
Automatic MT Error Analysis: Hjerson Helping Addicter

Jan Berka1, Ondřej Bojar1, Mark Fishel2, Maja Popović3, Daniel Zeman1

1 Charles University in Prague, Faculty of Mathematics and Physics,
Institute of Formal and Applied Linguistics

2 Institute of Computer Linguistics, University of Zurich
3 German Research Center for Artificial Intelligence (DFKI), Berlin

{berka,bojar,zeman}@ufal.mff.cuni.cz
fishel@cl.uzh.ch

maja.popovic@dfki.de

Abstract
We present a complex, open source tool for detailed machine translation error analysis providing the user with automatic error detection
and classification, several monolingual alignment algorithms as well as with training and test corpus browsing. The tool is the result of
a merge of automatic error detection and classification of Hjerson (Popović, 2011) and Addicter (Zeman et al., 2011) into the pipeline
and web visualization of Addicter. It classifies errors into categories similar to those of Vilar et al. (2006), such as: morphological,
reordering, missing words, extra words and lexical errors. The graphical user interface shows alignments in both training corpus and
test data; the different classes of errors are colored. Also, the summary of errors can be displayed to provide an overall view of the MT
system’s weaknesses. The tool was developed in Linux, but it was tested on Windows too.

Keywords: machine translation, error analysis, visualization

1. Introduction
Until recently, most efforts in machine translation (MT)
evaluation were to define methods producing a single score
of MT output quality, correlating with human judgments
as much as possible. This can be valuable for comparison
of different systems’ performances but the task of develop-
ing a translation system needs more detailed information –
classification of errors, statistics of the error classes over a
testing corpus and so on. It would be also helpful for the
developer to be able to easily browse the analyzed data, e.g.
to see all sentences with an occurrence of the error from a
certain class.
We introduce a complex tool for such a detailed machine
translation error analysis, which can be operated via com-
mand line as well as with a graphical user interface in a
web browser. The tool provides the user with handy fea-
tures, such as automatic detection and classification of er-
rors, summarization of its results, test data browser and
word explorer.
The paper is organized as follows: In Section 2. the auto-
matic error detection and classification is briefly described.
Section 3. introduces the graphical user interface in web
browser. Section 4. gives insight of how to install and use
Addicter1 together with Hjerson, and finally Section 5. dis-
cusses some related work.

2. Automatic Error Detection and
Classification

Automatic error classification is based on finding erroneous
words in the translation output and assigning a correspond-
ing error class to each of them. The classification of errors

1https://wiki.ufal.ms.mff.cuni.cz/user:
zeman:addicter

is vital for presentation and navigation in the system out-
puts. The user gets an overall picture of the output quality
in the given test set and he or she can start by exploring the
most frequent error types first.

The workflow of Addicter with Hjerson is shown in Fig-
ure 1, while the algorithms of Addicter and Hjerson error
detection and classification are described in (Zeman et al.,
2011) and (Popović, 2011) with more detail.

2.1. Error Detection

The first step of Hjerson and Addicter’s analysis is the au-
tomatic detection of errors in the hypothesis translation.
This is done by comparing tokens in the hypothesis with
the reference translation, relying on some word alignment
between the two texts.

Previous experience (i.a. Bojar (2011)) shows that the qual-
ity of the alignment is critical, otherwise many errors can be
mis-classified (e.g. a pair of “missing” and “extra” errors
instead of one error of bad lexical choice). Our tool cir-
cumvents current limitations of word alignment by provid-
ing several methods and allowing the user to choose which
of them works best for the particular language pair, MT
system and dataset.

Currently, Addicter internally implements the alignments
of WER (Levenshtein, 1966), LCS (Hunt and McIlroy,
1976), a greedy injective alignment, and an injective HMM
(Fishel et al., 2011). The user can provide any additional
alignment, e.g. GIZA++ (Och and Ney, 2003) alignments,
or alignments obtained by linking a reference-to-source
alignment with the source-to-hypothesis alignment as re-
ported in a verbose output of the MT system (briefly called
“via-source”).

2158

Test Data Training Data

SRC REF HYP

align_hmm.pl,
align_lcs.pl ...

Hjerson

Various alignments (ref-hyp, ...)

detecter.pl

Custom
alignment

SRC TGT ALI

addictindex.pl

Corpus Index

Error Summary Test Data Browser Word Explorer

Addicter Web Interface

Figure 1: Overview of Addicter with Hjerson.

2.2. Error Classification
Hjerson and Addicter try to automatically classify errors
into categories similar to those of Vilar et al. (2006), such
as: morphological, reordering, missing words, extra words
and lexical errors.
Currently, there are two algorithms available: the one from
Addicter which strictly relies on the selected alignment and
the one from Hjerson which simply compares the sets of
words identified as erroneous due to a mismatch with the
reference. (The latter case actually implies an injective
alignment of the hypothesis and the reference.)
When using Hjerson for the classification, the user has two
options: first, he can just use its own HTML or plain text
output, as is described in (Popović, 2011). Second, he
can use Addicter’s script to transform Hjerson outputs into
XML format readable by Addicter and then browse through
the dataset using only Addicter.
The transformation of missing reference and extra hypoth-
esis words is straightforward, as Addicter’s classification
contains these two categories as well. Because Hjerson
works only with reference and hypothesis translations with-
out the source text, it cannot distinguish between wrong
lexical choice and untranslated token errors. Therefore,
Hjerson’s category “lexical error” is visualized by Addicter
as “other mismatch” error class. Inflectional and reordering
errors keep their category name.
The errors can be then summarized into a table showing
their counts in the test data. When using GUI, the table is
connected to the test data browser, so with just one click,
the user can see the list of sentences with the occurrence of
the given error type and even look at the sentences one by
one in more detail.

3. Graphical User Interface
Addicter creates static or dynamic HTML pages, providing
its user with the possibility to use a web browser as a simple

graphical user interface. The starting point is the Addicter
main page, which contains links to all defined experiments.
Each experiment has its own main page, consisting of three
parts: the Error Summary, the Test Data Browser and the
Word Explorer.

3.1. Error Summary
Test Data Browser and Word Explorer serve for examin-
ing individual sentences or words, the Error Summary page
gives the user a global view of the dataset, providing a table
with error counts for all error classes. This feature can re-
veal weak spots of the examined MT system and thus serve
as a hint in what direction to focus further efforts first.
Under the summary table, for each error class there are
links to sentences containing error(s) of given type to the
Test Data Browser, so it is very simple to switch between
global and local viewpoint and examine observed problems
more profoundly.
An example of Error Summary page is shown in Figure
2 for experiment with name TectoMT WMT09. The er-
ror detection and classification was done using the Hidden
Markov Model alignment algorithm. At the top of the page
is the summary table with absolute and relative counts of
detected errors of recognized categories and under it are
links to sentences containing given error types, e.g. there
were no error-free sentences in the given dataset.

3.2. Test Data Browser
Test Data Browser is a tool for visual analysis of individ-
ual sentences in the test dataset. It displays the source
text together with reference and hypothesis translations and
their alignments. The underlying alignment method can
be switched by selecting a different tab. Detected errors
are highlighted, each error class having its own color, and
summarized below. The user can switch between different
alignments used for the error detection and classification.

2159

Figure 2: Error Summary Page with the HMM Alignment

All words in the sentence are links to their pages in the
Word Explorer (see Section 3.3.). By moving cursor over a
particular word, all words matched by the active alignment
are highlighted. Also, if the dataset contained not only sur-
face forms, but also lemmas or other information, these are
shown when hovering the cursor on any word in the error
summary at the bottom of the page.
Figure 3 shows a sample sentence in the Test Data Browser.
With the use of HMM alignment (highlighted), errors of
three categories are detected (untranslated hypothesis word,
missing reference word, extra hypothesis word errors).
Clicking on the “WER” or other tab would display sentence
with a different alignment algorithm used, probably leading
to detection of different errors.

3.3. Word Explorer
The Word Explorer allows to browse the training and test
data and search for sentences containing a given word. It
also displays simple statistics of word co-occurrence in the
data and observed translations.
An example of Word Explorer usage is shown in Figure
4. The word stars occurred in three sentences in the cor-
pus and got translated to the same Czech word hvězdy ev-
ery time. Word Explorer automatically displays the first
sentence with the word stars (the source text with the
translation and the alignment), enabling a quick navigation
through other sentences in the dataset. Also all the words in
the table in the Word Explorer page are links to other pages
of Word Explorer.
The user can navigate into Word Explorer from the Test
Data Browser by clicking on any displayed word, or di-
rectly from the experiment main page, where he has the
opportunity to list all words on source or target side of the
dataset starting with a given letter or matching a given Perl-
like regular expression.

3.4. Interpreting Results
In the example presented in Figure 2, most frequent errors
are by far of the classes missing reference word and extra

Figure 4: The Word stars in Word Explorer

hypothesis word, which may lead to conclusion, that the
MT system translates worse than it actually does, because
this problem may be caused not only by poor translation,
but (more probably) by poor performance of the alignment
between reference and hypothesis. This is even more likely,
when the numbers of missing reference and extra hypothe-
sis words are similar, as in presented example.
This suspicion can be then confirmed or refused by look-
ing at individual sentences in Test Data Browser. As we
see in example in Figure 3, the reference words “bude” and
“použita” were labeled as missing in the hypothesis, while
words “je” and “strávena” were labeled as extra. In fact,
though, the word “bude” (meaning “will be” or “is going to
be” in English) is just a future time of the word “je” (mean-
ing “is” in English) and the meaning of “strávena” can be
the same as the word “použita” (both meaning “used” in
English). This implies that the MT system translated the
sentence correctly (or to be more precise, did not make mis-
takes in the words “bude” and “použita”) but the alignment
failed to align corresponding words, possibly because of
missing dictionary of synonyms.

4. Installation and Usage
Addicter is written in Perl and it needs a Perl interpreter.
This is usually no problem on Unix systems, but on Win-
dows the user may need to install Perl version ≥ 5.8.2 To
install Addicter, one has to simply check it out from our
public SVN repository.3

2Possibilities include Strawberry Perl (http:
//strawberryperl.com/) and ActiveState Perl
(http://www.activestate.com/activeperl).

3On Linux, use the following command: svn checkout
https://svn.ms.mff.cuni.cz/svn/statmt/
trunk/addicter. On Windows, use e.g. TortoiseSVN,

2160

Figure 3: Example of a Sentence in Test Data Browser.

Because Addicter uses some non-standard Perl libraries, it
is necessary to check them out, too, and export them to Perl
system path:

svn checkout \
https://svn.ms.mff.cuni.cz/svn/dzlib \
˜/dzlib

export PERL5LIB=˜/dzlib:\$PERL5LIB
add the above line also to your ˜/.bashrc

Hjerson is written in Python and so it needs a Python inter-
preter. Addicter now contains a slightly modified Hjerson
script in its repository, so the user does not need to install
Hjerson separately.4

4.1. Experiment Preparation
Addicter needs the dataset to be in a given, but simple and
straightforward file structure: each experiment should be
in its own directory5 in the cgi directory. The data of the
experiment have to be in following files in the experiment
folder:

• train.src – source side of training corpus

• train.tgt – target side of training corpus

http://tortoisesvn.net/. In both cases, use the word
public for both the username and the password.

4The original Hjerson is available at http://www.dfki.
de/˜mapo02/hjerson/

5which will be then displayed as the experiment name in the
GUI

• train.ali – alignment of training corpus

• test.src – source side of test data

• test.tgt – reference translation of test data

• test.system.tgt – system output for test data

• test.ali – alignment of the source and reference
translation of test data

• test.system.ali – alignment of the source and
the system output for test data

Training corpus is mandatory for indexing (Word Explorer
part in the GUI), alignments of source and reference and
source and hypothesis translations of test corpus are op-
tional and serve for displaying these alignments in the Test
Data Browser.
There are number of alignment, indexing and error de-
tection and classification scripts in Addicter. Alignment
scripts are located in the testchamber directory and are
named align-x.pl, where the x is the name of align-
ment algorithm. Scripts for running error detection and
corpus indexing are in the prepare directory. By run-
ning any script without parameters, its meaning and usage
are outputed to the command line.
If the user wants to run all alignment algorithms imple-
mented in Addicter and do the error detection and classifi-
cation based on them, there is script rundetection.pl,
which does all the work for him. E.g., running the com-
mand

2161

./rundetection.pl \
--src=../cgi/MT/test.src \
--ref=../cgi/MT/test.tgt \
--hyp=../cgi/MT/test.system.tgt \
--work=../cgi/MT \

from the prepare folder will make LCS, WER, HMM
and greedy injective alignment of the experiment MT, run
error detection and classification and make sure everything
is in the right file structure, ready for viewing in Addicters
GUI.
Hjerson error detection and classification is done separately
by script runhjerson.pl. Running

./runhjerson.pl \
--ref=../cgi/MT/test.tgt \
--hyp=../cgi/MT/test.system.tgt \
--baseref=../cgi/MT/test.base.tgt \
--basehyp=../cgi/MT/test.system.base.tgt \
--work=../cgi/MT/Hjerson

will make folder Hjerson in the experiment folder, run
Hjerson on the data and export detected errors to Addicter-
readable format, assuming that the files including base in
their suffixes are base forms of corresponding data.
Once the experiment is ready for viewing, all the user has
to do is to run the script server.pl from Addicter main
folder and copy the outputed link to his web browser.

5. Related Work
Note that both Addicter’s and Hjerson’s accuracy was eval-
uated on four datasets by Fishel et al. (2012). Both
tools, and especially Hjerson, achieve reasonable correla-
tions when ranking error types. In other words, the order
of error types in Error Summary is relatively reliable and
can be used to steer the development of the MT system.
The precision and recall of error marking in individual sen-
tences (as displayed in Test Data Browser) are less satisfac-
tory, ranging from just 5% for missed words up to 90% for
errors in form with the average precision around 30% and
recall around 50%.
There is a number of different MT evaluation systems
with different functionalities. One of them is Meteor
(Denkowski and Lavie, 2011), which implements its own
monolingual alignment of reference and hypothesis trans-
lations based on aligning the exact forms in the first step,
the rest is then stemmed and the aligning algorithm runs on
the stems. For the unaligned words, the alignment of syn-
onymous words is attempted and the alignment based of
paraphrases serves as the last resort. Based on the align-
ment, a single score is produced. Meteor also includes
Meteor-xRay for visualization of the results via Gnuplot
and XeTeX. The xRay can display alignment tables and
histograms of score distribution either for one or for com-
parison of two systems. We believe that the aggressive
alignment algorithm of Meteor would in many cases lead
to better results than the alignments currently available in
Addicter. We plan to integrate Meteor alignment into Ad-
dicter, too.
iBleu (Madnani, 2011) is a visualization tool for comput-
ing the BLEU score of a single MT system or comparing
outputs from different systems in a web browser. Asiya

(Giménez and Màrquez, 2010) is a tool implementing a
large number of different metrics in one application.
All systems introduced above focus on computing a single
score in one or more metrics. Woodpecker (Zhou et al.,
2008) is a rare exception but it is available for Windows
only and it is currently aimed primarily at errors in English
to Chinese and Chinese to English translation because it
relies on a pre-defined set of linguistic phenomena.
One of the early systems to simplify the assessment of
translation quality is EvalTrans6 (Nießen et al., 2000).
EvalTrans supports much less fine-grained evaluation than
Addicter, each sentence is simply ranked on one or more
scales. The most interesting feature of EvalTrans is the abil-
ity to extrapolate past manual quality judgments to new sen-
tences based on sentence similarity. The reliability of these
semi-automatic judgments is then reasonably high and can
be easily improved by providing further manual annotation.
The Experimental Management System (Koehn, 2010) is
a tool allowing smart execution of training and testing of
machine translation experiment with one configuration file,
automatically detecting re-usable steps for multiple runs
with changed settings. It also provides a detailed analy-
sis of the experiment run, including n-gram precision and
recall and color-coded output in web browser.

6. Conclusion
We presented Addicter, a tool for inspection of parallel
data and machine translation outputs that also includes sev-
eral variants of automatic error detection. The main addi-
tion presented here is the incorporation of Hjerson, another
error-detection tool into Addicter user interface.
We hope that our tool will simplify the error analysis both
when fine-tuning an established MT system but perhaps
more importantly when trying to bootstrap an MT system
for a new language pair.

7. Acknowledgements
The work on this project was supported by the project
EuroMatrixPlus (FP7-ICT-2007-3-231720 of the EU and
7E09003+7E11051 of the Czech Republic) and the
Czech Science Foundation grants P406/11/1499 and
P406/10/P259.

8. References
Ondřej Bojar. 2011. Analyzing Error Types in English-

Czech Machine Translation. Prague Bulletin of Math-
ematical Linguistics, 95:63–76, March.

Michael Denkowski and Alon Lavie. 2011. Meteor 1.3:
Automatic Metric for Reliable Optimization and Evalu-
ation of Machine Translation Systems. In Proceedings
of the EMNLP 2011 Workshop on Statistical Machine
Translation.

Mark Fishel, Ondřej Bojar, Daniel Zeman, and Jan
Berka. 2011. Automatic Translation Error Analysis. In
Text, Speech and Dialogue: 14th International Confer-
ence, TSD 2011, volume LNAI 3658. Springer Verlag,
September.

6http://www-i6.informatik.rwth-aachen.de/
web/Software/EvalTrans/index.html

2162

Mark Fishel, Ondřej Bojar, and Maja Popović. 2012.
Terra: a Collection of Translation Error-Annotated Cor-
pora. In International Conference on Language Re-
sources and Evaluation, Istanbul, Turkey, May.

Jesús Giménez and Lluı́s Màrquez. 2010. Asiya:
An Open Toolkit for Automatic Machine Translation
(Meta-)Evaluation. The Prague Bulletin of Mathemati-
cal Linguistics, (94):77–86.

James W. Hunt and M. Douglas McIlroy. 1976. An Algo-
rithm for Differential File Comparison. Computing Sci-
ence Technical Report 41, Bell Laboratories, June.

Phillip Koehn. 2010. An Experimental Management Sys-
tem. The Prague Bulletin of Mathematical Linguistics,
94.

Vladimir Iosifovich Levenshtein. 1966. Binary Codes Ca-
pable of Correcting Deletions, Insertions and Reversals.
Soviet Physics Doklady, 10(8):707–710, February.

Nitin Madnani. 2011. iBLEU: Interactively Debugging
& Scoring Statistical Machine Translation Systems. In
Proceedings of the Fifth IEEE International Conference
on Semantic Computing.

Sonja Nießen, Franz Josef Och, Gregor Leusch, and Her-
mann Ney. 2000. An evaluation tool for machine trans-
lation: Fast evaluation for mt research. In Proceedings
of the 2nd International Conference on Language Re-
sources and Evaluation, pages 39–45, Athens, Greece,
May-June.

Franz Josef Och and Hermann Ney. 2003. A Systematic
Comparison of Various Statistical Alignment Models.
Computational Linguistics, 29(1):19–51.

Maja Popović. 2011. Hjerson: An open source tool for au-
tomatic error classification of machine translation output.
The Prague Bulletin of Mathematical Linguistics, pages
59–68.

David Vilar, Jia Xu, Luis Fernando D’Haro, and Her-
mann Ney. 2006. Error Analysis of Machine Transla-
tion Output. In International Conference on Language
Resources and Evaluation, pages 697–702, Genoa, Italy,
May.

Daniel Zeman, Mark Fishel, Jan Berka, and Ondřej Bojar.
2011. Addicter: What is wrong with my translations?
The Prague Bulletin of Mathematical Linguistics, 96:79–
88.

Ming Zhou, Bo Wang, Shujie Liu, Mu Li, Dongdong
Zhang, and Tiejun Zhao. 2008. Diagnostic evaluation
of machine translation systems using automatically con-
structed linguistic check-points. In Proceedings of the
22nd International Conference on Computational Lin-
guistics (Coling 2008), pages 1121–1128, Manchester,
UK.

2163

