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Abstract
Evaluating a taxonomy learned automatically against an existing gold standard is a very complex problem, because differences stem
from the number, label, depth and ordering of the taxonomy nodes. In this paper we propose casting the problem as one of comparing
two hierarchical clusters. To this end we defined a variation of the Fowlkes and Mallows measure (Fowlkes and Mallows, 1983). Our
method assigns a similarity value Bi

(l,r) to the learned (l) and reference (r) taxonomy for each cut i of the corresponding anonymised
hierarchies, starting from the topmost nodes down to the leaf concepts. For each cut i, the two hierarchies can be seen as two clusterings
Ci

l , Ci
r of the leaf concepts. We assign a prize to early similarity values, i.e. when concepts are clustered in a similar way down to the

lowest taxonomy levels (close to the leaf nodes). We apply our method to the evaluation of the taxonomy learning methods put forward
by Navigli et al. (2011) and Kozareva and Hovy (2010).

Keywords: taxonomy learning, gold standard evaluation,
hierarchical cluster

1. Introduction
Ontology evaluation is a hard task that is difficult even for
humans. One reason is that different taxonomies might
model the domain of interest equally well. Nonetheless, in
the literature a variety of different methods have been pro-
posed for evaluating the quality of a taxonomy. These in-
clude (Brank et al., 2006; Maedche et al., 2002): i) manual
evaluation performed by domain experts, ii) structural eval-
uation of the taxonomy, iii) automatic evaluation against a
gold standard, iv) application-driven evaluation, in which a
taxonomy is assessed on the basis of the improvement its
use generates within an application. Other quality indica-
tors have also been analysed in the literature, such as accu-
racy, completeness and consistency (Volker et al., 2010),
and more theoretical features such as essentiality, rigid-
ity and unity (Guarino and Welty, 2002). As regards lex-
icalised taxonomies, the focus of interest in this paper, the
most popular approach (adopted e.g. by Snow et al. (2006),
Yang and Callan (2009) and Kozareva and Hovy (2010))
is that of attempting to reconstruct an existing taxonomy
(Maedche et al., 2002), like WordNet (Fellbaum, 1998) or
the Open Directory Project1. This method is applicable
when the set of taxonomy concepts is given and the evalua-
tion task is restricted to measuring the ability to reproduce
hypernymy links between concept pairs. However, the eva-
lution is far more complex when learning a taxonomy is
performed entirely from scratch, as is done by Navigli et al.
(2011) and Kozareva and Hovy (2010). In reference tax-
onomies, the granularity and cotopy (Maedche et al., 2002)
of an abstract concept might vary according to the scope
of the taxonomy and the expertise of the team who created
it. For example, the term chiaroscuro is classified under
picture, image, icon in Wordnet, along with collage, but in

1http://www.dmoz.org/

the Art and Architecture Thesaurus (AA&T)2 chiaroscuro
is a perspective and shading technique, while collage is
classified under image-making processes and techniques.
As long as it is commonsense, non-specialised knowledge
that is being considered, it is still feasible for an automated
system to replicate an existing classification, because the
Web will provide abundant evidence for it. For example,
Kozareva and Hovy (2010) are very successful in reproduc-
ing the WordNet sub-taxonomy for animals, since dozens
of definitional patterns are to be found on the Web that clas-
sify, e.g., lion, as either a carnivorous feline mammal, or
carnivorous, or feline. Instead, reconstructing an existing
taxonomy in more technical domains is almost impossible,
as can be inferred from the foregoing AA&T example.
To tackle this problem we here propose a novel proce-
dure for evaluating a taxonomy against a gold standard,
based on reformulating the problem in terms of compari-
son between hierarchical clusters (cf. Section 2.). To this
end the non-leaf concepts of the learned and reference tax-
onomies are labelled with the transitive closure of their hy-
ponym relations. The procedure is then applied to the task
of comparing four automatically acquired taxonomies with
the corresponding reference taxonomies (cf. Section 3.),
namely: the virology sub-hierarchy of the MeSH3 medical
taxonomy, and three sub-hierarchies of WordNet4 (animal,
plants and vehicles). In Section 4. we compare the pro-
posed methodology with other approaches in the literature.
Finally, Section 5. is dedicated to concluding remarks.

2. Evaluation Method
In this section we propose a novel, general measure for
the evaluation of a learned taxonomy against a gold stan-
dard. We borrow Brank et al.’s (2006) idea of exploiting the
analogy with unsupervised clustering but, rather than repre-
senting the two taxonomies as flat clusterings (see Section

2http://www.getty.edu/vow/AATHierarchy
3http://www.nlm.nih.gov/mesh/
4http://wordnet.princeton.edu/
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4.), we propose a measure that takes into account the hi-
erarchical structure of the two taxonomies being analyzed.
From this perspective, a taxonomy can be transformed into
a hierarchical clustering by replacing each label of a non-
leaf vertex, e.g., perspective and shading techniques, with
the transitive closure of its hyponyms, e.g., cangiatismo,
chiaroscuro, foreshortening, hatching.
Techniques for comparing clustering results have been sur-
veyed by Wagner and Wagner (2007). However, to the best
of our knowledge, the only method for comparing hierar-
chical clusters is that proposed by Fowlkes and Mallows
(1983). Suppose that we have two hierarchical clusterings
H1 and H2, with an identical set of n objects. Let k be
the maximum depth of both H1 and H2, and Hi

j a cut of
the hierarchy, where i ∈ {0, . . . , k} is the cut level and
j ∈ {1, 2} selects the clustering of interest. Then, for each
cut i, the two hierarchies can be seen as two flat clusterings
Ci

1 and Ci
2 of the n concepts. When i = 0 the cut is a sin-

gle cluster incorporating all the objects, and when i = k we
obtain n singleton clusters. Now let:

• n11 be the number of object pairs that are in the same
cluster in both Ci

1 and Ci
2;

• n00 be the number of object pairs that are in different
clusters in both Ci

1 and Ci
2;

• n10 be the number of object pairs that are in the same
cluster in Ci

1 but not in Ci
2;

• n01 be the number of object pairs that are in the same
cluster in Ci

2 but not in Ci
1;

The generalized Fowlkes and Mallows (F&M) measure of
cluster similarity for the cut i (i ∈ {0, . . . , k − 1}), as re-
formulated by Wagner and Wagner (2007), is defined as:

Bi
1,2 =

ni
11√

(ni
11 + ni

10) · (ni
11 + ni

01)
. (1)

Note that the formula can be interpreted as the geometric
mean of precision and recall of an automated method of
clustering the same concept pairs as in a gold-standard clus-
tering. However, this formula has a few inconvenient prop-
erties: first, the value of Bi

1,2 gets close to its maximum 1.0
as we approach the root of the hierarchy (i = 0); second,
the two hierarchies need to have the same maximum depth
k; third, the hierarchies need to have the same number of
initial objects and a crisp classification.
In order to apply the F&M measure to the task of comparing
a learned and a gold-standard taxonomy we need to miti-
gate these problems. Formula 1 allows the measure to cope
with the third problem without modifications. In fact, if the
sets of objects in H1 and H2 are different, the integers n10

and n01 can be considered as also including objects that be-
long to one hierarchy and not to the other. In this case, the
value of B0

1,2 will provide a measure of the objects in com-
mon between the learned taxonomy and the gold-standard
one. To account for multiple (rather than crisp) classifica-
tions, again, there is no need to change the formula, which
is still relevant if an object is allowed to belong to more
than one cluster. As before, mismatches between H1 and

H2 would result in higher values of n10 and n01 and lower
Bi

1,2.
A more serious problem with formula 1 is that the lower
the value of i, the higher the value of the formula, whereas,
ideally, we would like to reward similar clusterings when
the clustering task is more difficult and fine-grained, that is,
for cuts that are close to the leaf nodes. To assign a reward
to “early” similarity values, we weight the values of Bi

1,2

with a coefficient i+1
k . We can then compute a cumulative

measure of similarity with the following formula:

B1,2 =

∑k−1
i=0

i+1
k Bi

1,2∑k−1
i=0

i+1
k

=

∑k−1
i=0

i+1
k Bi

1,2

k+1
2

. (2)

Finally, to solve the problem of different depths of the two
hierarchies we define a policy that penalizes a learned tax-
onomy that is less structured than the gold-standard one,
and rewards – or at least does not penalize – the opposite
case.
As an example, consider Figure 1, showing two tax-
onomies H1 and H2, with non-identical sets of objects
{a, b, c, d, e, f} and {a, b, c, d, e, g}. In the figure, each
edge is labeled by its distance from the root node (the value
i in the F&M formula). Notice that H1 and H2 have multi-
ple classifications (i.e., multiple hypernyms in our case) for
the object e, thus modelling the common problem of lexi-
cal ambiguity and polysemy. Let us suppose that H1 is the
learned taxonomy, and H2 the gold-standard one. We start
comparing the clusterings at cut 0 and stop at cut kr − 1,
where kr is the depth of the gold-standard taxonomy. This
means that if the learned taxonomy is less structured we
replicate the cut kl for kr − kl times, while if it is more
structured, we stop at cut kl (kl is the maximum depth of
the learned taxonomy). In contrast to previous evaluation
models, our aim is to reward (instead of penalize) more
structured taxonomies provided they still match the gold
standard one.
Table 1 shows the cuts from 0 to 3 of H1 and H2 and the
values of Bi

1,2. For i = 2 the B value is 0 if H2 is the
learned taxonomy, and is not defined if H2 is the gold stan-
dard. Therefore, when computing the cumulative formula
2, we obtain the desired effect of penalising less structured
learned taxonomies. Note that when the two hierarchies
have different depth, the value k − 1 in formula 2 is re-
placed by kr − 1.

3. Experiments
In this section we apply our modified F&M evaluation
model to the comparison of a taxonomy learned from
scratch using the ontology learning methodology described
by Navigli et al. (2011), against the following gold stan-
dards:

• three WordNet sub-hierarchies, namely animals, ve-
hicles and plants. We selected these three WordNet
sub-hierarchies to enable a comparison to be made
with Kozareva and Hovy’s (2010) taxonomy learning
method, which was also tested on these domains;

• The virology sub-hierarchy of MeSH.
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Figure 1: Two hierarchical clusters of n non-identical objects.

i C1 C2 n11 n10 n01 H1 H2

Bi
1,2

0 {a,b,c,d,e,f} {a,b,c,d,e,g} 10 5 5 0.67 0.67
1 {a,b,c,d,e},{e,f} {a,b,c,d,e},{e},{g} 10 1 0 0.95 0.95
2 {a,b},{c,d},{e},{f} {a},{b},{c},{d},{e},{g} 0 2 0 undefined 0
3 {a},{b},{c},{d},{e},{f} {a},{b},{c},{d},{e},{g} 0 0 0 undefined undefined

Table 1: Application of the evaluation method to the hierarchies of Figure 1. The values of Bi
1,2 are shown both when H1

and H2 are the learned taxonomy (penultimate and last column, respectively).

We first start with a summary description of the ontology
learning algorithms proposed in (Navigli et al., 2011) and
(Kozareva and Hovy, 2010). Then, we compare the learned
taxonomies againts the reference ones, using formulas (1)
and (2). This analysis proves particularly helpful in pin-
pointing some significant and recurrent phenomena. Fi-
nally, we perform an in-vitro assessement of the method
– as was done in (Zavitsanos et al., 2011) and (Brank et al.,
2006) – introducing artificial modifications (concept swap-
ping, adding/deleting intermediate nodes, etc.) into refer-
ence taxonomies, in order to evaluate their effect on the
proposed similarity measure.

3.1. Summary of analyzed taxonomy learning
methods

3.1.1. OntoLearn Reloaded
In (Navigli et al., 2011) we presented a system, named On-
toLearn Reloaded, whose objective was to produce a do-
main taxonomy starting only from a domain corpus and
the Web. To this end we devised a methodology based on
two “core” algorithms for definition extraction and graph-
based taxonomy induction, empowered by some pre- and
post-processing steps. Our graph-based taxonomy induc-
tion approach consists of five steps, as shown in Figure 2.
We start from an initially-empty directed graph Gnoisy =
(Vnoisy, Enoisy), where Vnoisy := ∅ and Enoisy := ∅.
From a corpus of domain documents we acquire a domain
terminology T , using a terminology extraction tool. For all
the terms in T , we mine the corpus and the Web in search
of definitional expressions, from which we obtain a set of
hypernyms H using a lattice based definition classifier and
hypernym extractor (Navigli and Velardi, 2010).
Non-domain definitions are eliminated on the basis of the
number of domain-related words in the definition. The re-
trieved hypernyms are then used for a new Web search, and
the process iterates until a termination condition is satisfied.
The result is a highly dense hypernym graph with several

cycles and possibly disconnected components. Over this
directed graph, we apply an algorithm for finding an opti-
mal branching. Finally, since in many practical applications
DAGs (directed acyclic graphs) represent a more appropri-
ate abstraction than tree-like taxonomies, we apply an edge
recovery strategy to re-attach some of the hypernym edges
deleted during the optimal branching step.
In our previously published experiments we applied On-
toLearn Reloaded to the task of acquiring a brand new tax-
onomy for the domain of Artificial Intelligence, for which
we performed a manual assessment since no gold standard
taxonomies were available for this domain. In this paper,
instead, we apply OntoLearn Reloaded to the task of induc-
ing four taxonomies for which a gold standard reference
is available. We evaluate three outputs of the OntoLearn
algorithm: TREE, DAG[1− 3] and DAG[0− 99], corre-
sponding respectively to the output obtained after optimal
branching, and to the DAGs obtained with two different
edge recovery policies, of which the first is more conser-
vative (Velardi et al., 2012).

3.1.2. Doubly Anchored Patterns
Kozareva and Hovy (2010)[K&H] create a hypernym graph
in three steps. Given few root concepts (e.g., ANIMAL) and
basic level concepts or instances (e.g., lion), they:

1) harvest new basic and intermediate con-
cepts from the Web in an iterative fashion,
using doubly-anchored patterns (DAP) like
‘〈root〉 such as 〈seed〉 and ∗’ and inverse DAP
(i.e., DAP−1) like ‘∗ such as 〈term1〉 and 〈term2〉’;

2) rank the extracted DAP and DAP−1 nodes by out-
degree and in-degree, respectively, to prune out less
promising terms;

3) induce the final taxonomic structure by positioning the
intermediate nodes betwen basic level and root terms
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using a variety of surface patterns along the line of
Hearst (1992).

4) finally, they eliminate cycles, as well as nodes with
no predecessor or no successor, and they select the
longest path in case of multiple paths between node
pairs.

As remarked in the introduction, K&H do not actually ap-
ply their algorithm to the task of creating a new taxonomy,
but instead try to reproduce three WordNet taxonomies, un-
der the assumption that the taxonomy nodes are known. In
other terms, when given a reference taxonomy, during the
graph growing steps 1 and 2, they reject nodes that do not
belong to the reference.

3.2. Results
Figure 3 shows, for each domain ((a) ANIMALS, (b)
PLANTS, (c) VEHICLES, and (d) VIRUSES), and for each
“anonymized” hierarchy, a plot of Bi

1,2 values multiplied
by the penalty factor. The generally decreasing values of
Bi

1,2 in Figure 3 show that, as expected, mimicking the
clustering criteria of a taxonomy created by a team of ex-
perts proves very difficult at the lowest levels, while perfor-
mance grows in the subsequent generalization steps. As far
as the comparison with K&H is concerned, we note that,
though K&H obtain in general better performance5, On-
toLearn Reloaded has higher coverage over the domain, as
is shown by the highest values for i = 0, and, especially
with DAG[0 − 99], has a higher depth of the derived hier-
archy. Another recurrent phenomenon is that K&H curves
gracefully degrade from the root to the leaf nodes, possi-
bly with a peak in the intermediate levels, while OntoLearn
Reloaded has a hollow in the mid-high region (see the re-
gion 4-6 for ANIMALS and 1-2 for the other three hierar-
chies) and often a relative peak in the lowest levels. In what
follows we explain these recurrent phenomena.
As we move from leaf nodes to the upper ontology, the
extracted terms become progressively more general and
consequently more ambiguous. OntoLearn uses a context-
based disambiguation strategy which is rather successful at
the lowest levels, but is more error-prone when moving to-
wards the upper levels. But why are these errors frequent at
the intermediate levels and not at the highest levels? An ex-
ample in the ANIMAL domain is represented by the induced
hypernymy sequence fawn← color ← race← breed←
domestic animal, where the wrong hypernym color was
originated by the definition “FAWN is a light yellowish
brown COLOR that is usually used in reference to a dog’s
coat color.“. Here, the word ”dog” caused the sentence to
be considered in-domain. In many cases, wrong hypernyms
do not accumulate sufficient weight and create “dead-end”
hypernymy chains, which are pruned during the optimal
branching step (see Section 3.1.), but unfortunately a do-
main appropriate definition is found for color: “a COLOR

5Again we remark that K&H, when reproducing a reference
taxonomy, reject nodes that do not belong to the reference, while
OntoLearn Reloaded is only provided with a set of ”leaf” nodes.
In this experiment, we used the same set of seeds as in (Kozareva
and Hovy, 2010)

Experiment VIRUSES ANIMALS PLANTS VEHICLES

TREE 0.123 0.102 0.174 0.092
DAG [1,3] 0.139 0.091 0.217 0.094
DAG [0,99] 0.165 0.162 0.251 0.132
K&H n.a. 0.11 0.229 0.518

Table 2: Values of B1,2 for the domains of VIRUSES, ANI-
MALS, PLANTS, VEHICLES.

is a RACE with skin pigmentation different from the white
race”. On the other hand, this new sentence produces an at-
tachment that, in a sense, rectifies the error, because race is
a “good” domain concept that eventually ends up in subse-
quent iterations to the upper node domestic animal. Many
examples like this can be found in all domains. Clearly,
K&H do not experience the same phenomenon, since they
assume that the set of ontology concepts is known and re-
ject any non gold standard node.
At the lowest taxonomy levels, errors are caused by two
contrary phenomena: overgeneralization and overspecial-
ization. For example, macaque has monkey as a direct hy-
pernym in WordNet, while we find short-tailed monkey as
a direct hypernym of macaque. An opposite case is ganoid
which is a taleostan in WordNet and simply a fish in our
taxonomy. The first case does not reward the learned taxon-
omy (though, unlike for the overlapping factor (Maedche et
al., 2002), it does not cause a penalty), while the second is
quite penalizing.
Finally, in Table 2 we show the cumulative B1,2 values for
the four domains, according to formula 2. Here, except
for the VEHICLES domain, the unconstrained DAG[0, 99]
performs best.

3.3. Artificial Evaluation
In (Zavitsanos et al., 2011) and (Brank et al., 2006) the eval-
uation methodology is assessed in a controlled experimen-
tal setting, by using a set of damage operators on a reference
gold standard taxonomy. In this Section we apply the same
assessment technique on the four taxonomies of Figure 3
and on the GENIA ontology6. We apply the same damage
operators introduced in (Zavitsanos et al., 2011), namely:
swap concept, remove concept, add concept, add relation.
We did not include the operator change concept representa-
tion because it only applies to their methodology, summa-
rized in Section 4..
For each damage type, we apply a growing perturbation de-
gree, from 10% to 100%, to monitor the system behaviour
under realistic conditions, since rarely in the literature does
the overlapping factor between a learned and a reference
taxonomy exceed 50%. To compare with (Zavitsanos et al.,
2011), for the GENIA ontology we also applied a differ-
ent strategy with only 10 perturbations. For each perturba-
tion, we ran 50 different tests, thus performing 500 tests per
damage type as was done in (Zavitsanos et al., 2011).
When comparing the two measures, see Figures 5 (a) and
(b), it is interesting to observe that only the “add relation”
perturbation produces more or less the same effect. Vicev-
ersa, the comparison shows that the F&M evaluation model
is less penalizing for ”add concept” and ”swap concept”,

6http://www.tsujii.is.s.u-tokyo.ac.jp/GENIA
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Figure 2: The taxonomy learning workflow.
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Figure 3: Gold standard evaluation of our three versions of OntoLearn Reloaded against WordNet (Animals, Plants and
Vehicles) and MeSH (Viruses). A comparison with K&H is also shown for the first three domains.

and more so for ”remove concept”. This is a desired ef-
fect, because discovering new concepts does not necessar-
ily mean producing an error (remember, e.g., the short-
tailed monkey example), while removing concepts certainly
implies a loss of information. Finally the global damage of
a swap is reduced in our F&M model, since the hierarchical
clustering methodology eventually cancels the error (soon
or later the swapped concepts rejoin).

4. Related Work

Gold Standard evaluation against an automatically learned
ontology has been analyzed in a systematic way in (Zav-
itsanos et al., 2011) and (Brank et al., 2006). Both meth-
ods attempt to escape the naming problem that we outlined
in the introduction, adopting two different strategies. Za-
vistanos and his colleagues (Zavitsanos et al., 2011) pro-
pose transforming the ontology concepts and their proper-
ties into distributions over the terms space of the source
data from which the ontology has been learned. These dis-
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Figure 4: Artificial perturbations on the Animals Plants Vehicles and Viruses gold standards.
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Figure 5: Comparison between the method in (Zavitsanos et al., 2011) (a) and the modified F&M measure (b).

tributions are used to compute pairwise concept similarity
between reference and learned ontologies. The approach
seems interesting, however, it is evaluated only within an
in-vitro experiment, here described in Section 3.3..

Brank et al. (2006) exploit the analogy between ontology
learning and unsupervised clustering, as we do, and pro-
pose the Rand Index (Rand, 1971) to compute the similar-
ity between a learned ontology l and a gold standard r. The
Rand Index measures the similarity between two cluster-
ings Cl and Cr by the formula: R(Cl, Cr) = 2(n11+n00)

n(n−1)

where n11, n00 and n have the same meaning as for the
F&M measure. R ranges from 0 (no pair classified in the
same way under both clusterings) to 1 (identical cluster-
ings). In (Brank et al., 2006), a clustering is obtained from
an ontology by associating every ontology instance to its
concept. The set of clusters is hence represented by the set
of leaf concepts in the hierarchy, i.e. , according to our
notation, the clustering Ck−1

i . To account for the hierar-
chical structure, they define the OntoRand formula. This

measure, rather than returning 1 or 0 depending whether or
not two given instances i and j belong to the same cluster
in the compared ontologies, returns a real number in [0, 1]
depending upon the distance between i and j in terms of
common ancestors. In other terms, if i and j do not be-
long to the same concept but have a very close common
ancestor, the OntoRand measure still returns a value close
to 1. Morey and Agresti (1981) demonstrated a high depen-
dency of the Rand Index upon the number of clusters, while
Fowlkes and Mallows (1983) show that the Rand Index has
the undesirable property of converging to 1 as the number
of clusters increases, even in the unrealistic case of inde-
pendent clusterings. These undesired outcomes have been
experienced also in (Brank et al., 2006), who note in their
experimental section that: the similarity of an ontology to
the original one is still 0.74 even if only the top three levels
of the ontology have been kept. Another problem with the
OntoRand formula, as also remarked in (Zavitsanos et al.,
2011), is the requirement of comparing ontologies with the
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same set of instances.
To summarize, our modified F&M measure has several ad-
vantages over previous approaches, since:

i) it allows comparison at different levels of depth of the
hierarchy, penalizing errors at the highest cuts of the
hierarchy;

ii) it does not require that the two hierarchies have the
same depth, nor that they have the same number of
leaf nodes;

iii) the measure can be extended to lattices, e.g. it is not
required that each object belongs precisely to one clus-
ter;

iv) it penalizes the introduction of new concepts (which
cannot be a-priori considered as errors) to a lesser de-
gree and assigns a graded penalty to concept swaps,
depending on their hierarchical distance in the learned
taxonomy.

5. Conclusions
In this paper we proposed a methodology for evaluating a
taxonomy learned entirely from scratch against an exist-
ing gold standard. The method has some advantages over
existing approaches, such as (Zavitsanos et al., 2011) and
(Brank et al., 2006). Our methodology was assessed both
through the evaluation of four automatically learned tax-
onomies and through artificial perturbation experiments.
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