
Cloud Logic Programming for Integrating Language Technology Resources

Markus Forsberg and Torbjörn Lager

Språkbanken, University of Gothenburg, Sweden
Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg, Sweden

markus.forsberg@svenska.gu.se, torbjorn.lager@ling.gu.se

Abstract
The main goal of the CLT Cloud project is to equip lexica, morphological processors, parsers and other software components developed
within CLT (Centre of Language Technology) with so called web API:s, thus making them available on the Internet in the form of web
services. We present a proof-of-concept implementation of the CLT Cloud server where we use the logic programming language Prolog
for composing and aggregating existing web services into new web services in a way that encourages creative exploration and rapid
prototyping of LT applications.

Keywords: web service, processing pipeline, declarative language

1. Introduction
The Centre for Language Technology1 (CLT) in Gothen-
burg is an organization for collaboration between LT re-
searchers at the Faculty of Arts and the IT Faculty at
the University of Gothenburg and Chalmers University of
Technology. The main goal of the centre is to strengthen
the collaboration of LT research in Gothenburg, and as one
way of reaching this goal, we are working on the integra-
tion of our tools and resources to synchronize the efforts
within the centre.

However, our experience with tool integration has been
one with technical hurdles – the tools have been written in
a multitude of programming languages targeting different
system platforms; to overcome these technical difficulties
we are now exploring the use of web services as a way of
integrating the CLT tools and resources, an effort we call
CLT Cloud.

The benefits of web services in our setting is that
they provide platform and programming language indepen-
dence, and at the same time, an environment for distributed
and parallel computation. In addition, a distributed envi-
ronment supports the possibility to give developers access
to the latest versions of the resources and tools.

The present paper is not concerned with the setting up
of LT web services per se. Rather, it deals with the task of
composing and aggregating existing web services into new
web services, and with the problem of doing this in a declar-
ative and flexible manner that encourages creative explo-
ration and rapid prototyping of LT applications. Require-
ments such as declarativity, compositionality, security and
a principled approach to the handling of ambiguity made
us choose a declarative subset of Prolog for this purpose.
In the rest of the article we motivate our choice further, and
present a proof-of-concept implementation of CLT Cloud.

2. The CLT Cloud server
In Figure 1 we sketch the big picture of our CLT Cloud
server running in the context of other servers and clients.
The machine in the middle runs our dedicated CLT Cloud
server which provides a common access point to LT web

1<http://clt.gu.se>

Figure 1: The big picture.

services (lexica, taggers, parsers, etc.) being offered by
other servers running inhouse or elsewhere. A server acting
as a proxy has many technical advantages: the identities of
machines behind the proxy are not known to clients, which
not only provides security but also indirection (i.e., web ser-
vices can be moved around). It furthermore enables us to
perform load-balancing and caching, log and analyze traf-
fic, and apply access policies such as restrictions on content
size or execution time.

Our proof-of-concept CLT Cloud server is built upon
ClioPatria2, a well designed and mature platform imple-
mented in SWI-Prolog (Wielemaker et al., 2011). ClioPa-
tria provides us with a ready-to-run web server, an adminis-
tration interface, support for authentication and authoriza-
tion, and more.

3. An LT pipeline and logic programming
We want CLT Cloud to be more than just a collection of
interoperable web services – we want the ability to com-
bine them in a flexible and declarative manner, and at the
same time, reduce the amount of network traffic required
between CLT Cloud and clients.

2<http://cliopatria.swi-prolog.org>

2935



The solution we are currently employing is the use of Pro-
log as the processing pipeline language. Prolog has a num-
ber of traits that distinguishes it from most other program-
ming languages:

• Declarativeness, inherited from its roots in logic

• Inference capabilities, inherited from its roots in theo-
rem proving

• No separation between data and programs (reflexivity)

• The lazy a-tuple-at-a-time generation of solutions to
queries

A Prolog query performing tokenization followed by POS
tagging of a given text could be written as follows:

?- text(Text), tokens(Text,Tokens),
tags(Tokens,Tags).

Text = ’Tom runs’
Tokens = [’Tom’, runs]
Tags = [[token-’Tom’, pos-’NNP’],

[token-runs, pos-’VBZ’]]

We can compare this to a Unix style pipeline chaining the
tokenizer and tagger processes by their standard streams by
means of an anonymous pipe, like so:

$ tokens < text.txt | tags > tags.txt

However, this comparision quickly breaks down:

• In comparison with the Unix pipline, the intermedi-
ate results in a Prolog pipeline are terms rather than
streams and they are explicit and named rather than
anonymous.

• Prolog is nondeterministic in that the variables in a
query may be bound to different values on backtrack-
ing. From a formal point of view, a Unix pipeline can
be seen as a kind of functional composition. Prolog is
a relational nondeterministic language, and supports
relational composition.

• Furthermore, (some of) the predicates in a Prolog
pipeline may be bi-directional, so that tokens(Text, To-
kens) can also be used to detokenize a list of tokens
into a Prolog atom.

Via the bagof/3, setof/3 and findall/3 built-in
predicates, Prolog also supports not only relational compo-
sition but also aggregation of all solutions to a query. For
example, if a lexicon is stored in the form of wordform/2
clauses, we may compute the number of words stored by
running the following query.

?- findall(Word,wordform(Word,S),Words),
length(Words,Length).

We believe that Prolog offers a suitable foundation for
building a very flexible NLP computation pipeline. We in-
tend to show that explicit and named variables holding in-
termediate results should be considered an advantage, that
nondeterministic computing makes a lot of sense also in

this context, and that the other traits that Prolog has can be
very useful.

We are of course aware of the fact that Prolog has fallen
out of fashion in NLP circles since its heyday in the 1980’s.
One likely reason for this (but not the only reason) is the
dominance of statistical approaches to LT, and the fact that
Prolog is fairly weak at number crunching. However, as
the pendulum swings back towards more knowledge in-
tensive approaches, the appreciation of logic programming
languages may again increase. Fortunately, at least judging
from our own colleagues, most members of the LT world
still remember the Prolog they once learned, at least suffi-
ciently well for our purpose. Besides, we must emphasize
that we do not propose the use of Prolog for each and every
LT programming task – quite the opposite!

Predicates such as tokens/2 and tags/2 can of
course be implemented in Prolog, but tokenizers and part
of speech taggers written in other programming languages
are more readily available. Now, if such resources are also
available, or can be made available, in the form of web ser-
vices, it is often a good idea and very straightforward to ac-
cess these from Prolog instead. The definition of tags/2,
for example, may access a POS tagging web service over
HTTP, written in any programming language. Thus, Prolog
can be used as a glue language – a way to combine two or
more HTTP web services into a new web service. This is
indeed our main intended use of Prolog in this project, and
we believe that it is a role in which Prolog shines.

In order to make a particular web service available as
a predicate in the CLT Cloud, one often has to do a bit of
Prolog programming. An effort must be made to ensure that
predicates can be used in either direction (bi-directionality),
errors must be handled gracefully, and one must decide
whether to return an empty representation or simply fail
(and thus force backtracing) when (say) a parsing process
fails to come up with an analysis.

4. The CLT Cloud infrastructure
The web services in CLT cloud follows the REST (Repre-
sentational State Transfer) architectural principles (Field-
ing, 2000), which entails making good use of all the major
HTTP methods (GET, PUT, POST and DELETE), rather
than building a protocol on top of HTTP.

On a first blush, Prolog does not seem to mesh well
with the way the Web and its protocols work, in partic-
ular when it comes to GET. We have what is often re-
ferred to as an impedance mismatch problem: Prolog is
relational in that a query may map to more than one re-
sult, but HTTP GET is essentially functional in that one
query/request should map to exactly one result/response.
Sometimes this can be solved by using an all-solutions
predicate such as findall/3, but this only works for a fi-
nite number of solutions and only if they are not too many.
Besides, we may prefer to generate the solutions one-by-
one, sometimes because it is cheaper in terms of memory
requirements (on both server and client), and sometimes be-
cause we want to decide, after having seen the first couple
of solutions, whether we want to see more.

We choose instead to work with a virtual index to the
solutions that a query has, without actually generating the

2936



solutions. Each solution in the sequence of n solutions
to a query receives an integer index in the range 0::n-1.
This makes a query for the ith solution of a goal functional
and deterministic, and thus solves the impedance mismatch
problem. To implement this efficiently we have to avoid re-
generating solutions 0-i when asking for solution i+1. For-
tunately, a technique for this which preserves the Prolog
state (stack, choice points, variable bindings) between re-
quests by creating a thread that is associated to the HTTP
session, running the state-full computation there, and send-
ing messages back and forth between the HTTP handlers
and the session thread to communicate queries and results,
has already been developed (Wielemaker et al., 2011).

Apart from sending queries to the server using GET, a
client may PUT or POST Prolog clauses to the service to
be stored in a scratch module associated with the current
session and used in subsequent queries. This is typically the
way to upload data (e.g. text) to the server for processing,
but since the uploaded content may also be Prolog rules, it
is also something that increases the power of the querying
facilities. Clauses can also be DELETEd at any time.

We illustrate this by a small example. Suppose we want
to part of speech tag the sentence “Tom runs”. This is done
by an update followed by a query, i.e., by using two HTTP
requests. First we perform a PUT request like so:

PUT cloud.clt.gu.se
text(’Tom runs’).

This places the clause text(’Tom runs’) in the
client’s scratch module on the server and returns a simple
JSON acknowledgment. Then we follow up with an GET
request of the following form:

GET cloud.clt.gu.se?query=Q&cursor=C&limit=L

Here, Q is a Prolog query, C is and integer acting as a key
to the zero-based virtual index of solutions to Q, and L is
an integer specifying the maximum number of solutions to
be returned. If Q is replaced by our simple example Prolog
query, and if C is set to 0 and L to 1 (the defaults), then the
JSON encoded response would be:

{"success": true,
"message": "yes",
"bindings": [

{"Text": "Tom runs",
"Tokens": ["Tom", "runs"]
"Tags": [{"token":"Tom", "pos":"NNP"},

{"token":"runs", "pos":"VBZ"}]
}

]
}

There is another way to perform exactly the same task.
Along with the text/1 clause(s), we may send program
clause(s) to the server, in this case for defining a new pred-
icate my_tags/1:

PUT cloud.clt.gu.se
text(’Tom runs’).
my_tags(Tags) :-

text(Text),
tokens(Text, Tokens),
tags(Tokens, Tags).

and then use the new predicate from the client as follows:

GET cloud.clt.gu.se?query=my_tags(Tags)

We can think of this as a way to do rule-based ad-hoc infer-
encing in the context of querying, or as a way to on the fly
create new web services on the basis of existing ones.

In connection with the above very small and artificial
example we would like to make the following points:

• Our approach scales very well. We have tried it with
a text/1 clause with an atom representing a text
containing hundreds of thousands of words. For such
tasks, and thanks to the backtracking behavior inher-
ent in our approach, we are able to formulate a query
which splits the text into sentences, picks one, tok-
enizes and part of speech tags it, and returns the tagged
sentence to the client. On backtracking (forced by the
client sending a new request with an incremented cur-
sor), it picks the next sentence, tags and returns it to
the client, and so on.

• Our simple example showed how to retrieve solutions
one by one from the server. By setting the request pa-
rameter limit to an integer, for example 5, we may
retrieve up to five solutions at a time. If five solutions
exist, the value of the bindings property in the re-
turned JSON will be a list with five members. Again,
if we ask for the next five solutions, the first five solu-
tions will not have to be recomputed.

• Except when debugging, a client usually has no need
for intermediate results, and thus no need to see the
values of all variables in a query. The convention here
is to prefix the “uninteresting" variable names with an
underscore character, which will instruct the server to
not include the corresponding bindings in the JSON
responses. This is also a convention implemented in
some (but not all) Prolog commandline interpreters.

• For lack of space and for pedagogical reasons, our
simple example did not show how we in prac-
tice use Prolog’s module system to allow the same
predicate (same name and arity) to be indepen-
dently defined in multiple namespaces. In or-
der to access the NLTK tokenizer, we must in
fact write nltk:tokens(Ws,Ts) rather than just
tokens(Ws,Ts). Another (and much faster) tok-
enizer, available as a module in SWI-Prolog, can cur-
rently be accessed as swipl:tokens(Ws,Ts).

• Many CLT Cloud predicates takes an optional list
of options that configure the processing in vari-
ous ways. For example, swipl:tokens(Ws,Ts,
[downcase(true)]) converts all the characters
of the input to lower case before tokenization is per-
formed. Default is downcase(false).

• Allowing clients to execute arbitrary Prolog programs
and queries on the server does of course raise impor-
tant security concerns. We handle this by carefully
inspecting the programs and queries before allowing
them to be executed, something which is relatively
easy in a reflexive language such as Prolog.

2937



5. The CLT Cloud API Explorer
The CLT Cloud API Explorer is a browser-based client
written in HTML, CSS and JavaScript that makes it easy
to explore the API:s and the predicates offered by the CLT
Cloud.

JSON is easy to process by client programs, but is not
very friendly on the inspecting human eye. When de-
bugging an application, or when just exploring interesting
queries, we choose to present JSON responses as tables ren-
dered in HTML, as in Figure 2. We find the mapping be-
tween variable names in the query and the attribute names
(Text, Tokens, and Tags) in the bindings section of the
table to be clear and easy to follow.

Figure 2: JSON viewed as a table.

Apart from a JSON presentation area on the right, the API
Explorer, depicted in it full in Figure 3, has an Update
area containing a text area for entering clauses to be up-
loaded to the server by clicking the PUT or POST button,
and a text field for entering templates for predicates to be
deleted when clicking the DELETE button. The Query area
contains a text field to hold the query, a GET button and
fields and menus for specifying cursor and limit. For conve-
nience, buttons marked First, Next and Previous for paging
solutions are also provided.

6. Related work
In this paper we focused on the use of logic programming
to create an abstraction on top of existing web services, and
the only related work we are aware of is the work we are
currently building upon. However, we are in a good com-
pany in the LT community with our work on web services
and processing pipelines, e.g., WebLicht (Web Based Lin-
guistic Chaining Tool) (Hinrichs et al., 2010), and IULA
Web Services (Martínez et al., 2010).

7. Future work
We plan to incorporate all CLT software and resources in
the CLT Cloud as web services in a unified web service
directory with a common access point. This should not be
a major task since it has already been done for the bulk of
them. An important requirement is that these web services
are actually the ones used by the local research group so
that future developments become available.

We have already written a fair number of browser based
demo client applications served by the CLT Cloud, but here
we just include pictures of two of them – a DCG parsing
tool (Figure 4), and a Wordnet browser (Figure 5). In the
future, we plan to make the CLT Cloud available to our LT
masters students and believe that this will result in many
more applications using it.

Since the CLT Cloud uses JSON rather than XML
for interprocess communication we are developing Prolog
tools for pointing to an exact location in a JSON object,
and for transforming one JSON object into another. Such
utilities correspond to XPath and XSLT in the XML world,
but with the very important difference that the Prolog tools
generate solutions a-tuple-at-a-time. Having access to a
nondeterministic variant of XSLT will allow us to easily
build adapters between for example partially incompatible
tag sets.

Another obvious future task is to explore ways of per-
forming query optimization. Optimization could be as sim-
ple as moving some software to the same server as the com-
mon access point, where the up-to-date requirement could
be ensured by regular update from the software’s version-
ing system, or more complex tasks such as optimization
through a query rewrite system, something which is com-
paratively easy in a reflexive programming language that
can treat programs as data.

8. Acknowledgements
The research presented here was supported by the Univer-
sity of Gothenburg through its support of the Centre for
Language Technology (CLT).

9. References
R.T. Fielding. 2000. Architectural styles and the design of

network-based software architectures. Phd thesis, Uni-
versity of California, Irvine.

Erhard Hinrichs, Marie Hinrichs, and Thomas Zastrow.
2010. Weblicht: web-based lrt services for german. In
Proceedings of the ACL 2010 System Demonstrations,
ACLDemos ’10, pages 25–29, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Héctor Martínez, Jorge Vivaldi, and Marta Villegas. 2010.
Text handling as a web service for the iula processing
pipeline. In Web Services and Processing Pipelines in
HLT: Tool Evaluation, LR Production and Validation,
pages 22–29, Paris. ELRA.

Jan Wielemaker, Tom Schrijvers, Markus Triska, and
Torbjörn Lager. 2011. SWI-Prolog. Theory and Prac-
tice of Logic Programming: Special Issue on Prolog Sys-
tems, 12:67–96.

2938



Figure 3: The CLT Cloud API Explorer.

2939



Figure 4: DCG Lab – served by the CLT Cloud.

Figure 5: Wordnet browser – served by the CLT Cloud.

2940


