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Abstract
We present a treebank and lexicon for German and English, which have been developed for PLTAG parsing. PLTAG is a psycholin-
guistically motivated, incremental version of tree-adjoining grammar (TAG). The resources are however also applicable to parsing with
other variants of TAG. The German PLTAG resources are based on the TIGER corpus and, to the best of our knowledge, constitute the
first scalable German TAG grammar. The English PLTAG resources go beyond existing resources in that they include the NP annotation
by (Vadas and Curran, 2007), and include the prediction lexicon necessary for PLTAG.
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1. Introduction
Grammars play a key role in natural language modelling
and processing. While they have been created by hand tra-
ditionally, the availability of annotated resources such as
treebanks has rendered it possible to automatically derive
wide-coverage grammars for various formalisms, for ex-
ample CFG (Charniak, 1996), LTAG (Xia et al., 2000) and
LFG (Cahill, 2004) to name just a few approaches. Tree-
bank grammars furthermore have the crucial advantage of
holding statistical information that is necessary to train the
parameters of stochastic parsers.
The treebanks and lexica presented in this paper were de-
veloped for a recent version of TAG, called “PsychoLin-
guistically motivated Tree-Adjoining Grammar” (PLTAG,
Demberg and Keller (2008)). Recent psycholinguistic re-
search suggests that humans process sentences in a strictly
incremental fashion (Tanenhaus et al., 1995; Konieczny,
2000), integrating incoming words eagerly with the incre-
mental analysis (Sturt and Lombardo, 2005), and make pre-
dictions about upcoming structure and lexemes (Kamide
et al., 2003; Staub and Clifton, 2006; van Berkum et al.,
1999).
PLTAG and standard LTAG generate the same derived trees,
and the PLTAG grammar is a superset of a standard LTAG
grammar: in addition to the standard initial trees and aux-
iliary trees of an LTAG grammar, it includes unlexicalized
so-called prediction trees, which are necessary in order to
make explicit predictions about upcoming material in a sen-
tence. The German and English PLTAG resources, which
we present in this paper1, are hence also useful for other
variants of TAG. We induce them from the TIGER Tree-
bank (Brants et al., 2002) and the Penn Treebank (PTB,
Marcus et al. (1993)) respectively. The two main steps are
(1) to convert the specific treebank format to (P)LTAG for-
mat and (2) to extract canonical elementary trees as well as

1The PLTAG treebank and lexicon for English and German can
be downloaded from http://www.coli.uni-saarland.
de/˜vera/, if you have a license for the original PTB and
TIGER corpora.

prediction trees.
The created (P)LTAG resources are of interest to several
fields for various reasons: First of all, to the best of our
knowledge, no broad-coverage lexicalized tree-adjoining
grammar (and treebank) for German is currently avail-
able. The induced lexicon together with the converted
treebank will close this gap. Furthermore, PLTAG can
be combined with a sentence processing theory (Demberg-
Winterfors, 2010) that models human processing difficul-
ties. The theory has already been validated for English
(Demberg-Winterfors, 2010) with a PLTAG parser based
on the lexicon and the treebank we are presenting here,
but, from a psycholinguistic view, evaluation for other lan-
guages should follow. Finally, the resources can also play a
role in language technology applications (e.g. dialogue sys-
tems) in the future, in which a PLTAG parser can be used
to determine processing difficulties, for example in order to
optimize machine-generated text.

2. The Formalism
Tree-adjoining grammar is a linguistically inspired tree-
rewriting formalism introduced by (Joshi et al., 1975).

2.1. LTAG
The primitive elements of a lexicalized TAG (LTAG) are
elementary trees which have at least one lexical anchor.
They are divided into initial trees and recursive auxiliary
trees with a unique foot node (marked with ∗) that has the
same label as the root node. The trees (a)-(c) in Figure 1
are examples. Elementary trees are combined via substitu-
tion and adjunction operations to build derived trees. Initial
trees can substitute into substitution nodes (marked with ↓),
while auxiliary trees adjoin to a node of the partially de-
rived tree. In doing so, the daughter nodes of the adjunction
site become daughters of the foot node. Both operations are
constrained by the label of the nodes.
A non-standard TAG operation is sister-adjunction, intro-
duced by (Chiang, 2000). In sister-adjunction, the root
node of an inital tree is added as a new daughter to any
other node.
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Figure 1: PLTAG lexicon and incremental derivation.

2.2. PLTAG

LTAG with its standard linguistically motivated elementary
trees (see for example, the XTAG grammar (XTAG Re-
search Group, 2001)) is not guaranteed to be able to derive
a sentence strictly incrementally. For instance, when de-
riving Peter often sleeps with the trees (a)-(c) in Figure 1,
the elementary trees for Peter and often cannot be combined
because the VP node necessary for adjunction of (c) has not
been derived yet. PLTAG therefore extends LTAG in that it
specifies not only a lexicon of canonical lexicalized initial
and auxiliary trees, but also a predictive lexicon which con-
tains potentially unlexicalized prediction trees. In order to
distinguish predicted nodes from canonical nodes, all nodes
of a prediction tree have markers, see the superscript and/or
subscript on the nodes of tree (d) in Figure 1 as an example.
Similarly to the features in feature-based TAG, substitution
nodes and foot nodes only have superscripts, and root nodes
only have subscripts, while internal nodes have both. This
is because root, foot and substitution nodes are conceptu-
alized as incomplete (upper / lower halves of) nodes which
will be completed when elementary trees combine through
adjunction or substitution. Consider for example the substi-
tution and adjunction operations in Figure 1. Substituting
the elementary tree for Peter into the predicted substitu-
tion node NP1 leads to a complete node for which we have
partial evidence (i.e. we have observed the lower half but
only predicted the upper half). Adjoining into a node that
carries markers (like the VP1

1 node) pushes the two mark-
ers apart. The upper marker becomes the upper marker of
the root of the auxiliary tree, whereas the lower marker be-
comes the lower marker of the foot node (see the second
step of Fig. 1). Note that if a prediction tree is adjoined into
a node that already carries markers, this may create nodes
that have an upper and lower marker with different values.
Markers are eliminated from a partial derived tree through
a new operation called verification. Recall that markers in-
dicate nodes that were only predicted during the derivation,
without having been introduced by a word that was actually
observed so far. The verification operation removes these
markers by matching them with the nodes of the canonical
elementary tree for a word in the sentence. Consider the
last derivation step in Figure 1. This is a verification step
for the marker 1, using the canonical tree for sleeps as the

verification tree. The verification tree has to match the pre-
dicted tree in shape (i.e. the verification tree must contain
all nodes with the same prediction marker, and in the same
order; additional nodes in the verification tree can only be
at the bottom of its spine2 or to the right of its spine – oth-
erwise incrementality would be violated). A valid PLTAG
derived tree may not contain nodes with prediction mark-
ers.
PLTAG otherwise allows the same operations (adjunction
and substitution) as standard LTAG, with the difference that
they can also be applied to prediction trees. Since the ver-
ification does not introduce new tree configurations that
would not be allowed in standard LTAG, and no predic-
tion markers are allowed in the final derived tree, PLTAG
generates the same derived trees as a corresponding LTAG.
Even though the PLTAG formalism does not impose con-
straints on the shape of the prediction trees, it only makes
sense to include those prediction trees which are the same
or smaller than some canonical elementary tree due to the
verification operation. The optimal granularity of predic-
tions and the desired level of generalisation is an open re-
search question. Demberg-Winterfors (2010) decides for
minimal predictions that only predict upcoming structures
as far as needed for full connectivity or subcategorization.
Prediction trees are therefore defined as having the same
shape as the canonical elementary trees, except that they do
not have nodes to the right of the spine and that unary nodes
at the bottom of the spine, including the lexical item, are re-
moved. For auxiliary trees, the foot node is also included
in the prediction tree.
PLTAG furthermore emphasises the use of multi-anchored
elementary trees as a means for prediction at the lexical
level in strong collocations such as “either..or” or idioms,
for which there is psycholinguistic evidence (Staub and
Clifton, 2006; Tabossi et al., 2005).

3. Treebank Conversion
In this section we describe the steps that are taken to con-
vert the specific treebank formats to (P)LTAG derived trees.
Crucially, this also includes introducing linguistic general-
isations that are missing in the original treebank. Our over-

2The spine is the path from the root to the lexical anchor, which
usually is the linguistic head.
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Figure 2: TIGER sentence: UN troops have now taken control of the four contested areas.
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Figure 3: TIGER sentence after conversion (with head paths and argument nodes being marked)

all goal is to be able to induce a linguistically sound gram-
mar with maximal generalisation capacity with respect to
unseen data. For more details, see Demberg-Winterfors
(2010, PTB) and Kaeshammer (2012, TIGER).

3.1. English Penn Treebank
The necessity to convert the PTB arises from the fact that its
relatively flat structures often do not allow for modifiers to
be adjoined into the trees with the standard TAG adjunction
operation. The first step of the conversion algorithm is to
add noun phrase annotation created by (Vadas and Curran,
2007) to the PTB. We then remove quotation marks, brack-
ets, sentence-final punctuation and some of the traces from
the PTB (for more details see Demberg-Winterfors (2010)).
Next, additional structure is heuristically inserted to disam-
biguate the flat quantifier phrases. We also insert explicit
right branching and additional nodes wherever adjunction
is possible. Furthermore, auxiliaries are assigned a special
POS tag in order to enable the lexicon induction algorithm
(Section 4.) to extract them as auxiliary trees. Deviating
from the XTAG analysis, copula verbs are treated in the En-
glish PLTAG as subcategorizing for two NPs and are there-
fore marked during treebank conversion.

3.2. German TIGER Treebank
Apart from phrase structure information (circled labels in
Fig. 2), the graphs in the TIGER Treebank also express
syntactic functions e.g. head (HD), subject (SB), accusative
object (OA), modifier (MO) (grey boxes in Fig. 2). The
leaf nodes additionally carry morphological information
and lemmata.

Nominal Case Marking The TIGER Treebank uses flat
syntactic representations as well, but most strikingly in
comparison to the PTB, the subject and the finite verb are
always immediate daughters of the sentence node S, see
Figure 2. Only non-finite verbs project to VP. In this way,
the annotation scheme accounts for the relatively free word
order of German. Since argument roles are determined by
morphological case rather than by syntactic position, the
German PLTAG treebank includes case annotation for NPs.
During treebank conversion, information about case is ob-
tained bottom-up from the morphological layer of TIGER,
or, if underspecified there, top-down from the syntactic
functions. Since determiners often disambiguate the case
of a noun phrase, we also mark DPs for case.3 The PLTAG
treebank also contains the lemma information for each lex-
ical anchor.

Linguistic Generalisations Other peculiarities of the
TIGER annotation scheme are that prepositional phrases
do not embed an NP (see the PP in Fig. 2), and that there
are almost no unary productions. Categories do not have a
maximal projection unless they have their own dependents
(cf. the NN of UN-Truppen in Fig. 2 which does not project
to an NP while Kontrolle does).
Restructuring is necessary in order to obtain a modular
grammar with good coverage on unseen data: We intro-
duce an NP complement for adpositions, and complete the

3Attributive adjectives also agree in case with the noun they
modify. The conversion procedure can be easily extended to pro-
vide them with case annotation as well. However, as modifiers,
their role is less important, and we anticipate data-sparsity issues.
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annotation with phrasal projections for all nouns, determin-
ers, adjectives, adverbs and verbs (see the shaded nodes in
Fig. 3). The overall result are more uniform tree structures.
Since the head of noun phrases is not explicitly marked in
the annotation (see the NPs in Fig. 2), we identify it with
the help of the part-of-speech labels and provide a corre-
sponding syntactic function NKHD, which will be used by
the subsequent extraction procedure.

Sister-Adjunction Because of the relatively free word
order in German where modifiers and arguments can oc-
cur in almost any order, we decided to use sister-adjunction
(Chiang, 2000) and retain the flat TIGER annotation for the
German PLTAG.
In contrast to Chiang (2000), we constrain sister-adjunction
by the category of the node to which a tree can sister-adjoin.
Besides initial, auxiliary and prediction trees, the German
PLTAG therefore comes with an additional set of modifier
trees M whose root node is required to have exactly one
daughter. We mark them with an asterisk on the root node.
When some γ ∈ M sister-adjoins at position i to a node
n, the root of γ and n must have the same label. The only
daughter of γ’s root is then added as a daughter of n in the
same way as defined by (Chiang, 2000).
Besides modification, finite auxiliary and modal verbs are
also encoded as sister-adjoining modifier trees. This en-
ables direct modelling of the flat sentence structure without
introducing additional levels.

Predicative Auxiliary Trees The annotation of raising
and control verbs in the TIGER treebank (see hofften in
Fig. 4) requires the introduction of a new S node in order
to encode raising and control verbs as auxiliary trees (see
node S3 in Fig. 5(a)). Non-finite auxiliary and modal verbs
can be analysed as VP auxiliary trees without further con-
version.

Discontinuous Constituents To express long-distance
relations, such as extraposed relative clauses, appositions,
topicalized objects and repeated elements, the TIGER Tree-
bank uses crossing branches, which occur in almost 30%
of all sentences. Figure 4 shows an example. Since nei-
ther CFG nor TAG can directly encode crossing branches,
the standard procedure in data-driven parsing4 is to convert
the graphs with crossing branches to trees (with indexed
traces) by re-attaching non-head daughters of the discon-
tinuous constituents higher.5 The consequence of this re-
attachment is that the dependency information contained in
the phrase-structure tree is changed, and that a trace and its
filler can only be correctly interpreted if they co-occur in
the final derived tree.
In contrast to CFG which corresponds to trees of depth 1,
TAG with its extended domain of locality can localize some
of the trace-filler pairs within one elementary tree. Given
our analysis of modal and auxiliary verbs, this is for exam-
ple the case for arguments of the (non-finite) full verb in

4An exception is parsing with more powerful grammar for-
malisms, such as LCFRS, e.g. (Maier, 2010), which are rarely
used to date in NLP, mostly because of the prohibitive parsing
complexity.

5We modified a script by Michael Schiehlen which was origi-
nally written for the NeGra corpus.

compound tenses. To be able to generally describe scram-
bling of one argument of an embedded verb into the matrix
clause6, an additional S level has to be inserted to which the
argument filler is re-attached. This is illustrated in Figure 5:
The fronted object of the embedded VP is attached to S2

with the standard procedure to resolve crossing branches,
i.e. the substitution node corresponding to the filler would
end up in the elementary tree of hofften, which violates the
co-occurrence principle that is generally accepted for nat-
ural language TAG. However, given our analysis of con-
trol verbs as auxiliary trees and the additional S1 node, the
trace-filler dependency is localized in the elementary tree
of erfahren. Ca. 80% of the argument trace-filler pairs can
be captured by our lexicon.
However, about 90% of the discontinuous constituents in
the TIGER Treebank are caused by modifiers, which cannot
be localized within an elementary tree. (They could be ex-
tracted as tree sets, as suggested for English by (Xia, 2001),
but the required variant of multi-component TAG would be
non-local.)

Miscellaneous The TIGER annotation employs specific
labels for coordinated categories, such as CNP for coordi-
nated noun phrases. In order to provide the recursion that
is necessary to encode coordination structures as auxiliary
trees that adjoin to the first conjunct while providing a sub-
stitution node for the second conjunct, we turn the labels
into their non-coordinated counterpart (e.g. CNP to NP).
Punctuation marks are kept and generally encoded as mod-
ifier trees. Some also anchor trees with more structure, for
example for a coordination.

3.3. Conversion statistics
The transformations for the English PTB increase the num-
ber of nodes in the treebank by 22%, that is on average 9.5
nodes per tree. On the German TIGER treebank, the pre-
sented transformations insert 6.5 nodes per tree on average,
which increases the size of the treebank in terms of nodes
by almost 25%. Note the different nature of the introduced
nodes: while in the English treebank the majority of nodes
are inserted for recursion, in the German treebank linguis-
tic generalisations make up for most of the new nodes. The
transformations are reversible. A parser based on the Ger-
man PLTAG can thus be evaluated with respect to the orig-
inal treebank for a better comparability with other parsers.

4. Lexicon Induction
After converting the PTB and the TIGER Treebank into
PLTAG format, they can be used to induce a PLTAG lex-
icon, namely a canonical LTAG lexicon and the prediction
lexicon.

4.1. Canonical Elementary Trees
The PLTAG canonical trees are extracted from the con-
verted treebanks following the procedures described in (Xia
et al., 2000).
We augment the English Penn Treebank with information
on syntactic heads based on a slightly modified version

6TAG is not powerful enough to describe scrambling of more
arguments in a linguistically adequate way (Becker et al., 1991).
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what rubbernecks so far from the coffee grounds to find out hoped

Figure 4: Tiger graph with a discontinuous constituent because of an extracted object: what rubbernecks hoped to find out
from reading tea leaves so far

S1

NPacc-OA-1 S2-HD

PRELS-NKHD NPnom-SB S3-OC VVFIN-HD

was NN-NKHD VP-HD hofften

Neugierige T-1 VZ-HD

PTKZU-PM VVINF-HD

zu erfahren

(a) Converted tree, omitting the two modifiers (The subscripts are
used to be able to refer to the individual nodes in the text, they are
not part of the alphabet.)

S

NPacc-1↓ S

VP

T-1 VZ

PTKZU↓ VVINF

erfahren

S

NPnom ↓ S* VVFIN

hofften

(b) Trace and filler are localized in one elementary tree, but will
be further apart when the predicative auxiliary tree adjoins.

Figure 5: Localizing the long-distance relation in Figure 4

of (Magerman, 1994)’s head percolation table, in com-
bination with more detailed heuristics for noun phrases
(the head percolation table and code for NP heuristics
are available at http://www.coli.uni-saarland.
de/˜vera/page.php?id=corpora). As a next step,
subcategorization information from Propbank (Palmer et
al., 2005) is added in, providing information about argu-
ment and modifier status, and encoding which lexical items
should be part of the same elementary tree (currently, this
is restricted to particle verbs like show up and some hand-
coded constructions in which the first part is very predictive
of the second part, such as either..or). For German, we infer
the head-argument-modifier classification from the func-
tion labels annotated in TIGER. They also provide indica-
tors concerning which lexical items should form a multi-
anchored tree (particle verbs, collocational verb construc-
tions, circumpositions, correlative conjunctions).

Elementary trees are determined by identifying the path
from each lexeme up towards the root of the tree, proceed-
ing as long as the node is the head child of its parent. When
a node is its parent’s argument, a substitution site is created
and the elementary tree is encoded as an initial tree. Mod-
ifiers are encoded as modifier trees in the German lexicon,
and as auxiliary trees in the English lexicon. The root and
foot of an auxiliary tree are provided by the parent and the
head sibling of the modifier node respectively. In Figure 3,

the head paths are indicated by thicker edges and argument
nodes are denoted by the subscript A. Some of the extracted
elementary trees are shown in Figure 6.
Recursive coordinating structures result in auxiliary trees
anchored in the conjunction. After the core procedure, ele-
mentary trees of lexical items that are marked for constitut-
ing a multi-anchored tree are assembled. Figure 7 depicts
examples.
The predicative auxiliary trees in the German PLTAG are
generated following ideas from (Chen and Shanker, 2004).
If a node n is an argument with respect to the spine φ, it
is directly dominated by a node on φ and, there is node
n′ on φ dominating n, which has the same label as n, the
elementary tree which corresponds to φ is excised as an
auxiliary tree where n′ is its root and n its foot. To avoid
mal-formed elementary trees, we restrict n to be a clausal
object (syntactic funtion OC). Figure 5 shows an example:
S3 is an argument with respect to φhofften = {VVFIN, S2},
and S2 satisfies the criteria for being the root.
German sentence structure is often formulated within the
topological field model, which is not explicitly annotated
in TIGER, but could be inferred as it has been done in
(Frank, 2001) for example. Modelling topological fields
would however mean that we would have to encode oblig-
atory adjunction and extract several different verbal trees
for each of the German sentence types (verb in first, sec-
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Figure 6: Some canonical initial (a - c) and modifier (d - f) trees extracted from the sentence in Figure 3.
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S
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nimmt
takes

APPRART NP
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in the

NN
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sight

“to target somebody”

Figure 7: Multi-anchored trees

Figure 8: Connection paths for the first three words of the
sentence from Figure 3. Nodes are numbered according to
the canonical tree to which they belong.

ond or last position), resulting in a huge lexicon. Using a
similar extraction procedure as for English instead, enables
us to extract verbal trees that generalise to several sentence
types. Consider for example the elementary trees (a) and
(f) in Figure 6: all three sentence types can be generated,
depending on where (f) sister-adjoins to node S of (a).

4.2. Prediction Trees
Given the segmentation of PLTAG treebank trees into
canonical trees, the prediction trees are induced using the
notion of connection paths (Lombardo and Sturt, 2002). A
connection path for wordsw1 . . . wn is the minimal amount
of structure that is needed to connect the words w1 . . . wn

into the same syntactic tree. This amount of structure is
indicated with circles in Figure 8. The structure which
is required by the connection path of words w1 . . . wn but

a. Sj

NPnom
j↓ VPj

j

NPacc
j↓ VVPPj

j

b. NPdatk

DPdat
k↓ NNk

k

Figure 9: Two prediction trees extracted from the sentence
in Figure 3. j and k are the prediction markers.

which is not part of the elementary trees that are anchored
in words w1 . . . wn constitutes the prediction tree. In Fig-
ure 8, this occurs for example at the word hätten: the S
node and the NP node of the elementary tree with index 11
have to be predicted in order to connect all seen words.
Following the definition for prediction trees in Section 2.2.,
the extracted prediction tree has the shape given in Fig-
ure 9(a) derived from the canonical tree in Figure 6(a). The
prediction tree (b) is needed to integrate the determiner den
before having seen its noun. Finally, a third prediction tree
which has the same structure as (b) but in accusative case is
extracted for a fully incremental derivation of the example
sentence.
If nodes from two or more different elementary trees are
needed by the connection path, a pre-combined prediction
tree is generated. It has unique indices for nodes that origi-
nate from different elementary trees. The advantage is that
during parsing, derivations can be restricted to the integra-
tion of only one prediction tree at a time.
Even though the same definition for prediction trees is used
for both grammars, the prediction granularity differs due
to the German sentence structure. While in English the
subject usually is the only argument which occurs left of
the verb that provides the lexical anchor, typically produc-
ing sentential predictions only down to the VP level (see
Fig. 1(d) for an example), in German the verbal anchor can
be right of all arguments, leading to prediction trees as in
Figure 9(a). Although this is formally not a problem, there
is no psycholinguistic motivation for such a difference in
prediction granularity, and we expect the size of the predic-
tion lexicon for German to be larger than for English. This
finding thus highlights the need for research to find the op-
timal prediction grain size.

5. Statistics
The English PLTAG is extracted from Sections 02-21 of
the PTB, Section 23 is used to calculate the coverage. The
German TIGER Treebank is divided into three sets follow-
ing the methodology suggested in (Dubey, 2005), resulting
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Templates (Canon. lexicon) Lexicalized Pre-combined Coverage

Initial Auxiliary Modifier Sum thereof unique trees pred. trees (in %)

ENGLISH 2,858 3,842 - 6,700 3,412 111,705 2,595 99.7
GERMAN 1,860 880 2,619 5,359 2,577 144,886 4,407 99.5
GERMAN CASE 2,742 1,251 3,424 7,417 3,645 164,598 6,004 99.3

Table 1: Number of tree types extracted with respect to different grammars. Those grammars do not encode multi-anchored
trees. The coverage refers to template tokens extracted from converted unseen data.

in 45,428 sentences for training and 2,523 sentences for de-
velopment and testing each.
The treebank conversion and extraction procedures gener-
ate complete correct tree structures for 97.6% of all trees
in the PTB and for 99.8% of all trees in the TIGER Tree-
bank. Loss of conversion coverage in the PTB conversion
are due to fragment (FRAG) nodes, inconsistencies and er-
rors in the annotation, and the fact that the structures are
still too flat for a modifier of a node to adjoin between two
arguments of the same node. For this latter case, complete
trees are generated, but the modifier leaves will be in the
wrong order. Such cases account for 20% of the conversion
errors. Due to sister-adjunction, this problem, which would
be more frequent in German, does not occur with TIGER.
The failed sentences in German all contain instances of
non-recursive coordination.
Details about the sizes of the induced grammars are pre-
sented in Table 1. The number of extracted templates
(i.e. unlexicalized elementary trees) is of the same order
of magnitude as the LTAG lexica extracted by (Xia et al.,
2000) and (Chen and Shanker, 2004) from the PTB. For
German, we report details about a version of a lexicon from
which the case annotation has been disregarded, for bet-
ter comparison with the English lexicon. However, even
GERMAN CASE, which includes the case marking, is still of
manageable size, and the following numbers will be based
on this lexicon.
As expected because of the different prediction granular-
ities, considerably more prediction trees are induced for
German than for the English. However, neither in the PTB
nor in the TIGER Treebank more than 5 trees have to be
pre-combined in order to achieve full connectivity. Among
the instances where a prediction tree is needed in the PTB,
88.3% of the cases use one prediction tree at a time (92.7%
for German), in 10% of the cases two prediction trees have
to be combined (7% for German) and in less than 1% of
cases predicted nodes from more than three lexical anchors
are required.
Even though the coverage percentages on converted unseen
test data sound satisfactory (> 99% for both English and
German), they indicate that the grammars do not converge,
which is confirmed by the graph in Figure 10. Thus even
after having seen all training data, new templates still oc-
cur in unseen data. However, given the template frequency
distribution, we consider this fact not to be problematic for
parsing: for German, the 3,645 templates that have been
seen only once during training account for less than 0.45%
of all template tokens. In contrast, there are only 114 tem-
plates with a frequency of 1000 or higher, but they cover
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Figure 10: Growth of the lexicon GERMAN CASE during
training

83.5% of all template occurrences. The situation is similar
for the English lexicon.
In the English lexicon the average ambiguity is 2.37 trees
per word. With 1.96 trees per word, it is lower for GER-
MAN CASE, which is plausible because of the richer mor-
phology. If lemmata instead of surface forms are consid-
ered in German, the number approaches the English one.
The distribution is Zipfian as can be expected for language
data. There are a few words which anchor lots of different
trees. The most ambiguous ones in English are and (578
trees), or (219 trees), as, in, but and is, and und (‘and’, 533
trees), the comma (249 trees), ist (‘is’) and oder (‘or’) in
German.

6. Related Work
We are not the first ones to convert the PTB into TAG for-
mat and extract a TAG lexicon from it. However, our tree-
bank and lexicon differs from earlier approaches (Xia et
al., 2000; Chen and Shanker, 2004) in that it adds the lin-
guistically motivated NP disambiguation from (Vadas and
Curran, 2007) (as opposed to heuristically annotated NPs),
and in that it extracts the PLTAG prediction lexicon and en-
codes also multi-anchored trees.
Neumann (2003) also uses a recursive, head-driven extrac-
tion procedure to obtain stochastic lexicalized tree gram-
mars from (untransformed) German and English treebanks.
However, modification is not factored out of the trees in
terms of adjunction, so the lexicon is much larger than ours
and does not generalise well to unseen data. Neumann
(2003) induces 12k tree templates from Sections 02–04 of
the PTB as opposed to the roughly 6k tree templates ex-
tracted by (Xia et al., 2000), (Chen and Shanker, 2004) or
our method from Sections 02–21, and 10k templates from
a small portion (< 4500 sentences) of the NeGra corpus
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(Skut et al., 1997).
In contrast, Frank (2001) first heavily restructures the Ger-
man NeGra Treebank to be able to extract a linguistically
sound LTAG lexicon. Unfortunately, neither the conversion
and extraction rules nor the grammar are available as re-
sources.

7. Conclusion
We presented the first resources that are available for a re-
cent psycholinguistically motivated, incremental version of
TAG: German and English PLTAG treebanks of derived
trees and linguistically motivated lexica, converted and ex-
tracted from large, annotated treebanks. Those resources
represent a valuable contribution to various fields, espe-
cially since for German no LTAG treebank and lexicon have
been available to date.
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