents, for instance: <label value=“person”> 

John Smith</label>. 

3. XML file - an XML file offered as download, 

containing the original text represented as 

described in 2. 

4. table with indices - a table containing only the 

NEs found in the text with their corresponding 

begin and end indices and the name of the named 

entity processor which produced this output. The 

indices are relative to the sentence in which the 

named entity occurs. The start index is inclusive, 

the end index is exclusive. 

The middle panel of the GUI provides options for choosing 

processors for the different tasks: paragraph detection, 

Figure 2. Blackboard data representation. 
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tokenization, sentence detection, named entity recognition, 

and voting (meta-processor). Typically only one processor 

can be selected per task. In the case of named entity 

recognition, one or more options can be selected, but when 

only one NER is chosen, no voting is performed. 

 

4. Combining Results by Voting 

System combination as a way of improving performance 

over the individual systems has been reported for different 

tasks: (Van Halteren et al., 1998) describe successful 

experiments for part-of-speech tagging, (Kim Sang, 2000) 

presents improved performance for noun phrase 

recognition, (Florian et al., 2002) demonstrate significantly 

lower error rate for word sense disambiguation. Improved 

results for NE recognition have been reported by (Florian 

et al., 2003) and (Sigletos et al., 2005) announced better 

performance for information extraction.  A common factor 

of these system combination approaches is the use of a 

voting framework that allows different instantiations like 

count-based voting, confidence-based voting and 

probability-based voting. Of these voting methods the 

probability-based combination of system is significantly 

delivering improved performance, while simpler 

statistics-based methods only improve either precision or 

recall. 

 

The current version of our NER-Hub framework includes 

reference implementations for three basic voting methods, 

namely length-based, count-based and confidence-based 

voting. The first method returns the candidate(s) with the 

longest length, whereby the empty candidates are 

considered to have a length of zero. The count-based 

method groups candidates by label, start index, and end 

index and computes a tally. The group with the highest 

counts are returned as winners (Figure 4).  

 

The confidence-based method allows setting priority 

values to individual processing units, such that the results 

of a component are preferred over other results in case of 

an non-deterministic case (prefer comp1 over all others if 

output is comp1:x, comp2:y and comp3:z). Due to the high 

adaptability feature of OSGi-based systems, these voting 

methods can be called individually or mixed into a new 

linear workflow.  

Figure 3. User Interface. 
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5. Status and Running Example 

Currently the NER-Hub framework is fully implemented 

and offering reference implementation for all modules 

based on components from open-source projects like 

LingPipe, Open NLP and Stanford NLP.  

 

We demonstrate the main workflow of the system with a 

practical example, namely what happens with a sample 

input text in the different processing stages. 

 

Example settings: 

• Input text: John studies at Saarland University. 

Marie lives in Saarbrücken. 

• Processors:  

o paragraph = opennlp 

o sentence = lingpipe 

o token = Stanford 

o entity = lingpipe, stanford, opennlp 

• Meta processors: voting 

The input gets passed from the user interface to the 

Controller and wrapped in a NerResultObject at the level 

“document” with begin and end indices spanning the whole 

input. The Controller then calls the different available 

processors (paragraph, sentence, token, and finally name) 

with it. The wrapped input is first passed to the three 

components performing text pre-processing tasks. 

Paragraph detection, sentence splitting and tokenization 

processors each generate an intermediate NerResultObject 

representation encoding the additional information they 

provide. All of these results are combined in a hierarchical 

structure, which gets passed to every next processor. 

 

For this particular example, the intermediate results 

generated by the pre-processors are displayed in Figure 2. 

The first processor which is called, the OpenNLP 

paragraph detector, returns only one paragraph, due to the 

small text example. LingPipe sentence detector recognizes 

the two sentences, whose NerResultObject parent is set to 

the paragraph. Finally, the tokens found by the Stanford 

tokenizer are assigned to their corresponding parent 

sentences in the hierarchy. 

 

Each NerResultObject in Figure 2 is additionally described 

by two sets of indices indicating its position in the text. The 

first set denotes the position with respect to its parent in the 

hierarchy, and the second – to the original input. This is 

visible at the token level, where due to the fact that the first 

six tokens belong to the first sentence, and the rest to the 

second, the two sets of indices describing the tokens in the 

second sentence differ. 

 

After calling all of the pre-processing components, the 

Controller calls the meta processor for named entity 

recognition. This processor is responsible for calling the 

actual named entity recognizers, collecting the results from 

them and voting on the final result. The input 

NerResultObject which it receives from the Controller 

already contains all the information provided by the 

paragraph, sentence and token processors. The different 

levels of the hierarchy can be used by each NER 

individually, based on the kind of input it accepts. 

The result produced by the three NERs and the final result 

after voting can be seen in Figure 4. The two example 

sentences illustrate the advantage of using the voting 

strategy, since in this case it manages to avoid all of their 

individual errors and produces the desired output. 

Figure 4. Example of Count-based Voting. 

Figure 5. Result of Named Entity Voting. 
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6. Evaluation 

Also part of the NER-Hub framework is an automated 

testing environment based on CoNLL-2003 English news 

test data for NE extraction that has been used for evaluating 

various combinations of pre-processing for NE extraction 

(Table 1) and the voting methods previously presented 

(Table 2). 

 

Config NE Sent Token 
F-Mea
sure 

Standard OpenNLP OpenNLP OpenNLP 56.24 
Standard Stanford Stanford Stanford 87.12 
Standard LingPipe LingPipe LingPipe 51.72 
Best OpenNLP OpenNLP LingPipe 57.42 
Best Stanford OpenNLP OpenNLP 89.48 

Table 1. Standard vs. Best Module Combination 

Evaluation of using different preprocessing modules 

(sentence detector, tokenizer) for NE extraction has shown 

that combining the components from different sources can 

boost the performance of the whole system. 

 

Configuration Precision Recall F-Measure 

Best Individual 88.10 86.15 87.12 

Best Combined 91.06 75.89 82.79 

Table 2. Results of combining all NE-Recognizers 

Using OpenNLP for pre-processing and combining the 

results of all three NE recognizers by way of voting 

(count-, confidence- and length-based in linear order) 

improved the precision over the best individual module 

(Stanford), but dropped in the recall score. 

 

Compared to the best outcomes registered in the 

CoNLL-2003 shared task with a precision of 88.99, a recall 

of 88.54 and an F-measure of 88.76 we conclude that both a 

combination of pre-processing components from different 

NLP tools and a combination of the recognition results can 

improve the overall performance of an integrated system.  

7. Framework Extensions 

We have already begun to extend NER-Hub framework 

with a further component layer for the resolution of NE 

co-reference. Such component is able to resolve the 

referents of pronouns to corresponding Named Entities in 

texts like “Peter loves Mary. He is very lucky.” We have 

chosen the corresponding coref-component of 

the OpenNLP toolkit, because we had already hands on 

experimentation with the integration of major NE 

components of OpenNLP into the framework. Later, we 

will also integrate additional alternative coref-components 

via the voting mechanism. 

 

The major challenge with the integration of a 

coref-component was that the sentence-based streaming 

approached followed so far in NER-Hub cannot easily 

expanded to the co-reference layer in the same way, as 

the coref-component has to process actually any sentence 

which contain a pronoun and has to check a window of 

previously processed sentences. The strategy we are 

currently following is a kind of compromise. Since the 

co-reference algorithm is the last in the processing order it 

is called once for every recognized named entity. So to be 

able to process a meaningful chunk of the text, the 

coref-component stores named entities, tokens and 

sentences until the end of a paragraph is reached. Only then 

the actual co-reference resolution takes place. With this 

paragraph oriented structure the coref-component can 

adapt the original streaming in a way that still yields 

meaningful results without completely abandoning the 

streaming-based approach. Note that the coref-component 

is defined as a OSGi bundle in the same way as the 

other NE components, and as such, can be selected and 

exchanged (also from the user interface) in the same way. 

8. Summary 

We have described a framework (NER-Hub) for the design 

and the implementation of a meta-system for NE 

recognition as a combination of several available 

state-of-the-art systems for this task - OpenNLP, Stanford, 

and LingPipe. In order to combine them, a voting strategy, 

aiming at achieving higher overall accuracy, was used over 

their individual results. The general representation of the 

shared data makes the framework suitable for other 

languages for which components are readily available. 

 

The goal of designing a flexible and easily-expandable 

framework was reached with the help of OSGi, a service 

platform and component model for Java. As such the final 

result of our work is an easy-to-use and easy-to-expand 

system, which can be accessed via a web-based user 

interface and run as a web service. 

 

Next steps regarding the presented framework are to 

provide advanced voting methods (probability-based), 

make it available as an open source to the community and 

extend it with further modules for co-reference resolution. 
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