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Abstract 

We describe an automatic face tracker plugin for the ANVIL annotation tool. The face tracker produces data for velocity and for 
acceleration in two dimensions. We compare the annotations generated by the face tracking algorithm with independently made 
manual annotations for head movements. The annotations are a useful supplement to manual annotations and may help human 
annotators to quickly and reliably determine onset of head movements and to suggest which kind of head movement is taking place. 
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1. Introduction 

For a human annotator the manual segmentation and 

annotation of head movements in a multimodal corpus is a 

time consuming task. Inter-annotator agreement about 

segmentation is sub-optimal (Navarretta & Paggio, 2010). 

Automatic discourse annotation of head movements has 

the potential of making the annotation process swifter and 

less prone to personal choices. Also, automatic 

annotations, being based on raw position data without any 

psychological bias, may result in a physiological 

description of head movements in terms of velocities and 

(muscular) forces (acceleration) that is interesting in its 

own right and that can be compared with high level 

descriptions in terms of nods, shakes and other descriptors 

bearing conversational connotations. 

2. Background 

As reported in (Jongejan, 2010) we have added a face 

tracker plugin
1

 to Anvil (Kipp, 2008), a generic 

annotation tool for multimodal dialogue. The plugin is 

based on OpenCV (Bradski & Kaehler, 2008), using the 

JavaCV
2

 programming interface to bridge the gap 

between  OpenCV’s C/C++ world and Anvil’s Java world. 

Since our previous report, our algorithms for tracking 

faces have been much improved. 

Earlier, Al Moubayed et al. (2009) have used OpenCV to 

detect faces. They applied the Lucas-Kanade algorithm to 

compute velocity as a function of time. By filtering away 

the low frequency component they obtained a signal that 

corresponded to e.g. head nods and shakes. Using the 

optical motion capture system Qualisys, Cerrato & 

Svanfeldt (2005) obtained automatic annotations for head 

nods. Their detection algorithm was based on velocity, a 

minimum number of consecutive frames and, in contrast 

to the current work, the amplitude of the head movements. 

3. Method 

In our setup two people are in a dialogue that is filmed by 

                                                           
1
 https://github.com/kuhumcst/Anvil-Facetracker 

2
 http://code.google.com/p/javacv 

two cameras, one for each participant. The video streams 

are combined into a split screen video, showing both 

participants’ upper bodies and heads obliquely oriented 

towards a camera whereas, in reality, they are oriented 

towards each other. Because of this set-up, we use the 

OpenCV Haar-based routine for frontal face detection. If, 

as in our set-up, there are more than one faces in the scene, 

the user can select the person to analyse by pointing at the 

person’s face and clicking with the mouse. Optionally, the 

user can instruct the face tracker to stay and wait in the 

left or right half of the screen during periods when 

OpenCV cannot detect the face. See fig. 1. In the more 

common set-up with only one person in the field of view, 

more or less looking in the direction of the camera, the 

face tracker automatically finds the person’s face and can 

be run without human supervision and intervention for the 

full length of a video. 

 

Figure 1. The face tracker window 
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We have analysed the change in time of the face positions. 

The working hypothesis is that e.g. a head nod not only 

changes the orientation of a face, but also its lateral and 

vertical centre position. 

We extracted velocity and acceleration vectors that are 

well correlated with head nods, shakes and other head 

movements. Each vector is based on a sequence of face 

positions of up to 25 frames, an analysis window covering 

a time span in the order of one second. For each frame, the 

program stores the horizontal and vertical positions of the 

face in a cyclic buffer containing enough cells to 

memorize a full analysis window. The mean velocity and 

acceleration during the window’s time span are computed 

by applying linear regression analysis on the data in the 

cyclic buffer. 

The user can adjust the number of frames in an analysis 

window (Fig. 1), trading detail in the time domain against 

statistical reliability. The regression analysis requires at 

least two or three frames for the computation of velocity 

and acceleration, respectively. In practice, using much 

fewer than 8 frames makes the algorithm more sensitive 

to outliers, which for example can be caused by glitches in 

the recognition of the face in some frames. Using many 

more frames than 10 has the effect of desensitising the 

algorithm for quick, short movements that take place in a 

fraction of a second. Bursts of acceleration will go 

unnoticed if the duration of the analysis window is much 

longer than the bursts. 

For every new frame the data for the oldest stored frame 

are removed from the cyclic buffer and the data for the 

new frame are added, shifting the span in time of analysed 

data by just one frame. So although looking at a high 

number of frames in each an analysis window smears out 

the data over time, the chosen method does not coarse 

grain the time domain from the user’s perspective: the 

generated annotations can begin at any frame.  

We create annotations for those time spans in which the 

velocity (or acceleration) is above a set threshold. The 

user can set thresholds for velocity and acceleration in the 

horizontal direction as well as in the vertical direction 

(Fig. 1). An annotation starts at the earliest frame in the 

earliest analysis window in which the threshold was 

surpassed, and it ends at the last frame in the last analysis 

window in which the threshold still was surpassed. If the 

onset of an annotation would be before the end of the 

previous annotation, the onset is delayed until the end of 

the previous annotation, because Anvil does not allow 

overlapping annotations in the same annotation track. The 

shortest time span for an annotation is the duration of the 

analysis window, except when the onset was delayed, in 

which case an annotation can be as short as two frames.  

The video overlay window is used to continuously inform 

the user about which part of the video is analysed, where 

the chosen physical quantity (velocity or acceleration) 

currently is pointing and whether the quantity is below or 

above the set thresholds. In fig. 2 the person on the right 

side nods, according to a manual annotation. The current 

velocity (yellow arrow) points in the “12 o’clock” 

direction. The red circle (or ellipse) indicates the currently 

set thresholds for velocity components in the horizontal 

and vertical direction. Because the arrow reaches out of 

the red circle, an annotation will be created. The black 

square delineates the part of the image that is sent to the 

OpenCV software and is continuously adjusted in size and 

position. The person on the right in fig. 3 tilts her head, 

according to the manual annotation. The cyan arrow 

designates the current acceleration, which is “8 o’clock”. 

Fig. 4 shows a part of the annotation window. In the top 

line is a manual annotation: Nod, Repeated. The frame 

shown in fig. 2 is taken from this event. 

 

Figure 2. Person nodding 

 

 

Figure 3. Person tilting her head 

. 

The other annotations are automatically created and each 

contains three time stamped points. The last two time 

stamped points contain coordinates indicating the initial 

and terminal point of the vector that represents the 

observed quantity when it was at its greatest during the 

time span of the annotation. The first time stamped point 

contains the size and direction of the same vector in polar 

coordinates. For example in fig. 4, (75x12 03:29:48) 

indicates a vector with size ‘75’ and a clock direction of 

12 o’clock, representing any angle in the interval between 

345° and 15°. The annotations in the middle are velocities, 

first upwards (12), then downwards (6). The annotations 

in the bottom line are accelerations. First up (1), then 

down (6), up again (11) and finally down (5). The 

strengths are decreasing until both velocity and later 

acceleration stay below their thresholds. The yellow 

marks indicate when the tracked quantity reached its 

maximum value (the first coordinate of said point) during 

the time span of the annotation. Notice that all but the first 

annotation are so much shortened on the left side that their 
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maxima fall outside the annotations and instead land in 

earlier annotations. 

 

Figure 4. Part of the annotation window 

 

The current hardware and software setup cannot quite 

attain a real time analysis of every frame in a video. 

Initially we allowed the analysis software to skip as many 

frames as needed to keep up with real time video, but after 

comparing these results with results obtained by 

frame-by-frame analysis of the same video material we 

concluded that skipping frames is indeed a bad idea, as 

already noted by (Matsusaka, 2009). 

4. Experiment 

As test material for the face tracker we used a video 

containing about five minutes of dialogue between two 

persons (Fig. 2). On beforehand, the video was manually 

annotated by one annotator and checked by a second 

annotator. In cases of doubt a third person was involved. 

We repeatedly run the face tracker for the full length of the 

dialogue. We did this for each person. 

While keeping the duration of the analysis window at 10 

frames (about 0.4 seconds), we varied the thresholds 

between 5 and 14. To give an impression of what these 

numbers mean, a threshold of 10 for velocity corresponds 

to a velocity of 0.1 ‘head size’ per second or about 3 cm/s. 

An acceleration threshold of 10 corresponds to an 

acceleration of 0.5 ‘head size’ per second squared, or 

roughly 15 cm/s
2
. An acceleration of 15 cm/s

2
 sustained in 

the same direction during 0.4 seconds, starting from rest, 

results in a velocity of 6 cm/s and displaces the head by 

just 1.5 cm. If the head already moves at a velocity of 3 

cm/s and an acceleration of 15 cm/s
2 

counteracts the 

movement during a time span of 0.4 s, the velocity never 

gets above the threshold value of 3 cm/s but is instead 

reversed to the opposite direction. From this we can 

conclude that, with these settings, which are the default 

settings, an acceleration annotation without a 

corresponding velocity annotation is indicative of change 

of direction of a head movement.  

5. Analysis 

We have compared the automatically generated 

annotations with manual annotations. For each video 

frame in the sequence of almost 8000 frames (5’20”), we 

checked whether the human annotator and the face tracker 

agreed or not under the assumption that a specific class of 

automatically generated annotations was equivalent to a 

specific class manual of annotations. Because we wanted 

to compensate for agreement by chance, we chose 

Cohen’s kappa (Cohen 1960) as a measure of agreement. 

The classes of manual annotations we looked at were the 

seven distinct communicative gestures with the head that 

occurred in our test material: HeadForward, (down-)Nod, 

Shake, SideTurn, Tilt, Waggle, and HeadOther. The 

automatic annotations were categorized in 240 distinct 

classes, each class defined by quantity (velocity or 

acceleration), clock direction (1-12), and threshold (5-14). 

For each person we computed 7x240=1680 kappa values. 

To keep the number of variables manageable, in this 

analysis we ignored the maximum magnitude of velocity 

or acceleration during an annotation’s time span. We also 

ignored additional information in the manual annotations, 

such as whether a head nod was repeated or not.  

Also disregarded were the manual annotations for facial 

expressions and for body posture, although the face 

tracker isn’t insensitive to body postures and even facial 

expressions. For example, fig. 5 shows a manual 

annotation for the body posture “BodyDirectionOther, 

BodyToInterlocutor” that neatly corresponds with 

automatic annotations for velocity and for acceleration 

over a range of thresholds: face0V and face0A (the 

annotation tracks just below the BodyPosture track) have 

threshold 14, while face9V and face9A lie in the opposite 

end of the spectrum with thresholds of 5. 

 

Figure 5. A BodyToInterlocutor posture 

 

As there are two persons in our experiments, the left 

person looking obliquely to the right and the right person 

looking obliquely to the left, we did the analysis for each 

person separately. A priori we expected that the mirror 

symmetry of the set-up might be detectable in the results 

of the analysis, the roles of e.g. the 5 o’clock and 7 

o’clock directions for the left person being swapped to 7 

o’clock and 5 o’clock directions for the right person. For 

example, pure up-down movements such as nods are seen 
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from an oblique angle by the cameras and will therefore 

obtain horizontal components that are mirrored with 

respect to the left person and the right person. Because of 

the expected differences between the time series for the 

two persons, we decided not to pool them together. 

6. Results 

A priori we expected that clock directions of around 6 

would correlate with HeadForward and Nod, and that 

clock directions around 3 or 9 would strongly correlate to 

Shake and SideTurn.  How well does a statistical analysis 

corroborate our expectations and what has such an 

analysis to tell us about other clock directions, and are 

there any statistical clues to decide whether a Tilt, Waggle 

or HeadOther is occurring? 

The following four tables, which are the results in 

condensed form of the computation of 1680 kappa values., 

show for each of the two quantities, velocity and 

acceleration, and for each person in figs. 2-3, which 

manual head movement annotation is best in agreement 

with an automatic annotation, given a measured direction 

of either velocity or acceleration and the threshold as it 

was set when the measurement was made.  

The leftmost column enumerates the clock directions, ‘1’ 

corresponding to an angle of 30° in a clockwise direction 

from the vertical (or rather, the interval from 15° to 45°), 

‘2’ corresponding to an angle of 60°, and so on. The 

second column enumerates all thresholds used during the 

experiment, from low (most sensitive to movement) to 

high (least sensitive). Ranges of thresholds are put into the 

same row if all values in the range, according to the 

statistical analysis, best corresponded to the same manual 

annotation, ‘best’ being defined by the highest Cohen’s 

kappa. The third column indicates the lowest and highest 

kappa measured for the agreement between the manual 

annotation in the fourth column and the automatic 

annotation defined by the clock direction in the first 

column and any of the thresholds in the second.   

The predictive power of an automatic annotation seems to 

vary with the clock directions. As Table 5 shows, some 

directions correspond to just one head movement whereas 

others are very sensitive to the threshold and have the full 

range of thresholds divided in up to seven ranges.  

The 6 o’clock direction jumps out as the least ambiguous 

direction overall. In the case of velocity measurements, 

this direction indicates HeadForward or Tilt most strongly. 

In the case of acceleration measurements, this direction 

indicates a Nod. The 12 o’clock is a contender, especially 

for the person on the right, who during nodding 

movements tends to make an upward movement that is 

strong enough to be noticed at all threshold levels. As to 

the two other head movements that we had an a priori 

feeling about, Shake and SideTurn, the picture is less clear. 

The right person’s SideTurns correspond nicely with 

velocity in the 9 o’clock direction (but not 3 o’clock). For 

the person on the left this direction is dominated by Shake 

and HeadForward movements in the velocity domain, 

while the SideTurn is to be found at 4 o’clock.  The left 

person’s Shake movements are better determined by 

looking for accelerations in the 9 o’clock direction, while 

for the person on the right there seems not to be a good 

way to pinpoint the Shake movements, although she 

makes them.  

There are a few negative kappa values in the tables 1-4. 

They are always very small. If at all, they can only be 

taken as a weak counter-indication of a head movement. 

The tables 1-4 should be interpreted with care. If a 

direction is shown with only one head movement, it does 

not mean that no other movements have been noticed to 

take place in that direction. This just means that the shown 

head movement statistically is stronger correlated to that 

direction than all other head movements. The numbers do 

not disclose how far the shown head movements are 

ahead of the competitors.  

 

Clock 

dir. 

threshold 

low/high 

Kappa 

low/high 

Head 

Movement 

1 

 

5 0.132 HeadForward 

6 0.091 Nod 

7/9 0.090/0.118 HeadForward 

10 0.068 Nod 

11/14 0.068/0.094 HeadForward 

2 

 

5 0.055 Shake 

6/10 0.059/0.072 Waggle 

11/14 0.044/0.064 Tilt 

3 

5 0.192 Tilt 

6/7 0.100/0.131 Shake 

8/14 0.123/0.166 Tilt 

4 

5/13 0.038/0.166 SideTurn 

14 -0.007 Waggle 

5 5/14 0.103/0.227 HeadForward 

6 

5/7 0.072/0.096 Tilt 

8/14 0.051/0.074 HeadForward 

7 

5/11 0.050/0.074 Tilt 

12 -0.005 Waggle 

13/14 0.012/0.015 Nod 

8 5/14 0.037/0.118 Tilt 

9 

5/6 0.109/0.151 Shake 

7 0.102 HeadForward 

8/10 0.100/0.136 Shake 

11/12 0.081/0.092 HeadForward 

13/14 0.052/0.054 Shake 

10 5/14 0.072/0.183 HeadOther 

11 5/14 0.065/0.161 HeadOther 

12 

5/9 0.034/0.079 HeadOther 

10/13 0.012/0.016 Nod 

14 0.000 Waggle 

 

Table 1 Velocity. Person on left side. 
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Clock 

dir. 

threshold 

low/high 

kappa 

low/high 

Head 

Movement 

1 

5/6 0.114/0.143 HeadOther 

7/8 0.098/0.116 Nod 

9 0.097 HeadOther 

10/14 0.066/0.111 Nod 

2 

5/8 0.111/0.133 Tilt 

9/14 0.126/0.211 Waggle 

3 

5 0.111 HeadOther 

6/7 0.095/0.106 Tilt 

8/14 0.096/0.128 HeadOther 

4 

5/11 0.047/0.095 SideTurn 

12/14 0.076/0.082 HeadForward 

5 

5/12 0.067/0.111 Nod 

13/14 0.054 Tilt 

6 5/14 0.092/0.126 HeadForward 

7 

5 0.195 HeadForward 

6 0.043 HeadOther 

7/14 0.051/0.254 HeadForward 

8 

5 0.084 SideTurn 

6/8 0.068/0.138 Waggle 

9 0.067 HeadForward 

10/11 0.118/0.127 Waggle 

12/14 0.086/0.110 SideTurn 

9 5/14 0.104/0.189 SideTurn 

10 

5 0.077 Waggle 

6/8 0.115/0.125 Tilt 

9/10 0.074/0.084 Waggle 

11 0.069 Tilt 

12 0.074 SideTurn 

13 0.072 Waggle 

14 0.087 SideTurn 

11 5/14 0.056/0.176 HeadForward 

12 5/14 0.071/0.154 Nod 

 

Table 2 Velocity. Person on right side. 

7. Discussion  

We primarily used Cohen’s kappa as a measure to rank 

mappings. For that purpose, their absolute values were of 

no relevance at all. On the other hand, Cohen’s kappa 

expresses inter-coder agreement in an absolute sense, and 

therefore we must understand why, overall, the kappa 

values were very low. By knowing the main reasons why 

they are low and seeing viable ways to get control over 

these factors, we improve our confidence in Cohen’s 

kappa as a reasonable measure of agreement between 

manual and automatic annotations: 

 

Clock 

dir. 

threshold 

low/high 

kappa 

low/high 

Head 

Movement 

1 

5/10 0.052/0.097 Tilt 

11/12 0.023/0.045 HeadForward 

13/14 0.022/0.035 Nod 

2 5/14 0.033/0.089 Shake 

3 

5 0.096 SideTurn 

6/14 0.105/0.162 Tilt 

4 

5 0.036 Waggle 

6/7 0.061/0.100 Shake 

8 0.088 Waggle 

9/10 0.048/0.053 HeadForward 

11 0.017 Shake 

12/13 0.020 HeadForward 

14 -0.007 Waggle 

5 5/14 0.035/0.138 Nod 

6 5/14 0.050/0.177 Nod 

7 

5 0.045 SideTurn 

6/7 0.036/0.049 HeadForward 

8/14 0.014/0.077 HeadOther 

8 

5/9 0.035/0.113 HeadForward 

10 0.041 Waggle 

11/14 0.033/0.044 Shake 

9 5/14 0.101/0.206 Shake 

10 

5 0.031 HeadForward 

6/9 0.050/0.110 SideTurn 

10 0.074 HeadOther 

11/14 0.074/0.110 HeadForward 

11 

5/11 0.055/0.120 HeadOther 

12/14 0.010/0.019 Nod 

12 

5/7 0.112/0.184 Nod 

8/11 0.066/0.104 HeadForward 

12/14 0.043/0.046 Nod 

 

Table 3 Acceleration. Person on left side. 

 

 

 

(1) We have to do with annotators with very different 

capabilities. The machine seems to be good at 

pinpointing the onset of a head movement, whereas 

the human is better at observing the relatively long 

aftermath of a head movement, when the acceleration 

and velocity, after an initial burst, already have 

dropped below the machine’s threshold. Temporarily 

lowering the threshold when a head movement 

already has been detected, may prolong automatic 

annotations and improve Cohen’s kappa. 
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lock 

dir. 

threshold 

low/high 

kappa 

low/high 

Head 

Movement 

1 5/14 0.094/0.128 HeadForward 

2 

5/6 0.116/0.123 Tilt 

7 0.090 Waggle 

8 0.084 Tilt 

9 0.059 Waggle 

10 0.059 Tilt 

11/12 0.071/0.083 Shake 

13/14 0.097/0.101 Waggle 

3 

5/6 0.062/0.082 HeadOther 

7 0.070 Shake 

8/9 0.082/0.089 HeadOther 

10/11 0.104/0.106 Shake 

12 0.067 HeadOther 

13/14 0.065/0.074 Shake 

4 

5/10 0.057/0.121 SideTurn 

11/13 0.092/0.098 Waggle 

14 0.119 Shake 

5 

5 0.024 HeadForward 

6/7 0.024/0.065 Nod 

8/9 0.072/0.081 HeadForward 

10 0.063 Nod 

11/12 0.068/0.074 HeadForward 

13/14 0.045 Nod 

6 5/14 0.102/0.253 Nod 

7 

5/8 0.041/0.092 Waggle 

9/14 0.064/0.114 HeadForward 

8 

5/13 0.057/0.118 SideTurn 

14 0.038 Shake 

9 

5/7 0.126/0.148 HeadOther 

8/9 0.154/0.181 Shake 

10 0.129 HeadOther 

11 0.142 Shake 

12/14 0.143/0.182 HeadOther 

10 

5 0.094 SideTurn 

6/7 0.060/0.083 HeadForward 

8 0.084 Waggle 

9/10 0.075/0.100 SideTurn 

11 0.098 HeadForward 

12/13 0.131 SideTurn 

14 0.123 Waggle 

 

 

 

 

 

11 

5 -0.002 HeadOther 

6 0.014 Nod 

7 0.033 HeadOther 

8/13 0.031/0.057 Tilt 

14 0.042 SideTurn 

12 5/14 0.116/0.226 Nod 

 

Table 4 Acceleration. Person on right side. 

 

(2) Even in theory, the classes of manual annotations and 

those of automatic annotations presented in this paper 

cannot be mapped onto each other. Most head 

movements are phrases consisting of several phases. 

There may be a good correlation between individual 

phases and automatic annotations. There may also be 

a good correlation between certain phase transitions 

and certain automatic annotations, but it is not 

expected that any movement consisting of three or 

more phases closely correlates to any automatic 

annotation. Complex annotations, composed of two 

or more automatic annotations, may show a much 

better agreement with manual annotations. 

(3) The human annotator only annotated those head 

movements that were considered to be 

communicative gestures. The face tracker does not 

make a distinction between communicative gestures 

and non-communicative head movements. It may 

also be the case that human annotators not always 

want to include a preparation phase in a 

communicative gesture, such as the slight upward 

movement before a down-nod. Whereas it may be 

difficult or impossible to learn the face tracker to skip 

the non-communicative movements altogether, it 

seems possible to learn the face tracker to delete 

certain automatic annotations when found in specific 

constellations of automatic annotations. 

(4) In our analysis, each video frame was considered an 

individual case, irrespective of preceding and 

following frames. The fact that the head movement 

data in an uninterrupted temporal sequence of frames 

can conglomerate into a single annotation that can 

overlap with a manual annotation, is not taken into 

account. Because of this, a disagreement attributable 

to a true recognition error (e.g. noise in the video 

signal) and a disagreement attributable to different 

‘opinions’ about the precise onset of a head 

movement are weighted equally in the computation 

of Cohen’s kappa, resulting in a pessimistic 

estimation of the agreement between manual and 

automatic annotations. 

(5) Even the human annotators did not agree excellently 

with a Cohen’s kappa around 0.71 for head 

movement segmentation and annotation (Navarretta 

& Paggio, 2010), lowering the bar for the face 

tracker. 
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The results presented here are as closely based on raw 

data as possible. To see the effects of some algorithmic 

massaging, we also performed the analysis after coarse 

graining the time domain in chunks of 10 or even 25 

frames (0.4 s – 1 s). However, although we obtained better 

Cohen’s kappa values, we lacked a theoretical sound 

motivation for coarse graining. 

 

 Table 1 Table 2 Table 3 Table 4 

Clock Veloc. L Veloc. R Accel. L Accel. R 

1 5 4 3 1 

2 3 2 1 7 

3 3 3 2 6 

4 2 2 7 3 

5 1 2 1 6 

6 2 1 1 1 

7 3 3 3 2 

8 1 5 3 2 

9 5 1 1 5 

10 1 7 4 7 

11 1 1 2 5 

12 3 1 3 1 

 

Table 5. Number of ranges in each direction 

 

We did not consider percent agreement as a meaningful 

measure, because even if the face tracker defected and had 

not created any annotations at all, percent agreement 

would still be fairly high, as e.g. the number of frames 

where a person was nodding would be low in comparison 

to the number of frames where the same person was not 

nodding, thus agreeing for most of the time with the silent 

face tracker. 

 

Figure 6. A succession of head movements 

 

Our numerical analysis disregards a number of 

phenomena that are readily visible when scrolling through 

the Anvil’s annotation window. Here we mention a few.  

There are many successions of manual annotations 

without intervening pauses in the material. Fig. 6 shows a 

succession of annotations for head movements (a Tilt, a 

Nod and a SideTurn) together with automatic annotations 

for velocity and acceleration at ten thresholds levels. 

Visual inspection immediately tells us that each head 

movement is automatically detected. At the highest 

threshold level, only the SideTurn is detected. As the 

threshold is lowered the Tilt and the Nod are detected, the 

former by the velocity transgressing the threshold and the 

latter by the acceleration transgressing the threshold. 

The maxima in the annotations in the acceleration tracks 

always precede the maxima in the velocity annotations. 

Furthermore, the Tilt and the SideTurn have velocity 

annotations that continue beyond the end of the 

acceleration annotations (if they are there at all). During 

the Nod (which is repeated) it is the other way around: the 

accelerations go on for a longer time than the velocities: 

the acceleration directions switch so quickly that the 

velocity has not time enough to build up. In none of the 

tracks the automatic annotations continue until the end of 

the manual annotation. This is the rule rather than an 

exception. 

Visually, there seems to be a good correlation between 

onset and, sometimes, end of manual annotations and 

automatically created annotations. Moreover, the 

automatic acceleration annotations often seem to start a 

few frames earlier than the manual annotations, as though 

the human annotator is mostly looking at movements and 

not at the forces that cause the movements. This 

discrepancy might be an artefact of the way the program 

chooses to define the beginning and end of an annotation. 

Since as mentioned earlier, an annotation covers at least 

as many frames as are needed to fill an analysis window, 

by increasing or decreasing this number we can to some 

degree influence the width of the generated annotations, 

even without adjusting the sensitivity thresholds. 

Therefore the discrepancy between onsets of manual and 

automatic annotations might disappear if we set the 

duration of the analysis window low enough. This 

explanation can easily be refuted, however, because, as 

illustrated by the yellow marks in fig. 4, the maximum 

value of the chosen quantity during the time span of the 

whole annotation often lies very close to the beginning of 

the annotation, well to the left of the start of the manual 

annotation. Whereas the exact time of the start of an 

annotation is dependent on program settings like duration 

of analysis window and thresholds (see figs. 5 and 6), the 

time of the maximum value of velocity or acceleration is a 

function of the measured positions of the head during that 

window. There is no obvious way to explain that time as 

an artefact.  

The last regularity that visual inspection learns us and that 

goes undetected in the statistical analysis is that a velocity 

annotation normally is accompanied by two acceleration 

annotations: one to initiate the movement and the second 

to stop it. The exceptions to this rule are also interesting. 

Some movements start and stop so slowly that they are 

under the thresholds set for acceleration annotations. Such 

velocity annotations can for example correspond to 
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movements of the whole body, which normally involve 

moderate accelerations of the head. The opposite is also 

possible: a complicated movement along a non-linear 

path not only involves forces that initiate and stop the 

movement, but also accelerations that can have strong 

components perpendicular to the direction of the velocity 

and that change the direction of the velocity rather than its 

magnitude. Another situation where velocities can go 

undetected while accelerations are detected is when 

acceleration reverses direction so quickly that the velocity 

has not had time enough to build up to a level that 

transcends the thresholds for velocity. Such annotations 

are indicative of short nods and shakes. 

8. Conclusion and future work 

Automatically created annotations for head velocity and 

acceleration correlate well with manual annotations of 

head nods, shakes and other head movements. The onset 

of the automatically created annotations tends to be a few 

frames earlier than their manual counterparts. As a rule, 

manual annotations continue for a considerable longer 

time than corresponding automatic annotations. 

Because of the technical difficulty of keeping up with real 

time video, suggestions have been made that the 

automatic annotation of video for face movements, 

including both face recognition and motion analysis, be 

performed “off-line”. Software all written in C++, directly 

interacting with the OpenCV algorithms, would certainly 

be much faster. However, we have found out that 

observing the play of arrows on screen as the analysis tugs 

its way through the video – arrows that indicate the 

current velocity or acceleration – gives new insights that 

we quite likely would have missed if the analysis had 

taken place in a batch job without somebody looking. For 

example, whereas currently a velocity or acceleration 

annotation stores the direction and size of the largest 

velocity or acceleration vector occurring during the time 

span of the annotation, these vectors are seen in many 

more directions as the analysis takes place. In the case of a 

straight head shake, the velocity may build up, reach a 

maximum and decrease, all taking place in the same 

general direction. But there are many movements where 

the velocity vector (and the acceleration vector, for that 

matter) makes a sweeping movement, changing direction 

over a very wide angle. This observation inspires to 

implement algorithms that do more right to these 

movements – typically nods – than the rectilinear 

approximations offered by velocities and accelerations in 

a Cartesian reference system. As this phenomenon is 

currently not taken notice of by the software, it would 

perhaps have gone undetected if the analysis had taken 

place in batch mode. 

The statistical analysis of a single 5-minute video of a 

conversation between two people has learned that there 

are no threshold values that are optimal for detecting all 

kinds of head movements. The automatic categorization 

of detected head movements as Shakes, Nods, Tilts and so 

on can be done, but only with a fair amount of uncertainty. 

Using machine learning, improvements will be sought by 

taking into account that many head movements 

correspond to two or more adjacent automatic annotations 

in both the velocity and acceleration domain. Reliably 

establishing these mappings between such complex 

automatic annotations and their manual counterparts will 

require the analysis of many more manually annotated 

dialogues. 
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