
Iula2Standoff: a tool for creating standoff documents for the IULACT

Carlos Morell, Jorge Vivaldi, Núria Bel
Institut Universitari de Lingüistica Aplicada (IULA)

UPF, Roc Boronat 138, 08018 Barcelona, Spain

E-mail: {carlos.morell, jorge.vivaldi, nuria.bel}@upf.edu

Abstract

Due to the increase in the number and depth of analyses required over the text, like entity recognition, POS tagging, syntactic analysis,
etc. the annotation in-line has become unpractical. In Natural Language Processing (NLP) some emphasis has been placed in finding
an annotation method to solve this problem. A possibility is the standoff annotation. With this annotation style it is possible to add new
levels of annotation without disturbing exiting ones, with minimal knock on effects. This annotation will increase the possibility of
adding more linguistic information as well as more possibilities for sharing textual resources. In this paper we present a tool developed
in the framework of the European Metanet4u1 (Enhancing the European Linguistic Infrastructure, GA 270893) for creating a
multi-layered XML annotation scheme, based on the GrAF proposal for standoff annotations.

Keywords: text handling, standoff markup, GrAF

1
 http://www.meta-net.eu/projects/METANET4U

1. Introduction

Since the seventies linguistic research has heavily been
relied on corpora. They became relevant linguistic
resources that permitted to obtain a huge amount of
knowledge about language behaviour in real use. A large
number of such resources have been compiled by almost
all research institutions involved in any area of linguistic
research.
 At the beginning the resulting material was used without
any additional processing; later, corpora have received
different levels of processing: different type of
segmentation, POS tagging, syntactic analysis, etc.
Usually such annotations were added in the same file
(in-line annotations), but as the number and depth of
analysis has increased such method has became
impracticable. The obvious solution is to have a different
document for each annotation and consequently a link
between the base document and the documents that
contains the annotations. This method is known as
“standoff annotation”. Ideally, annotation information
over a text file is physically separated from it, and there is
only a reference to it.
The advantages of this annotation style may be
summarized as follows:

- It is possible to have annotations with crossing
regions (ex. Annotation of the same text from
different perspectives)

- New levels of annotation can be added without
disturbing existing ones

- It is possible to have several versions of a single
annotation type (ex. use different POS taggers on the
same text for comparing their results)

- Editing one level of annotation has minimal
knock-on effects on others

- Allows distributing the corpus independently of
their annotations or selectively annotated.

In spite of the above mentioned advantages its application
has been much reduced, mainly due to the complexity of
its implementation. Only some language related areas

(speech corpora in particular) have taken advantage of
this methodology. This kind of annotation is gaining
attention because there is an increasing need of
implementing multiple annotation levels on the same
piece of text.
The purpose of the tool presented in this paper is to
perform a basic linguistic processing on free text. These
processings are those typical to almost any NLP task: text
segmentation, name entity detection and POS tagging.
This tool is already available as PANACEA web service
(http://registry.elda.org/services/187) and soon will be
available as a demo at our Institute‟s web page
(http://www.iula.upf.edu/indexuk.htm).
Following this introduction the paper presents in section 2
a brief overview of the advantages of standoff annotation
as well as an outline of already existing implementations.
Then, in section 3, we present our two cases of study and
in section 4 explain how we designed it. In Section 5 we
discuss about the possibility of using byte or chart as basic
unit of measurement. After this, in section 6 the
evaluation results. Lastly, section 7 introduces some
conclusions and future work.

2. State of the art

In corpus compilation the data undergoes a number of
processes (text segmentation, lemmatization, POS
tagging, etc.) that result in the necessity of some kind of
annotation for each component of the corpus. In the case
of corpus linguistics, the EAGLES initiative developed a
recommendation (CES: Corpus Encoding Standard) about
how to incorporate this new information to the text. This
recommendation was based on the Text Encoding
Initiative, a more general international and
interdisciplinary standard for representing all kind of texts.
Later, CES has evolved to XCES to keep track of recent
encoding standards (XML). Since the very beginning
CES foresee two ways to save such extra data: i) inline (a
single big file that merges text data with linguistic
mark-up data) and ii) standoff (keeping the original text
data untouched but adding any extra mark-ups in separate
files).

351

As corpora annotation becomes more and more complex
the limitations of the inline model it becomes clear:
modifying a level of annotation implies to reprocess
completely the text, adding new levels of annotations as
well as reusing the annotations from different formats
become very complicated. For these reasons, corpus
development is changing the way to introduce annotations.
Several corpora have been developed using this approach:

- The American National Corpora
2

 (ANC)
architecture described in Ide et al. (2006) from the
very beginning uses the standoff approach to
incorporate multiple layers of linguistic data to this
resource.

- The GREC 3 (Gene Regulation Event Corpus)
corpus (Thompson et.al, 2009). It is a resource in the
biomedical field that annotates entities and their
relationships.

- Polish National Corpus; see Bański et al., 2009.
The ANC corpus has been produced using annotation
tools integrated in GATE and UIMA environments. The
ANC2GO is a tool that allows converting ANC standoff
files into files with inline annotations in several formats
useful with traditional tools. The Polish National Corpus
also uses standoff but according to the TEI guidelines.
Another tool available for performing stand-off
annotations is MMAX2; see Müller et al. (2006) for
details. A main characteristic of this tool is that it allows
manual annotation of a corpus using a GUI interface; this
fact implies a major difference regarding the tool
proposed here. MMAX2 also allows to query the corpus
and visualize the results as well as to convert the
annotations to several formats.
Due to the difficulties found to integrate already existent
tools for Spanish and Catalan we choose to develop our
own annotation tool. In our implementation of the
standoff approach we imagine two different scenarios:

- To convert to standoff our already existent IULA
LSP corpus (Vivaldi, 2009) already tagged
following CES standard

- To incorporate standoff capabilities to our text
handling tool (Martínez et al., 2010)

4

In both cases, the text is UTF-8 encoded and the
annotations are represented in a generic XML format
using GrAF (see section 3.1).

3. Standoff tool

As mentioned above, the main goal of this project is the
implementation of an automatic mechanism that given an
already existent text handling and POS tagging tool
returns a XML file collection according to the GrAF
standard. As mentioned above, our environment foresees
two different scenarios for obtaining standoff files: i)
from our LSP corpus already tagged and ii) from free text.
In the following subsections we will briefly describe the
behaviour of the tools designed to cover both scenarios
mentioned above.

2
 American National Corpus (www.anc.org)

3
 www.nactem.ac.uk/GREC/

4
 kurwenal.upf.edu/cgi-bin/hectorwww/hectormain.pl

3.1 Project Overview

GrAF is a data model based on graph theory that can be
used to represent linguistic annotations and fully
described in Ide et al. (2007). It indicates how to
describe/represent linguistic annotations in a set of
standoff files that later can be analysed using standard
graph algorithms and tools.
In practice, it should be considered a de facto standard as
it is being used in several European projects (Metanet4u
and Panacea) as well as in the ANC project.
In our scenarios, the output generated and proposed by
this format comprises the following information:

- Structural markup
- Words boundaries
- Words (tokens) with part of speech annotations

using the treeTagger (Schmid, 1994)
- Plain text
- Header file

3.2 Inline to standoff conversion

In this case a specific tool was built as the files to be
converted are already linguistically processed and have an
in-house format using inline tagging. Therefore the only
requirement was to produce a number of files reflecting
the information already embedded in the input file. Figure
1 shows the diagram for performing this task.

The input text is a verticalised text file containing both
text handling (sentence delimitation, heading, lists, name
entities, foreign words, etc.) and POS tagging information
as shown in Listing 1. Therefore, no particular NLP
procedure is necessary and a single and ad hoc module is
able to build the standoff files.
It is important to note that the original plain text used to
build the corpus does not exist but it is generated from the
verticalised input text.

Figure 1 Diagram for converting inline to standoff

352

Listing 1. Sample of the input text to be
converted from inline to standoff

3.3 Update a text handling tool with standoff
capabilities

The other scenario foresees to generate a standoff output
from plain text. For such purpose, we modify
conveniently our already existent text handling tool (see
Martínez et al., 2010) for adding standoff capabilities.
Figure 2 shows a diagram for performing this task.
In this case, the goal is to improve the already existent text
handling tool to include the capability to generate standoff
files without any modification to the text handling itself.
This behaviour has been achieved by adding one module,
modifying other module and generating an auxiliary file
(tagged with an „*‟ in Figure 2).

The segmenter module is responsible for reading the plain
text file and to generate the segmentation info; that is, the
information about the starting/ending position of each
token. Such data are used to generate the segmentation
file as required by the GrAF format as well as an
additional file required by the output formatting module.

4. Workflows

As mentioned above there are two different scenarios, in
the first case we start from a verticalised text and we need
to generate all the files while in the second scenario it is
necessary to generate all the files with the exception of the
input plain text that must remain untouched. In spite of
these differences both tools may be split in the following
four modules:

- Segmentation
- Tagger
- Structural information
- Header

In the following subsections we will briefly explain the
behaviour of each module in each scenario.

4.1 Segmentation

This module is responsible for dividing the full text in
segments, which means to establish the start/end position
of each region and token. Conventionally we state that a
region is any sequence of characters surrounded by one or

more blank spaces and a token is a single linguistic unit.
Therefore a single word (like mesa –table-) normally is a
region and also a token but there some circumstances
where a single word may be two tokens (Spanish
contractions like del = de + el –of the–) or two or more
words form a single token (like many name entities like
Buenos Aires).
According to the input text there are two different
situations:
- Plain text
We must calculate such positions from the input text file.
Each word or punctuation mark will become a region.
Later, the text handling will decide if such region will
become or not a token. No other special care should be
taken.
- Already verticalised file
In this case the text has been already tokenised; therefore,
we must proceed in a different way. Every token will
become always a region but we must also adopt some
conventions. In particular we must consider that every
token is preceded by a single white space. Also, special
care must be taken with already existent structural markup
(paragraph, sentence, heads, etc.), punctuation marks

Figure 2 Standoff files creation from plain text

TAG <div1>
TAG <p>
TAG <s>
TAG <name>
1 TOK It BOS It\N4666
TAG </name>
--- DLI ' =\DELIM
2 PGR s pr\R6EZZZZ
3 TOK a a\P
TAG <num>
4 TOK 32 num\X
TAG </num>
--- DLE - =\DELIM
5 TOK bit bit\N5-MS
6 TOK computer computer\N5-MS
--- DLD . EOS =\DELS
TAG </s>
TAG <s>
…

353

must be taken into account and special care should be
taken with some conventions marks (EOS, SENT, BOS,
etc.) for generating a proper plain text.
The above mentioned rule is true in most cases, but not
when a word is at the beginning of the sentence or it is
followed/preceded by one or more punctuation marks.
The structural markups <head> and <p> (and their
respective </head> and </p>) indicate where header and
paragraph starts and ends. When this marks appear it is
necessary to introduce new lines and the following word
will be a beginning of sentence, for that reason it is not
necessary the white space in front it. Something similar
happens with <s> and </s> (start/end of sentence) marks.
The punctuation marks have a special particularity; the
verticalised test have a signal that indicates how their
positioned between their predecessor and their subsequent
token. There are different marks, each one requiring a
different behaviour:

- DLE: white space in the left side
- DLD: white space in the right side
- DLS: isolated punctuation mark (white space in both

sides)
- DLI: inner punctuation mark (no white space in both

sides, like the apostrophe “‟” in the Catalan
expression l’arxiu –the archive–)

The EOS or SENT elements, indicate the ends of
sentences. This is an important point because is necessary
to correctly update the tokens offsets to follow the
segmentation marking.
Other elements that indicate a special behaviour is the
PGR elements. This tag indicates that such token must be
hooked to its predecessor.

4.2 Tagging information

This module is responsible of connecting POS
information provided by the tagger with the segments and
tokens creating the corresponding file.
Again both scenarios create situations a little bit different:
- Plain text
Token information is obtained from the already existent
text handling software. At the same time, the segmenter
has created the segment information. Therefore, the
output formatting module needs to put in correspondence
both information and create the appropriate standoff files
(see Figure 2) taking care to keep track of the offset data.
In Figure 3 we show the relationship established between
the plain text file and the produced standoff files. The
word “this” for example, the segmented modules
produces a region (identified as “seg-r0”) and the POS
tagger identifies it as a pronoun (giving both lemma and
tag “RDS3N-”). Both are combined in the POS file that
put in relation the word form in the plain text file with the
corresponding linguistic data.
- Already verticalised file
Token information has already been calculated but we do
not have region information. It must be created in
accordance to the token information. In this case is
important to notice that a relation among tokens and
regions is not always 1:1. It may happen the case where a
single token corresponds to several regions. See for
example the following date: “23 de mayo del 2012”. It has
been already identified as a single token by the existent

text handling software ant the POS information has the
following form:
TAG <date>

123 TOK 23 de mayo del 2012 =\W

TAG </date>

From this information it is necessary to generate 5 regions
and create a single node with the lemma and POS data.
Conversely, it may also happen that a single word,
generate two tokens and two regions. See for example the
Spanish contraction “del”. The POS tagger provides the
following information:
123 TOK de de\P

124 PGR l el\AMS

From these lines, we may deduce that it is necessary
create two nodes, each one with the corresponding region,
lemma and POS data.

4.3 Structural information

The purpose of this module is to find the regions that
correspond to the main structural information (sections,
heads, paragraphs, lists, etc.) as well as some intratextual
markers (named entities: proper nouns, date, numbers,
etc.). From the operating point of view, this module is
identical in both scenarios although their implementation
is a little bit different.
All textual and intratextual structures are delimited by
their own XML tags, like <s>...</s>, <date>...</date> and
similar. These structures are composed by N segments,
inside the delimiting tags. In the segmentation phase we
create a relation between every segment and its relative
position in the text. It is natural that we consider that the
first position of the structure will be the same that the first
position of the first segment and same with the last
position. Then just keeping a careful counter of segment
we can create the structure layout of the text.

4.4 Header

This module is responsible for the creation of a header file.
It contains the links to all the files associated to the text. It
also contains some bibliographic information about the
author, the date of publication, the edition of the text and
other relevant information referring to the text.
In this case a differentiation between the two scenarios is
not necessary although the available information may be
very different. The information from documents from the
IULA LSP corpus is very exhaustive while those
associated to plain text may be very succinct. In any case
we use the same module to do it.
We will maintain an exhaustive control on the
modifications of the files including a version control in
order to know which was the last modification and who
has done it.

5. Offset information

Essential information associated with the standoff is the
offset data, which is the displacement of any relevant
piece of information regarding the beginning of the file.
GrAF specification states that it should be indicated in
characters. We implemented in this way and it works fine
in English text but shows some troubles in
Spanish/Catalan text. In English texts it works correctly
because they use ISO encoding and therefore there is

354

always a correspondence 1:1 among characters and bytes.
But languages like Spanish or Catalan may require two
bytes for some single characters (Ç, ü, ó, ñ, etc.).
Therefore an efficiency problem arises because most of
programming languages may access to a given file
position more efficiently when such position is indicated
by bytes instead of characters.
To verify such condition, we have performed some tests
reading text files (of several lengths) where the position of
every word has been indicated by characters or by
bytes.
For reading we use some Perl script (for the offset in bytes
or chars) and Java programs (chars only). The test consists
of the reading all the tokens of the text and the resulting
figures are the following:

File Size Bytes(Perl) Char(Perl) Char(Java)

32 kB 0.45s 135s 1.9s

64 kB 0.92s 1185s 5.0s

127 kB 1.18s 2256s 15.7s

As foreseed, the above table shows that indicating the
offsets in bytes, the reading is much more efficient and
such benefit increases with the length of the file. The
access by chars using Perl may be optimized for
sequential access but this may not be the general case. It is
assumed that byte reading using Java should be
at least as efficient as Perl.

6. Evaluation

In any case the final result is the creation of a set of files

with standoff annotation. Figure 3 shows both the logic

links among every file and how the information is

obtained from the POS tagger output and/or the input text.

The segment file is generated indicating for each segment

its position and assigning a unique identifier. The

morphosyntactic information is indicated in the POS file

which obtains this information from the POS tagger

output.

Figure 3. Linking among files

Plain text

This is a text sample.

Show us how is the output.

<region xml:id="seg-r0" anchors="0 4"/>

<region xml:id="seg-r1" anchors="5 7"/>

<node xml:id="iula-n0">

<link targets="seg-r0"/>

</node>

<fs>

<f name="base" value="this"/>

<f name="msd" value="RDS3N-"/>

</fs>

<node xml:id="iula-n1">

<link targets="seg-r1"/>

</node>

<fs>

<f name="base" value="be"/>

<f name="msd" value="V6FDRS3"/>

</fs>

<region xml:id="s-r1" anchors="0 22"/>

<node xml:id="s-n1">

<link targets="s-r1"/>

</node>

<fs>

<f name="id" value="div11-p1-s1"/>

</fs>

TAG <div1>

TAG <p>

TAG <s>

1 TOK This BOS this\RDS3N-

2 TOK is be\V6FDRS3

3 TOK a a\AI---S

4 TOK text text\N5S

5 TOK sample sample\N5S

--- DLD . EOS =\DELS

TAG </s>

TAG </p>

TAG <p>

TAG <s>

6 TOK Show BOS show\VMF6R66

7 TOK us us\RPP1NA

8 TOK how how\N5S

9 TOK is be\V6FDRS3

10 TOK the the\AT---6

11 TOK output output\N5S

--- DLD . EOS =\DELS

TAG </s>

TAG </p>

TAG </div1>

Segment f ile (standof f)

POS f ile (standof f)

POS tagger output

Layout (standof f)

Generation
Link

355

This structure become rather complicated as the input file
becomes larger and larger; therefore, manual checking
becomes impossible by humans. For such purpose we
developed some checking scripts that check:

- Coherence among segment/POS file and input text,
- Coherence among stand-off files and inline files

(only for inline to standoff conversion).
The second test is the only that is fully exhaustive because
we have the inline file that may be taken as a reference. It
allowed, as a side effect, the production of a general
purpose Perl library to access these files.

7. Conclusions and Further work

This paper presented a tool to generate multi-layered
XML annotation scheme from an already existent corpus
as well as generate such files from free text.
Although the current definition of standoff files work
properly, during the evaluation of the tool we find some
difficulties to work with the layout file. Both the textual
structure and word regions are defined through anchors
related to plain text. It seems that should simpler if textual
structures are referred to the word regions already defined
in the segment file.
All the NLP tools developed and in use in our Institute use
the inline annotation. We plan to improve such tools in
order to take advantage from this output. For example, our
term extractor may generate an additional layer to indicate
which are the terms occurring in a given text. Another
application that will apply this annotation technique will
be the Spanish syntactic parser currently under
development.

8. Acknowledgements

This work has been funded by the EU project 270893

(Metanet4U: Enhancing the European Linguistic

Infrastructure).

9. References

Bański P. and A. Przepiórkowski (2009). Stand-off TEI
Annotation: the Case of the National Corpus of Polish.
In: the proceedings of the LAW-III workshop at
ACL-IJCNLP 2009, Singapore.

Ide, N., Suderman, K. (2006). Integrating Linguistic
Resources: The American National Corpus Model
Proceedings of the Fifth Language Resources and
Evaluation Conference (LREC), Genoa, Italy.

Ide, N., Suderman, K. (2007). GrAF: a graph-based
format for linguistic annotations. Proceedings of the
Linguistic Annotation Workshop, ACL, pages 1–8,
Prague

Martínez, Héctor; Vivaldi, Jorge; Villegas, Marta (2010).
"Text handling as a Web Service for the IULA
processing pipeline" in Calzolari, Nicoletta et al.
Proceedings of the Seventh conference on International
Language Resources and Evaluation (LREC'10). Paris,
France. Pp. 22-29.

Müller, C.; Strube m. (2006): Multi-Level Annotation of
Linguistic Data with MMAX2. In: Sabine Braun, Kurt
Kohn, Joybrato Mukherjee (Eds.): Corpus Technology
and Language Pedagogy. New Resources, New Tools,
New Methods. Frankfurt: Peter Lang, pp. 197-214.

Schmid, Helmut (1994): Probabilistic Part-of-Speech
Tagging Using Decision Trees. Proceedings of

International Conference on New Methods in
Language Processing, Manchester, UK.

Thompson, P., Iqbal, S. A., McNaught, J. and Ananiadou,
S. (2009). Construction of an annotated corpus to
support biomedical information extraction. BMC
Bioinformatics 10:349

Vivaldi, Jorge (2009). "Corpus and exploitation tool:
IULACT and bwanaNet" en Cantos Gómez, Pascual;
Sánchez Pérez, Aquilino (ed.) Proceeding of the first
International Congress of Corpus Linguistics
(CICL-09) Murcia. Spain. Pp. 224-239.

356

http://www.biomedcentral.com/1471-2105/10/349
http://www.biomedcentral.com/1471-2105/10/349

