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Abstract
In this paper we explore a task-driven approach to interfacing NLP components, where language processing is guided by the end-task
that each application requires. The core idea is to generalize feature values into feature value distributions, representing under-specified
feature values, and to fit linguistic pipelines with a back-channel of specification requests through which subsequent components
can declare to preceding ones the importance of narrowing the value distribution of particular features that are critical for the current task.
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1. Motivation

Although for many years the statistical revolution in com-
putational linguistics overshadowed wide-coverage full-
depth symbolic parsing systems, in recent years it has be-
come clear that to obtain the kind of fine-grained syntactic
and semantic analyses required for many applications, a
judicious combination of deep analysis with statistically-
trained models is needed.
In this position paper we explore the possibility of design-
ing a new way of interfacing statistical and symbolic mod-
els, one that alleviates the need to either make performance
concessions or face combinatorial explosion. The core idea
is to pursue a task-driven approach where language pro-
cessing is guided by the end-task that each application re-
quires; and to achieve this by developing a novel architec-
ture and interfacing between existing methods.
To better explain our research position, let us consider two
extreme analysis pipelines: in one extreme, all analyses are
carried over from each analysis stage to the next, as in the
whiteboard architecture (Boitet and Seligman, 1994), res-
ulting in a combinatorially-exploding task that can only be
attained for very short texts or for controlled and almost un-
ambiguous language usage. Alternatively, each stage needs
to commit to the n-best analyses, as is the case in the Deep-
Thought architecture (Callmeier et al., 2004), drastically
pruning the search tree but also (especially in the earlier
stages) making uninformed and arbitrary decisions which
cannot be revised as more information becomes available.
Many approaches estimate the confidence that an analysis

is correct, or use some other method of ranking or filtering
analyses based on syntactic correctness or semantic plaus-
ibility, but all are only as informed as previous analysis
stages allow them to be.
Other approaches look beyond the sentence as the atomic
unit of text under analysis, improving results by providing
a context within which language is to be analysed. Dis-
course theories and contextual parsing methodologies help
make more informed choices in all stages of the analysis,
from choosing the most likely lexical lemma for each word,
to choosing the most likely document class at the end of
the pipeline. But the side-effect is that the unit of analysis
has become longer, so that more aggressive pruning has be-
come necessary: keeping many alternatives open at the dis-
course level is even more inefficient that keeping alternat-
ives open at the sentence level and committing to a single
context has even more serious repercussion for accuracy if
the decision turns out to be wrong. In other words, these
approaches are only as informed as the text analysed prior
to the current analysis focus allows them to be.
Probabilistic settings partly alleviate the problem of making
uninformed decisions by casting joint models of syntactic
analysis and semantic interpretation (McCallum, 2009;
Padó et al., 2009). Although these approaches explore
new trade-offs between accuracy and efficiency, they do not
avoid having to make accuracy concessions for the sake of
efficiency.
In the remainder of this paper, we first present our research
position on how to better organize linguistic pipelines and
discuss the extensions needed in order to implement it (Sec-
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tion 2.). We, then, proceed by surveying current language
processing methodologies from the perspective of their
compatibility with these extensions (Section 3.) and con-
clude by presenting our research programme (Section 4.).

2. Approach
In pursuing the goal stated above, we see two necessary
steps: generalizing feature values into feature value dis-
tributions and providing linguistic pipelines with a back-
channel of specification requests through which compon-
ents can declare the importance of ‘narrowing’ the value
distribution of particular features.

2.1. A backwards requests channel
For the purposes of demonstrating our point, let us assume
a semantic classification task, where a linguistic analysis
pipeline extracts sentence-level features from text, an inter-
pretation module combines those into a semantic represent-
ation of the textual content, and a classifier uses these latter
features to categorize the document.
We propose that instead of a purely forward-advancing
pipeline, possibly back-tracking to get out of dead-end de-
cisions, it is advantageous to have the classifier drive the
whole process by deciding which features would mostly
impact each classification decision; as opposed to having
the classifier pick what it needs from what could be ex-
tracted. In other words, we envisage an architecture imple-
menting (Figure 1):

• A backwards requests channel of information from the
‘end-consumer’ of features to the feature extraction
modules, informing the latter on the features mostly
needed to improve the former’s confidence regarding
the end-result. This allows extraction to focus compu-
tational resources on these mission-critical features.

• A forwards results channel of underspecified features,
allowing feature extraction to defer committing to spe-
cific feature values and at the same time avoid branch-
ing off into a combinatorial search space.

After an initial analysis yields a largely underspecified fea-
ture vector, a request is generated with a ranked (or simply
ordered) list of features that need to be more accurately spe-
cified. The ranking reflects an estimation of how critical it
is, for the current classification task and given what features
values are available right now, that a particular feature value
is more tightly specified.
Upon receiving such feature specification requests, inter-
pretation maps these to feature specification requests for the
linguistic analysis component, specifying particular parse
trees or fragments that need to be disambiguated. It is im-
portant to note that the interpretation module acts as a me-
diator or translator; that is to say, the interpretation module
does not set requirements based on its own notion of how
to improve the quality of the interpretation. It, rather, uses
its knowledge of the dependencies between its input and
output features in order to ‘translate’ the classifier’s request
into terms that are pertinent to linguistic analysis.
Upon receiving this request, linguistic analysis initiates a
new iteration focusing the features where a tighter approx-
imation has been requested.

The major advantage is that the system neither forces mod-
ules to commit to uninformed choices nor requires extens-
ive combinatorial searches. The individual modules retain
complete models of alternative analyses under considera-
tion, but these are not propagated to the next analysis stage;
they are rather iteratively refined until the classifier is able
to, confidently enough, provide results.

2.2. Representing underspecified features
One of the critical aspects of this methodology is the effi-
cient interfacing of the analysis modules, both at the con-
ceptual level of representing intermediate analysis results
as well as the concrete level of an efficient implementation.
More specifically, although the overall methodology re-
mains agnostic of the particularities of the representations
internally used by the various components, it requires that
components are able to export analysis results as underspe-
cified features, numeric as well as symbolic. The repres-
entation for such underspecified features should be geared
towards relaying meta-information about features, such as
the range of possible values and the distribution of a metric
of confidence along this range.
The key is that alternative analyses are not exhaustively
searched, or even shared with other components. Instead,
the current analysis at each iteration is an approximation,
represented as underspecified features. Components will
operate upon underspecified features to offer a new confid-
ence distribution as a result. In our classification example,
for instance, interpretation can be based on many-valued
semantic inference.
The final component in the pipeline, the features ‘end-user’,
should, besides being able to operate upon underspecified
features, also be able to choose which features cause the
widest variation in the end-result and should be more tightly
approximated. In our example, the classifier evaluates the
value distributions of the features based on the perturbation
they cause in the class the document falls under. In this
manner, a very wide distribution in one feature might be
acceptable if it mostly leads to the same document class
(given the value distributions of the other features), whereas
a relatively tight distribution might need to be refined if the
document class is sensitive to even small variations in this
feature’s values.
This initiates a new iteration, where each component ex-
ploits knowledge of the inter-dependencies between fea-
tures that its own methodology introduces in order to map
feedback coming from the component after it in the pipeline
into feedback for the component placed before it. That is, it
translates a request referring to the distribution over its out-
put features into a request referring to the distribution over
its input features.
In order to support the flexibility necessary to become the
basis of a variety of language technology systems, and in
order to allow for building pipelines that also include com-
ponents that do not conform to this representation, espe-
cially in the early phases of our research programme, care
must also be taken to design for extendability. More spe-
cifically, the representation should provide a mechanism of
extensions specific to certain component types (e.g., syn-
tactic analysers) or even specific component implementa-
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Figure 1: Outline of the architecture.

tions. This will allow for more detailed annotations where
relevant and where all components involved are knowledge-
able of these extensions. Naturally, such extended annota-
tions should be in addition to (and not instead of) and
should be consistent with the basic values distribution.

3. Background
As stated in the introductory section, it is desired that our
research programme is about architecture and interfacing
and does not require any substantial extensions to current
NLP methods. In this section we briefly argue about how
current methods can support the advocated re-organization
of the dependencies between components.

3.1. Classification
Classification tasks have seen various alternative formaliz-
ations in the literature: as binary decisions, as a ranking
task among multiple events, as a regression task aimed at
providing a quantitative score, and more.
As the final consumer of features, the methods that are
are consistent with our methodology must offer themselves
to the estimation of (a) the accuracy that can be achieved
by the current feature specificity, and (b) the relevance of
the different features to each particular decision. In this
manner, the classifier can thus decide that, for example,
although the values of many features are very unspecific,
enough specific features are present to make the rest of the
feature values gratuitous. If not, it estimates which features
are dominant in the decision currently at hand (taking also
into account feature values which are already specific) and
requests that they are more tightly approximated.
Conceptually, this is akin to well-studied decision prob-
lems, such as deciding what test to perform on patients
in order to establish what condition they are suffering
from. This makes frameworks of statistical decision theory
(Berger, 1985) and Markov decision processes (Puterman,
2005) most amenable, using the entropy of the distribution
over class membership as the utility function of improving
the approximation of a given feature.
Recent work on confidence-weighted linear classifiers is
also relevant, as feature meta-information is an inherent
component of the approach. Confidence-weighted classi-
fication was introduced (Dredze et al., 2008; Dredze et al.,
2010) in order to handle rare features well, as memory-
less classifiers do not distinguish between reliable features
whose weight have been tuned in the course of many up-
dates and feature weights estimated by only a few updates.
Finally, generalized linear models (Nelder and Wedder-
burn, 1972), and in particular their Bayesian treatment by

Gelman et al. (1995), provide a theoretically well-founded
basis for confidence weighting of the model vectors.

3.2. Document Interpretation
Document understanding is often approached as a semantic
inference task, fusing the various pieces of information ex-
tracted by sentence-level NLP and combining it with back-
ground knowledge in order to yield an abstract interpreta-
tion of the whole document.
The key properties that this inference process needs in order
to be compatible with our framework is that it can:

• operate upon the underspecified features represent-
ation to yield underspecified structured information
from syntactically and semantically analysed text; and

• operate in the reverse direction to map classifier re-
quests into requests for the NLP module.

Although text analysis has been approached from both
purely rule-based and purely statistical angles, approaches
that combine knowledge-based techniques with machine
learning have been gaining ground ever since such hybrid
systems were ranked at the top of the Named Entity task
at MUC-7 (Mikheev et al., 1998). Such systems com-
bine feature-extraction rules with some notion of numer-
ical valuation (probabilistic or other) in order to convey and
treat the confidence in the accuracy of each individual fea-
ture extracted; and to take this valuation into account when
raking alternative interpretations of the text (complete fea-
ture vectors).
The emergence of the Semantic Web has brought ontolo-
gies and related Semantic Web formalisms in the pole pos-
ition for encoding knowledge in knowledge-based systems,
either targeting uni-modal text analysis or multi-modal
document analysis where text is one of the modalities
(Nédellec and Nazarenko, 2005; McDowell and Cafarella,
2006; Buitelaar et al., 2008; Fragkou et al., 2008). Interest-
ingly, and despite the fact that probabilistic and fuzzy ex-
tensions of ontological inference are already in place, hy-
brid systems akin to those in the last MUC competitions
are not reported in the literature: ontology-based extraction
typically amounts to using ontologies as a terminology that
facilitates term extraction, preferring other modes of infer-
ence to identify the semantic relations between these terms
such as crisp logical inference (Aitken, 2002; Espinosa Per-
aldi et al., 2008), support vector machines (Zhou et al.,
2005; Hong, 2005), or conditional random fields (Choi et
al., 2005).
Symmetrically, the logical inference community sees fuzzy
ontologies as an opportunity to encode the semantics of
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vague language (Lukasiewicz and Straccia, 2007), and have
not explored their potential for encoding feature extraction
rules.
We argue, however, that this potential is considerable
and worth exploring: uncertainty inference systems com-
bine logical inference with numerical constraint satisfac-
tion to draw conclusions over partially known numerical
data (Konstantopoulos and Apostolikas, 2007; Bobillo and
Straccia, 2008), which fits perfectly both exploiting ontolo-
gical terminologies and other semantic background know-
ledge and operating over underspecified features. In the
reverse direction, computational intelligence methods such
as error back-propagation have been used to distribute user
feedback among the unimodal sub-components of mul-
timodal information fusion systems (Apostolikas and Kon-
stantopoulos, 2007). Such methods fit perfectly the role of
deciding which features should be more tightly approxim-
ated in order to satisfy incoming requests.

3.3. Text analysis
The core concepts required to support our approach have
already been instroduced in text analysis: that efficient but
low-accuracy first-pass attempts at analysis can be followed
up by more detailed analysis; and that commiting to a spe-
cific analysis be delayed until more information is avail-
able.
With respect ot the first, modern full-depth syntactic parsers
often rely on a shallow parsing pre-processing step. Fur-
thermore, the full-depth representation allows for spans of
shallow-parsed text to be embedded in parse trees. Such
spans are only specified by a flat label with any deeper fea-
ture structures absent.
Such shallow results are currently used as fallback to in-
crease system robustness, but for our purposes can also be
used as a first approximation. In such a situation, shallowly-
extracted flat labels would map to largely underspecified
feature structures. Upon receiving a request to specify a
given feature, the corresponding span can be deeply parsed.
In this manner, the parser can be directed, for example, to-
wards specific anaphora instances that need to be resolved
in order to extract critical features and away from resolving
ambiguities that do not contribute to the classification.
Regarding the second point that a text analysis compon-
ent can delay decisions, many modern parsers use packed
representations, allowing to efficiently maintain alternative
analyses and defer for later iterations decisions about which
analysis to propagate to next stage. One such representation
is the one used in the PET parser (Callmeier et al., 2004),
implementing an unpacking algorithm that extracts the n-
best analyses from a packed parse forest in time linear to
the number of the retrieved parse trees, regardless of the
size of the forest (Zhang et al., 2007; Zhang and Kordoni,
2010).
Similarly, Kim et al. (2010) discuss the same trade-off
between combinatorial explosion and uninformedly com-
miting to solutions in the context of ambiguity resolution
that is the focus of this paper. In order to address this,
they propose an extension of the Stanford parser (Klein
and Manning, 2003) with intensional representation of am-
biguities and the dependencies among them. The repres-

entation maintains alternatives while avoiding enumerating
them and is coupled with pruning and update algorithms
that operate directly on the packed representation.

4. Conclusions
We explored the possibility of a task-driven approach to
text understanding, where the process is guided by the ap-
plication for which it is needed. We believe this to be an
advantageous alternative to current NLP pipelines, espe-
cially for larger and more complex documents where the
overhead that our approach introduces will be offset by the
efficiency gained by not extracting gratuitous features. Fur-
thermore, since some of the computations in the process are
independently needed in some situations, e.g., maintaining
feature meta-information for model adaptation, we believe
that we can achieve substantial performance improvements
in many real-world applications.
Besides describing the core idea, we have briefly surveyed
current language processing, semantic inference, and docu-
ment classification methods and have demonstrated that our
approach can be implemented with minimal extensions to
currently common approaches.
As a first step in our research programme, we will thus test
our idea on the application discussed in this paper in order
to empirically validate and measure the expected efficiency
gain. This testbed can also be used to research further ques-
tions, such as:

• Identifying appropriate termination criteria and mech-
anisms for the iterative process.

• Developing criteria and mechanisms for deciding how
far back feedback should be pushed through the
pipeline. That is, deciding whether feedback is to be
most appropriately handled by this component or by
one of the components before it.

Further steps would include identifying other applications
besides document classification where it can be applied.
Speech processing, in particular, would be an immediate
objective, since it introduces another major factor of ambi-
guity before parsing. In particular, we expect our method
to greatly increase the size of the active vocabulary that
speech recognizers can use without leading to too many
false positive recognitions to be usable.
Finally, working out the interactions between our ap-
proach and discourse-level analysis or dialogue manage-
ment would be an interesting challenge.

5. References
James Stuart Aitken. 2002. Learning information extrac-

tion rules: An Inductive Logic Programming approach.
In Proceedings of the 15th European Conference on Ar-
tificial Intelligence (ECAI ’02).

Georgios Apostolikas and Stasinos Konstantopoulos.
2007. Error back-propagation in multi-valued logic sys-
tems. In Proceedings of the 7th International Confer-
ence on Computational Intelligence and Multimedia Ap-
plications (ICCIMA 2007), Sivakasi, Tamil Nadu, India,
13–15 December, volume IV, pages 207–213. IEEE CS
Press.

1969



James O. Berger. 1985. Statistical Decision Theory and
Bayesian Analysis. Springer.

Fernando Bobillo and Umberto Straccia. 2008. fuzzyDL:
an expressive fuzzy Description Logic reasoner. In Pro-
ceedings of the 2008 International Conference on Fuzzy
Systems (FUZZ-08).

Christian Boitet and Mark Seligman. 1994. The white-
board architecture: A way to integrate heterogeneous
components of NLP systems. In Proceedings of the 15th
Conference on Computational Linguistics (COLING-
94).

P. Buitelaar, P. Cimiano, A. Frank, M. Hartung, and
S. Racioppa. 2008. Ontology-based information extrac-
tion and integration from heterogeneous data sources.
International Journal of Human-Computer Studies,
66(11):759–788.

Ulrich Callmeier, Andreas Eisele, Ulrich Schäfer, and
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