
Evaluation of Online Dialogue Policy Learning Techniques

Alexandros Papangelis1,2, Vangelis Karkaletsis1, Fillia Makedon2

1Institute of Informatics and Telecommunications, N.C.S.R. “Demokritos”, Athens, Greece
2Heracleia Human-Centered Computing Lab, Dept. of CSE, University of Texas at Arlington, Arlington, TX, USA

alexandros.papangelis@mavs.uta.edu, vangelis@iit.demokritos.gr, makedon@uta.edu

Abstract
The number of applied Dialogue Systems is ever increasing in several service providing and other applications as a way to efficiently
and inexpensively serve large numbers of customers. A DS that employs some form of adaptation to the environment and its users is
called an Adaptive Dialogue System (ADS). A significant part of the research community has lately focused on ADS and many existing
or novel techniques are being applied to this problem. One of the most promising techniques is Reinforcement Learning (RL) and
especially online RL. This paper focuses on online RL techniques used to achieve adaptation in Dialogue Management and provides
an evaluation of various such methods in an effort to aid the designers of ADS in deciding which method to use. To the best of our
knowledge there is no other work to compare online RL techniques on the dialogue management problem.

Keywords: Adaptive Dialogue Systems, Evaluation, Reinforcement Learning

1. Introduction

A Dialogue System (DS) is a system that is able to make
human-like conversation with its users in order to retrieve
information and meet the users’ goals. Such a system
can be used for a variety of purposes, from helping users
book flights and hotels to keeping them company, helping
them learn a new subject or helping and motivating them
in their rehabilitation process. An Adaptive Dialogue Sys-
tem (ADS) is a DS that is moreover able to adjust to its
environment, to individual users and their current needs.
ADS is a rapidly growing field and is receiving more and
more attention from the research community. One criti-
cal aspect of it is how to achieve adaptation in the several
modules of a DS. There has been much work in this di-
rection, in adaptive (trainable) Natural Language Genera-
tion (NLG) (Rieser and Lemon, 2009), adaptive Referring
Expression Generation (REG) (Janarthanam and Lemon,
2009) and adaptive Dialogue Management. The current
trend for achieving adaptation is training with Reinforce-
ment Learning (RL) techniques, since it is easy to cast the
dialogue problem to RL formulation and take advantage of
the algorithms that have been developed in this field.
ADS that have been proposed in the literature and apply RL
techniques for adaptation include the work of Cuayáhuitl et
al. (2010) who propose a system targeted for travel plan-
ning. The authors take a hierarchical RL approach to learn
optimal dialogue policies for hybrid actions (i.e. complex
actions, composed of basic actions). Young et al. (2010)
propose an ADS for providing touristic information in a fic-
titious city. Their system can scale to real world problems
and is able to handle uncertainty due to noise or misun-
derstandings. Konstantopoulos (2010) proposes a museum
guide ADS, able to provide exhibit descriptions to the mu-
seum’s visitors. The system can adapt to the users’ person-
ality by computing their mood or long term emotional state.
It is also able to adapt its output according to how experi-
enced the visitor is. Last, it maintains a system emotional
state that is affected by the user’s utterance and affects its

output accordingly.

All the systems described so far, while having many bene-
fits such as error handling or scalability, learn optimal dia-
logue policies offline. This means that when they actually
interact with users they follow a static policy, which may be
optimal but is not flexible to environmental changes (such
as a user switching goals or a major environmental change
that affects all users). To tackle this problem, Pietquin et al.
(2011) propose an ADS which provides information about
restaurants in a fictitious town and is able to learn optimal
dialogue policies online, using a particle filtering approach.
Gašić et al. (2011) also propose an ADS that builds upon
the ADS proposed by Young et al. (2010) and is able to
learn optimal dialogue policies online, using a Gaussian
Process approach. Jurčı́ček et al. (2010) propose a novel
online algorithm for DS parameter estimation, called Natu-
ral Actor - Belief Critic (NABC), which based on observed
rewards, estimates the natural gradient of the expected cu-
mulative reward and then performs gradient ascend follow-
ing that gradient.

This paper focuses on the evaluation of RL techniques ap-
plied to online Dialogue Management, an under-explored
research direction. Several existing online RL algorithms
are compared, on the Olympus/RavenClaw platform (Bo-
hus and Rudnicky, 2009), against each other on a simple
generic slot filling scenario (up to 210 states). Evaluation
was done through extensive user simulations. We also at-
tempt to explain the results and provide insight on why
some algorithms perform better than others. Our contribu-
tion is that, for the first time to the best of our knowledge,
we directly compare several online RL algorithms on a real
ADS and on a high dimensional generic problem.

The rest of the paper is structured as follows: section 2
provides a brief overview of the basics of RL, section 3
presents our dialogue policy learning architecture and de-
scribes our problem formulation and experimental setup,
section 4 presents our results and section 5 concludes this
paper.

1410

2. Background
To understand what reinforcement learning is about we first
need to introduce Markov Decision Processes (MDP). An
MDP is defined as a triplet M = {X,A, P}, where X
is a non empty set of states, A is a non empty set of ac-
tions and P is a transition probability kernel that assigns
probability measures over X ×R for each state-action pair
(x, a) ∈ X × A. Each transition from a state to another
is associated with an immediate reward, as dictated by the
reward function:

R(x, a) = E[r(x, a)] (1)

where r(x, a) is the actual immediate reward, received after
each transition. The cumulative discounted rewards, col-
lected during transitions from state to state until a final state
is reached, are called return and are defined as:

ρ =

∞∑
t=0

γtR(xt, at) (2)

The parameter γ ∈ [0, 1] is a discount factor that regulates
the importance of future rewards. When γ → 1 then future
rewards become more important and when γ → 0 they be-
come less important and more weight is given in the current
(immediate) reward. In most problems that are modelled
as MDPs we are interested in maximizing the cumulative
discounted rewards. We therefore need to select an action
for each state that will ultimately maximize the return. An
MDP policy π : X → A is a mapping that dictates which
action to take from each state the system can be in. An
optimal policy is a policy that maximizes the cumulative
discounted expected rewards and finding this policy is the
goal of RL (Szepesvári, 2010). In order to evaluate a given
policy, we define a function, called the value function V :

V π(x) = E[
∞∑
t=0

γtRt+1|X0 = x] (3)

This function yields the expected cumulative rewards the
system receives when it follows policy π and its initial state
is x. The return of a given policy π is defined as:

ρπ =

∞∑
t=0

γtRt(xt, π(xt)) (4)

An optimal policy π? satisfies ρπ
?

(x) = V π
?

(x),∀x ∈ X .
Similar to function V , we define another function, called
the action-value function Q:

Qπ(x, α) = E[
∞∑
t=0

γtRt+1|X0 = x,A0 = α] (5)

This function yields the expected cumulative rewards the
system receives when it follows policy π, its initial state is
x and its initial action is a (Sutton and Barto, 1998).
RL is preferable in ADS because the generic slot filling di-
alogue problem can be easily cast in RL formulation. It
models required information as slots that need to be filled
by the user, for example a slot could be the date of travel
and another could be a restaurant type. Once the system
has enough slots filled (i.e. enough information) it attempts

to answer the user’s query. If we model slots as states and
system actions as requests for one or more slot values we
get the MDP representation of the slot filling problem.
RL algorithms can be divided in two categories: planning
(or model-based) and learning (or model-free) algorithms.
Their main difference is that learning algorithms use ex-
perience (samples or training examples) from interactions
with the environment while planning algorithms also use
experience simulated by a trained model of the environ-
ment (Sutton and Barto, 1998). According to their prop-
erties and the way they are trained, RL algorithms can be
further categorized as online or offline learning algorithms.
Note here that we only compared online learning and plan-
ning algorithms. In (Atkeson and Santamaria, 1997) the
authors compare model based and model free algorithms
but not the ones we evaluate here. Depending on whether
they follow the policy being learned or another they can be
characterized as on or off policy algorithms. RL algorithms
can also be characterized as policy iteration or value itera-
tion algorithms depending on how they update and evaluate
their policy. For our evaluation to be complete we have
selected algorithms from each category, as shown in Ta-
ble 1. To evaluate model based approaches we used the
Dyna architecture (Sutton and Barto, 1998) combined with
all learning algorithms we evaluated.

Algorithm Model Policy Iteration
SARSA(λ) No On Value
Q-Learning No Off Value

Q(λ) No Off Value
Actor Critic-QV No On Policy
DynaSARSA(λ) Yes On Value

DynaQ Yes Off Value
DynaQ(λ) Yes Off Value

DynaActorCritic-QV Yes On Policy
Table 1: Algorithm characteristics.

SARSA(λ)
This is one of the most widely used algorithms in ADS,
mostly for dialogue policy learning. This algorithm em-
ploys temporal difference techniques to estimate Q(s, a),
which is represented as a matrix and thus learn the opti-
mal policy. It also uses a matrix, called eligibility traces, to
store past experience (states visited and actions taken) and
aid the learning process. SARSA(λ) is a model-free algo-
rithm and we call its model-based version, according to the
Dyna framework, DynaSARSA(λ).

Q Learning
As the name implies, Q-Learning learns an estimate of
Q(s, a) as well. It was proposed by Watkins (1989) and
the most significant difference it has with SARSA(λ) is
that it uses the difference of Q(s′, a∗) − Q(s, a) in order
to make the next update, where s′ is the next state and a?

is the optimal action to take from that state according to a
greedy policy. Also, that update is applied to a single en-
try of Q(s, a), rather than the whole matrix, as in the case
of SARSA(λ). Last, Q-Learning does not apply eligibility
traces to aid learning. DynaQ-Learning is the Dyna (i.e.
model-based) version of this algorithm.

1411

Q(λ)
This algorithm is an extension of Q-Learning. It uses the
same temporal difference to make updates but updates the
whole matrix Q(s, a) instead of a single entry and also
uses eligibility traces to take past experience into account
(Watkins, 1989; Peng and Williams, 1996). The model-
based version of this algorithm is DynaQ(λ).

Actor Critic QV
This algorithm is an actor-critic algorithm, meaning it uses
an actor to follow a policy and a critic to evaluate it. Note
that these policies need not be the same. ActorCritic-QV
makes actor or critic updates according to the temporal
difference of Q(s, a) − V (s) (Wiering and Van Hasselt,
2009). Its model-based version, according to Dyna, is the
DynaActorCritic-QV algorithm.

The advantage of online methods is that at each dialogue
turn we only need to take into account states that can be
reached from the current state. We thus have to compute
the maximum value of only the current state and not of ev-
ery one. Another advantage is that online algorithms are
applicable to dynamic environments as learning never stops
and the system is able to adapt to environmental changes.
Off-policy online learning has the advantage of consider-
ing actions that the behaviour policy does not select, which
cannot be done in on-policy learning if the target policy is
not stochastic. Moreover, even if the target policy is nonde-
terministic the algorithm will most likely produce bad esti-
mates for the less often visited actions (Szepesvári, 2010).

3. Experimental Setup
Our system is based on CMU’s Olympus/RavenClaw plat-
form (Bohus and Rudnicky, 2009), which is an open source
platform for developing spoken dialogue systems. To
achieve adaptation in dialogue management we have devel-
oped a learning component for each algorithm, located at
the backend server, where all data processing is performed.
The dialogue manager calls the appropriate update function
after each interaction with the real or simulated user. Fig-
ure 1 depicts the Dialogue Manager (DM) and the Backend
Server of our system.

Figure 1: Dialogue Manager and Learning Algorithms.

The DM forwards the current dialogue state x, last action a
and reward R(x, a) to the appropriate learning component
in the back-end server. The component then computes the
new system action a′ and the new dialogue state x′ accord-
ing to an online RL algorithm and forwards them to the
DM. The DM will then forward the selected action a′ to
the appropriate component of Olympus (for example NLG)
which will execute it.

To evaluate the selected methods we needed a model of
ADS. A commonly used model is the so called slot filling
model. This model assumes that the user’s query can be
formed as a paragraph in every day language. For example,
in a museum guide ADS, a user looking for an exhibit with
specific properties would form his / her request as: “I would
like to see a Greek amphora that was found in Athens, dat-
ing around 50 BC”. The system may therefore have a tem-
plate to represent generic user queries, such as: “I would
like to see a Greek [] found in [], dating around
[]”. The system then would have to ask questions in
order to fill the empty slots in the paragraph, for example to
fill the first slot it could ask: “What type of exhibit are you
interested in learning about?”. Such questions that request
slot values are abstractly represented as actions in the ADS
(e.g. ‘ask for slot value of ExhibitType’). This approach is
called slot filling. An example museum guide ADS could
use the following setup:

• Slots: Exhibit Type, Artist, Location Found, Time Pe-
riod

– Exhibit Type Values: <empty>, Amphora,
Temple, Statue, Sword, Battlefield, Epic, Tech-
nology

– Artist Values: <empty>, Iktinos, Kallikrates,
Homer, Anonymous

– Location Found Values: <empty>, Athens,
Sparta, Crete, Delos

– Time Period Values: <empty>, 1000BC,
900BC, ..., 0, 100AD

• Actions: Welcome, Request Exhibit Type, Request
Artist, Request Location Found, Request Time Period,
Show Results, Greet Goodbye

RL can be easily applied to this problem, if we model it as
a MDP. The dialogue states can be represented as a vector
containing the slots to be filled and the system actions as
requests for slots (filled when the user provides the answer).
The reward function also needs to be defined (along with
transition probabilities etc) in a way that reflects what we
want to optimize, for example that we most likely want to
minimize dialogue length, maximize user satisfaction and
so on. Formally the slot filling problem is defined as:

• S = {s1, ..., sN}, the slots to be filled

• Mi = {1, ..., |Ti|}, the values for each slot

• A ∈ {1, ..., |S|}, the available system actions

• d =< s1, ..., sN >∈M , the dialogue state

• M =M0 ×M1 × ...×MN , the set of values for d

• q ⊂ S, the user’s query

where Ti are the different values slot si can be filled with,
S are the N slots to be filled and each slot si can take val-
ues from Mi. Dialogue state is defined as a vector d ∈ M ,
where each dimension corresponds to a slot and its value

1412

corresponds to the slot’s value. System actions A are de-
fined as requests for slots to be filled, where action ai re-
quests the value of slot si. At each dialogue state di we
define a set of available actions ãi ⊂ A. The user query q is
defined as the slots that need to be filled so that the system
will be able to accurately provide an answer. We assume
action aN always means Give Answer and, consequently,
slot sN ’s value shows if an answer has been provided to the
user or not. The reward function is defined as:

d -1, if a 6= aN
R(d,a) = a -100, if a = aN AND ∃qi|qi = ∅

b 0, if a = aN AND ¬∃qi|qi = ∅
(6)

Thus, the optimal reward for each problem is: −|q| assum-
ing |q| < |S|. This reward function penalizes long dia-
logues (-1 for each action taken) or inaccurate responses
(-100 if the system provides results without all slots filled)
and rewards accurate responses (when all slots have been
filled). For example, if a system has 4 slots, 4 actions, bi-
nary values for each slot and a user query q = {1, 2, 3},
then a transition from state d1 =< 0, 0, 0, 0 > to state
d2 =< 1, 0, 0, 0 > would incur a reward of −1. A tran-
sition to state d3 =< 0, 0, 0, 1 > would incur a reward
of −100, since the last action is Give Answer and ob-
viously the system has no slot filled yet. On the other
hand, a transition from state d4 =< 1, 1, 1, 0 > to state
d5 =< 1, 1, 1, 1 > would incur a reward of 0, since all
slots of the query q have been filled and the system cor-
rectly attempts to provide an answer.
In order to compare algorithms to the best of each one’s
abilities we optimized their parameters in an exhaustive
manner. We assessed how each algorithm performed on
a given problem, varying its parameters by a small value
at each run. Table 2 shows the parameter values we used,
where α is the (actor) learning rate, β is the critic learning
rate, γ is the discount factor, ε is the probability by which
we select a random action in ε-greedy policies and I is the
number of iterations the model is trained for, after each in-
teraction with the user in the Dyna architecture. Note here
that ε, α and β in general were decaying as the episodes
progressed to reduce exploration and learning rates respec-
tively. We made sure however that ε, α, β > 0 to make sure
learning did not stop. Note here that ε was set to 0.01 for
every algorithm.

Algorithm α β γ λ I
SARSA(λ) 0.95 - 0.55 0.4 -
Q-Learning 0.8 - 0.4 - -

Q(λ) 0.95 - 0.95 0.05 -
Actor Critic-QV 0.9 0.25 0.75 - -
DynaSARSA(λ) 0.95 - 0.25 0.25 15

DynaQ 0.8 - 0.4 - 15
DynaQ(λ) 0.8 - 0.4 0.05 15

DynaActorCritic-QV 0.9 0.05 0.75 - 15
Table 2: Optimized parameter values.

4. Evaluation
Dialogue Systems’ evaluation is an open problem and the
current trend in ADS evaluation, when RL is used for train-

ing, is comparison of the total reward each system received.
The reward function typically depends on common param-
eters, such as length of dialogue, achievement of goals etc.
In our case R(d, a) favours short dialogues and penalises
attempts to answer without the required information.
Evaluation was done with user simulations, in a noise free
environment. We opted for user simulations since they have
many advantages, such as the fact that we can easily train
large systems and see how they perform and the fact that
they are cost effective and not time consuming. Of course
the ultimate goal of a dialogue system is to interact with hu-
mans so a real user trial is imperative (although real user tri-
als do have disadvantages). Online learning systems how-
ever can easily adapt to real users, even if initially trained
using simulations, since learning never stops.
The user simulation model we used for our evaluation was
a noise free model where the simulated user is assumed to
always respond correctly to system requests. We opted for
this type of simulation to maintain simplicity. The inter-
ested reader may easily extend our model to account for
uncertainty due to noise, misunderstandings, changes in the
environment or user goals etc.
We conducted three experiments to see how fast each algo-
rithm learns, how well it scales and how it responds to envi-
ronmental changes. Note here that we constrained the num-
ber of iterations per episode to 2|S|+1. This ensures enough
opportunities for exploration and does not allow bad direc-
tions to be followed for too long. To evaluate learning speed
we marked the episode on which each algorithm converged,
averaged over 20 runs. An algorithm is considered to have
converged if it yields the optimal reward for at least 20 con-
secutive episodes. The episode of convergence though is
the first episode of that series, where optimal reward was
achieved. We opted for as high a dimensional problem as
implementation and evaluation restrictions would allow to
be as close as possible to real world problems. Table 3 be-
low, shows the results on a problem with 1024 dialogue
states, 10 slots, 2 values per slot (filled/empty) and 10 ac-
tions.

Algorithm Converge After Episode
SARSA(λ) 645
Q-Learning 856

Q(λ) 717
Actor Critic-QV 1135
DynaSARSA(λ) 564

DynaQ 851
DynaQ(λ) 435

DynaActorCritic-QV 961
Table 3: Algorithms’ learning speed.

We can see here that DynaQ(λ) greatly outperforms the
other algorithms with DynaSARSA(λ) being second best
but with a considerable difference. While Q(λ), like
SARSA(λ), disseminates new information to previously
visited states, it converges slower mainly due to its insta-
bility that disappears as episodes progress. Moreover, Q-
Learning and Actor Critic-QV perform much worse during
the initial episodes. Actor Critic-QV exhibits instabilities
as well even though it yields some optimal rewards quickly
enough. Due to this it requires more than 1000 episodes to

1413

converge and DynaActorCritic-QV requires close to 1000
but both are generally stable afterwards. Q-Learning per-
forms worse than Q(λ) because it updates a single en-
try of its Q matrix after each interaction. It is important
to note here, however, that model based algorithms need
much more absolute time to converge, since at each itera-
tion of each episode they also make I additional iterations
while processing simulated data derived from their models.
Moreover, the models themselves require additional mem-
ory space, compared to the model-free algorithms.

Algorithm 7x7 8x8 9x9 10x10
SARSA(λ) -16.53 -19.94 -29.50 -40.08
Q-Learning -29.16 -41.31 -57.50 -56.40

Q(λ) -15.48 -19.75 -37.60 -41.34
AC-QV -25.94 -34.48 -45.75 -52.79

DSARSA(λ) -19.91 -31.29 -42.50 -57.75
DynaQ -29.08 -41.07 -57.81 -56.69

DynaQ(λ) -18.72 -23.95 -24.76 -29.36
DynaAC-QV -56.81 -54.60 -53.22 -53.05

Optimal -6 -7 -8 -9
Episodes 300 400 500 600

Table 4: Average reward for various problem sizes.

To evaluate the scalability of each algorithm we conducted
experiments varying the problem dimension, where by di-
mension we mean the number of slots and actions N . We
run each algorithm 20 times and measured the average re-
wards received after each experiment, for 7 slots and 7 ac-
tions (7x7) up to 10 slots and 10 actions (10x10). Table
4 shows the results of this experiment, where the Optimal
row shows the optimal reward that an optimal policy would
achieve in each problem dimension. The learning algo-
rithms try to converge to such a policy, but while learning
they follow suboptimal policies, leading to lower rewards.
The average reward of an algorithm indicates how fast the
algorithm converged to an optimal policy, as the more opti-
mal rewards it receives in the allowed episodes, the closer
the average will get to the Optimal value. Lower average
reward values show either slow convergence or instability.

Algorithm Converg. Ep. Additional Ep.
SARSA(λ) 659 59
Q-Learning 971 371

Q(λ) 632 32
Actor Critic-QV 729 129
DynaSARSA(λ) 905 305

DynaQ >1000 >400
DynaQ(λ) 675 75

DynaActorCritic-QV 797 197
Table 5: Additional episodes required to converge again

after environmental changes at episode 600.

We can see here that in smaller problems Q(λ) per-
forms best with SARSA(λ) and DynaQ(λ) following close,
and on higher problem sizes DynaQ(λ) performs best
with SARSA(λ) following in performance. In the 7x7
and 8x8 problems the difference in performance between
SARSA(λ), Q(λ) and DynaQ(λ) is not statistically signif-
icant, while in higher problem sizes those differences are
statistically significant. The rest of the algorithms perform

worse, having statistically significant differences between
them, with Dyna algorithms (except for DynaQ(λ)) usually
being among the worst. DynaActorCritic-QV seems to per-
form similarly on all problem sizes mainly because it needs
more episodes than those allowed to converge. This also
explains the fact that its performance slightly increases on
higher problem sizes, where more episodes are allowed.
To evaluate how each algorithm reacts to environmental
changes, something typical in ADS, we changed the user’s
query and consequently the reward function, after the algo-
rithms had converged, to see how fast they could converge
to the new setting. We allowed 600 episodes for each al-
gorithm to converge, then changed the query and allowed
another 400 episodes to converge to the new problem, thus
allowing 1000 episodes in total. The problem had 512 dia-
logue states, 9 slots and 9 actions. Table 5 shows the results
where Q(λ) appears to perform better than any other algo-
rithm, contrary to Q-Learning and DynaQ-Learning who
do not react well to change. SARSA(λ) and DynaQ(λ) fol-
low in terms of performance with a considerable difference
from the rest algorithms. Model based algorithms, except
for DynaQ(λ) perform worse than their respective model
free versions, probably due to the fact that their models
were trained on pre-change interactions with the environ-
ment and continue to be trained this way until the major-
ity of table entries are updated by post-change interactions.
Note that the higher the number of iterations the model is
trained for (I), the worse model based algorithms reacted
to change.

5. Conclusion and Future Work
Atkeson and Santamaria (1997) conclude that model based
algorithms can handle changes in the pendulum problem
better than model free ones. In the slot filling dialogue
problem, however, this might not be the case as not all
model-based algorithms performed well on the three exper-
iments, except for DynaQ(λ) that performed very well on
all of them. Q(λ) and SARSA(λ) performed slightly worse
but, including ActorCritic-QV they are much simpler and
cheaper to implement and much faster to run, with Actor
Critic-QV being the fastest of our evaluation. Note also that
Q(λ) performs best in the presence of changes, but cannot
scale as well as DynaQ(λ). DynaQ(λ) performs best when
the query does not change and well enough when it does,
but with an additional cost in time and memory space, due
to the model representation and the additional iterations the
algorithm must perform.
As a conclusion, learning algorithms perform generally
better than model-based ones when Dyna architecture is
adopted, again excluding DynaQ(λ). In ADS, changes in
the environment are frequent and one should expect this
when designing a learning algorithm for ADS dialogue
management and should avoid algorithms that do not adapt
well to environmental changes. ActorCritic-QV is very fast
and reacts well to change so it should be chosen if com-
putational speed is important. Another aspect of environ-
mental changes is changes in the user’s goal, in the middle
of the interaction. This means the algorithm would need
to converge to the optimal solution in the same episode the
change occurs. None of the algorithms we selected is able

1414

to do this hinting that more focused techniques are required
rather than simple RL algorithms.
Apart from their performance, a major drawback of the
evaluated algorithms is the size of the table needed to store
state-action values in high dimensional or continuous prob-
lems. Function approximation can tackle this problem but
one must take care when selecting features and their distri-
bution (Wu and Meleis, 2008; Allen and Fritzsche, 2011).
In the future we plan to explore several function approxima-
tion techniques and more state of the art algorithms such as
Kallman Temporal Differences (Geist and Pietquin, 2010),
Gaussian Process - SARSA (Gašić et al., 2010) and Natu-
ral Actor - Belief Critic (Jurčı́ček et al., 2011), on a model
that will be able to account for uncertainty and misunder-
standings. We also plan to explore other model based archi-
tectures such as Rmax and conduct experiments with real
users.

6. References
Allen, M., Fritzsche, P., 2011, Reinforcement learning

with adaptive Kanerva encoding for Xpilot game AI, In
IEEE Annual Congress on Evolutionary Computation,
pp. 1521–1528.

Atkeson, C., Santamaria, J., 1997, A comparison of direct
and model-based reinforcement learning, Robotics and
Automation, volume 4, pp. 3557-3564.

Bohus, D., Rudnicky, A.I., 2009, The ravenclaw dia-
log management framework: Architecture and systems,
Computer Speech & Language, 23(3), pp.332-361.

Cuayáhuitl, H., Renals, S., Lemon, O., Shimodaira, H.,
2010, Evaluation of a hierarchical reinforcement learn-
ing spoken dialogue system, Computer Speech & Lan-
guage, Academic Press Ltd., vol 24:2, pp. 395–429.

Gašić, M., Jurčı́ček, F., Keizer, S., Mairesse, F., Thomson,
B., Yu, K., Young, S., 2010, Gaussian processes for fast
policy optimisation of pomdp-based dialogue managers,
In Proceedings of the SIGDIAL 2010 Conference, pp.
201-204.

Geist, M., Pietquin, O., 2010, Kalman temporal differ-
ences, Journal of Artificial Intelligence Research, vol 39,
pp. 483-532.

Janarthanam, S., Lemon, O., 2009, A Two-Tier User Simu-
lation Model for Reinforcement Learning of Adaptive Re-
ferring Expression Generation Policies, SIGDIAL Con-
ference, pp. 120–123.

Jurčı́ček, F., Thomson, B., Young, S., 2011, Natural ac-
tor and belief critic: Reinforcement algorithm for learn-
ing parameters of dialogue systems modelled as pomdps,
ACM Transactions on Speech and Language Processing
(TSLP), vol 7(3):6, pp. 1–26.

Konstantopoulos S., 2010, An Embodied Dialogue System
with Personality and Emotions, Proceedings of the 2010
Workshop on Companionable Dialogue Systems, ACL
2010, p.p 31-36.

Peng, J., Williams, R., 1996, Incremental multi-step Q-
Learning, Machine Learning, vol. 22:1, pp. 283–290.

Rieser, V., Lemon, O., 2009, Natural Language Genera-
tion as Planning Under Uncertainty for Spoken Dialogue
Systems, Proceedings of the 12th Conference of the Eu-
ropean Chapter of the ACL (EACL 2009), pp. 683–691.

Sutton, R.S., Barto, A.G., 1998, Reinforcement Learning:
An Introduction, The MIT Press, Cambridge, MA.

Szepesvári, C., 2010, Algorithms for Reinforcement
Learning, Morgan & Claypool Publishers, Synthesis
Lectures on Artificial Intelligence and Machine Learn-
ing, vol 4:1, pp. 1–103.

Watkins, C.J.C.H., 1989, Learning from delayed rewards,
PhD Thesis, University of Cambridge, England.

Wiering, M.A., Van Hasselt, H., 2009, The QV family
compared to other reinforcement learning algorithms,
IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning, pp. 101–108.

Wu, C., Meleis, W.M., 1998, Adaptive kanerva-based
function approximation for multi-agent systems, In Pro-
ceedings of the 7th international joint conference on Au-
tonomous agents and multiagent systems, vol. 3, pp.
1361-1364.

Young, S., Gašić, M., Keizer, S., Mairesse, F., Schatzmann,
J., Thomson, B., Yu, K., 2010, The Hidden Information
State model: A practical framework for POMDP-based
spoken dialogue management, Computer Speech & Lan-
guage, vol. 24:2, pp. 150–174.

1415

