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Abstract

We describe two constraint-based methods that can be used to improve the recall of a shallow discourse parser based on conditional

random field chunking. These method uses a set of natural structural constraints as well as others that follow from the annotation

guidelines of the Penn Discourse Treebank. We evaluated the resulting systems on the standard test set of the PDTB and achieved a

rebalancing of precision and recall with improved F-measures across the board. This was especially notable when we used evaluation

metrics taking partial matches into account; for these measures, we achieved F-measure improvements of several points.
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1. Introduction

Automatic analysis of the discourse structure of a text is a

complex task with a wide range of potential applications.

The release of the Penn Discourse Treebank (Prasad et al.,

2008a) has resulted in a recent flurry of work in discourse

parsing. In particular, there is a growing body of literature

describing systems that extract arguments of explicit dis-

course connectives (Wellner and Pustejovsky, 2007; Elwell

and Baldridge, 2008; Ghosh et al., 2011b; Ghosh et al.,

2011a).

We previously presented a method for automatic argu-

ment extraction based on chunking with conditional ran-

dom fields (Ghosh et al., 2011a). In contrast to previous

approaches to argument extaction, our chunking system is

very loosely coupled with the syntactic representation: It is

completely straightforward to use one or more constituent,

dependency, or shallow parsers in any combination since

the argument boundaries are not tied to any particular con-

stituent span. Other advantages include the simplicity of

implementation by using standard chunking tools. The run-

time of the system is also very low, with most of the pro-

cessing time spent on feature extraction (i.e. running syn-

tactic parsers).

However, while the chunking-based approach has the ad-

vantage of flexibility and speed, it is unable to take the

global argument structural constraints into account. In par-

ticular, the PDTB annotation guidelines specify that exactly

one Arg1 and one Arg2 must be annotated for every con-

nective, while we often noticed that our system predicted

no arguments. This causes our recall values to be low com-

pared to the precision.

In this paper, we show that adding these constraints to

the inference step improves the performance of the dis-

course parser. In particular, we see strong recall improve-

ments. Global inference methods, including constraint-

based as well as learning-based methods (often imple-

mented as rerankers), have seen much use in NLP recently.

Inference with constraints in particular has been success-

ful in improving tasks such as semantic role labeling (Pun-

yakanok et al., 2008). This approach may be seen as a sim-

ple way to introduce long-distance structural relationships

while still keeping the machine learning models simple.

2. The Penn Discourse Treebank

The Penn Discourse Treebank (PDTB) is a resource con-

taining one million words from the Wall Street Journal cor-

pus (Marcus et al., 1993) annotated with discourse rela-

tions. While the PDTB is annotated on an English corpus,

there are also preliminary efforts to annotate PDTB-style

discourse treebanks in other languages including Hindi

(Prasad et al., 2008b) and Turkish (Zeyrek and Webber,

2008).

Based on the observation that “no discourse connective has

yet been identified in any language that has other than two

arguments” (Webber et al. (2010), p. 15), connectives in

the PTDB are treated as discourse predicates taking two

text spans as arguments, i.e. parts of the text that describe

events, propositions, facts, situations. These two types of

arguments in the PDTB are called Arg1 and Arg2, with

the numbering not necessarily corresponding to their order

in text. Instead, Arg2 is the argument syntactically bound

to the connective, while Arg1 is the other one. While the

Arg2 is typically very close to the connective, the Arg1

may be much more distant, and may even occur in other
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sentences. Table 1 shows some statistics about how often

the Arg1 occurs intersententially.

In the PDTB, discourse relations can be either explicitly or

implicitly expressed. However, in this paper we focus ex-

clusively on explicit connectives and the identification of

their arguments, including the exact spans. This kind of

classification is very complex, since Arg1 and Arg2 can

occur in many different configurations. In particular, an

explicit connective can occur between two arguments (e.g.

clauses connected by because) or at the beginning of the

sentence (for example, when a sentence begins with since).

It can also appear inside an argument, for instance with in-

stead or however in sentence-internal position.

Arg1 in same sentence as connective 60.9%

Arg1 in previous, adjacent sentence 30.1%

Arg1 in previous, non adjacent sentence 9.0%

Table 1: Statistics about the position of the Arg1 with

respect to the explicit discourse connective. Taken from

Prasad et al. (2008a).

3. Implementation

Our system for the automatic extraction of discourse argu-

ments for explicit connectives (Ghosh et al., 2011a) con-

sists of a pipeline, illustrated in Figure 1. Firstly, we assume

that the explicit discourse connectives (and their high-level

senses) are given to the system as input. They can be taken

from the gold standard or automatically identified and dis-

ambiguated (Pitler and Nenkova, 2009), and for simplici-

tity we used gold-standard connectives in this work. We

then apply a module to extract the Arg2 arguments, which

are the easiest to identify since they are syntactically con-

nected to the discourse connectives. After the Arg2s have

been identified, we finally apply the Arg1 extractor.

Figure 1: Pipeline for argument detection given a connective.

The Arg2 and Arg1 extractors are implemented as con-

ditional random field sequence labelers, which use a set of

syntactic and structural features (see Ghosh et al. (2011a)

for a full discussion). In order to reduce the processing

time, we apply the sequence labelers to the sentence con-

taining the connective, and a context window of up to two

sentences before and after.

3.1. Adding Constraints

In our evaluations (Ghosh et al., 2011a), recall was al-

ways lower than precision. We noticed that the system of-

ten failed to predict any argument at all. This was espe-

cially true for Arg1s, which are not always syntactically

connected to the connective and thus typically more dis-

tant than the Arg2s. However, since the PDTB annotation

guidelines specify that exactly one Arg1 and one Arg2

must be annotated for every connective, we may force the

system to output arguments of each type. To improve the re-

call, we therefore implemented a weighted constraint-based

postprocessor to make the system produce output satisfying

the requirements defined by the annotation guidelines.

In order to find the best solution with a minimum of con-

straint violations, we generated the top k analyses output

by the CRF for every sentence; these analyses can then

be combined to form the k top analyses for the whole 5-

sentence window around the connective. This combination

is most efficiently carried out using a priority queue similar

to a chart cell in the k-best parsing algorithm by Huang and

Chiang (2005).

The algorithm then proceeds through the k-best list and out-

puts an argument segmentation with the minimal number

of constraint violations. If there are more than one such

segmentation, we select the one with the highest probabil-

ity. We note that the search for the optimum could as well

have been implemented directly in the CRF inference as a

modified Viterbi procedure, with a slightly more complex

dynamic programming table. We leave the implementation

of this algorithm to future work.

We counted the following five conditions as constraint vio-

lations:

Overgeneration. This constraint is violated if an Arg1

or Arg2 is split over multiple sentences. However,

due to the fact that an argument may be split into sev-

eral pieces (because of attribution spans, nonprojective

syntactic constructions, or embedded connectives), we

allow an argument to be split into more than one part

in the same sentence.

Undergeneration. Since every connective must have ar-

guments of each type, this constraint is violated if an

argument is missing.

Intersentential Arg2. We count every Arg2 outside the

sentence containing the connective as a violation,

since they are required to be syntactically connected

to the connective.

Arg1 after the connective sentence. We count every Arg1

after the sentence containing the connective as a vio-

lation.

Argument overlapping with the connective. Arguments

are not allowed to overlap with the connective, since

PDTB uses discontinuous argument spans to encode

situations where a connective is embedded in an argu-

ment span.

3.2. Soft Constraints

In addition, we investigated an implementation based on

soft constraints. For a hypothesis h with a set of violated

constraints V (h), we define a scoring function f(h) based
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on the score assigned by the base CRF and a set of con-

straint weights, with one weightwC for every violated con-

straint C. Our system then selects the hypothesis h that

maximizes f(h).

f(h) = logPCRF(h)−
∑

C∈V (h)

wC

Based on tuning on a development set, we set all the con-

straint weights to 1, except the weight for Undergeneration

which was set to 2.

4. Analysis

We first report the argument extraction performance for the

constraint-based postprocessors and compare it to the base-

line CRF, and then analyze various aspects of the perfor-

mance.

4.1. Performance Measurements

Table 2 shows the performance of the baseline system

(Ghosh et al., 2011a). As in that paper, we show precision

and recall values using three evaluation protocols: exact,

where an argument must have exactly the same boundaries

to be counted as correct; overlap, where an argument is

counted as correct if it overlaps with a gold standard argu-

ment; and partial, where a weight between 0 and 1 is used

to measure the extent to which a segment corresponds to

the gold standard (Johansson and Moschitti, 2010). As pre-

viously noted, the recall values are fairly low compared to

the precision values.

P R F1

Arg2
Exact 83.4 75.1 79.1

Partial 93.4 84.2 88.6

Overlap 97.2 87.5 92.1

Arg1
Exact 69.9 48.5 57.3

Partial 82.9 61.7 70.7

Overlap 91.0 63.1 74.6

Table 2: Performance of the baseline discourse parser.

Table 3 shows the effect of the postprocessing with hard

constraints, using a k of 8. We note that recall is improved

in all settings, in particular for Arg1. The increased re-

call is offset by lower values of precision. However, F-

measure always improves, especially for the partial and

overlap measures.

P R F1

Arg2
Exact 80.8 77.9 79.3

Partial 92.8 89.0 90.9

Overlap 96.9 93.4 95.1

Arg1
Exact 58.9 57.8 58.4

Partial 73.6 75.7 74.6

Overlap 80.5 79.0 79.7

Table 3: Results with constraint-based postprocessing.

Table 4 shows the corresponding table for the postproces-

sor using soft constraints, again with a k of 8. This post-

processor strikes a middle ground between the precision-

oriented baseline system and the postprocessor with hard

constraints, which is very recall-oriented. We also note that

this system scores achieves the highest exact F-measure,

while the other postprocessor has higher values for partial

and overlap F-measures.

P R F1

Arg2
Exact 81.8 77.1 79.4

Partial 93.0 87.6 90.2

Overlap 97.1 91.5 94.2

Arg1
Exact 66.8 53.1 59.2

Partial 80.6 68.0 73.7

Overlap 88.3 70.1 78.1

Table 4: Results with postprocessing using soft constraints.

4.2. Intersentential Arguments

The most challenging arguments to extract are the intersen-

tential Arg1. Table 5 shows the performance of the three

systems on these arguments. For these arguments, the post-

processor with hard constraints stands out from the other

two: it is much more recall-oriented, while the other two

have fairly similar performances. However, the constraint-

based systems always outperform the baseline for all types

of F-measure.

P R F1

Baseline
Exact 52.9 27.5 36.2

Partial 68.6 40.2 50.7

Overlap 78.8 41.0 53.9

Postprocessing (hard)
Exact 39.1 37.8 38.5

Partial 55.9 56.4 56.1

Overlap 62.4 60.3 61.4

Postprocessing (soft)
Exact 49.2 29.8 37.1

Partial 65.9 44.1 52.7

Overlap 75.0 45.5 56.6

Table 5: Intersentential Arg1 extraction results.

Because of our window-based pruning strategy, the con-

straints naturally lead to a certain amount of overgenera-

tion: in about 6% of the cases, the gold-standard Arg1

is located outside the 5-sentence window, while the con-

straints still force the system to predict an Arg1 inside the

window. This lowers the upper bound on the precision that

our system can possible achieve.

4.3. The Effect of the Number of Hypotheses

In any method based on generation of multiple hypotheses

from an underlying base system, it is important to inves-

tigate the question of how many hypotheses are needed to

reach the best achievable performance, since generating a

large set of hypotheses may be inefficient. Table 6 shows

the effect of the k value on the overlap F-measure for the

task of Arg1 extraction, along with the oracle F-measure

for the same task.
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k 1 2 4 8 16

F1 74.6 79.1 79.4 79.7 79.7

Oracle F1 74.6 84.5 88.8 92.6 94.8

Table 6: Arg1 overlap F-measure for different values of k.

As is typical for these approaches, the largest gain is

achieved immediately, when going from one to two hy-

potheses. However, in contrast to approaches based on

reranking (see e.g. (Johansson and Moschitti, 2010)), our

performance reaches a plateau very quickly when increas-

ing the hypothesis set size. This can be explained by the

fact that our method immediately returns when finding a

hypothesis without constraint violations. Table 7 shows

the distribution of the positions of the first violation-free

hypothesis. We note that a violation-free hypothesis was

available among the four top-scored hypothesis in 97% of

the cases.

1 2 3 4 5 6 7 8 >8

1,088 370 55 35 15 10 5 3 10

Table 7: Distribution of the position in the k-best list of the

frst hypothesis without constraint violations.

5. Conclusion

We have presented a constraint-basedmethod that improves

a shallow discourse parser based on chunking with condi-

tional random fields. The method converts a severely un-

dergenerating output into one where precision and recall are

balanced, and where the requirements imposed by the an-

notations guidelines are fulfilled. The recall improvements

are particularly visible when we use evaluation protocols

with reduced strictness in boundary checking.

Themethod we have presented here is simple to implement,

but it would also be interesting to see how well it compares

to other global approaches. In particular, it would be very

straightforward to replace our weighted constraint system

by a reranker trained using standard machine learning tech-

niques. Even in that case, the constraint system could serve

as a filter to reduce the hypothesis set size for the reranker.

However, the development of useful features for a reranker

is an open problem.
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