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Abstract
Language statistics are widely used to characterize and better understand language. In parallel, the amount of text mining and
information retrieval methods grew rapidly within the last decades, with many algorithms evaluated on standardized corpora, often
drawn from newspapers. However, up to now there were almost no attempts to link the areas of natural language processing and language
statistics in order to properly characterize those evaluation corpora, and to help others to pick the most appropriate algorithms for their
particular corpus. We believe no results in the field of natural language processing should be published without quantitatively describing
the used corpora. Only then the real value of proposed methods can be determined and the transferability to corpora originating from
different genres or domains can be estimated. We lay ground for a language engineering process by gathering and defining a set of
textual characteristics we consider valuable with respect to building natural language processing systems. We carry out a case study for
the analysis of automotive repair orders and explicitly call upon the scientific community to provide feedback and help to establish a
good practice of corpus-aware evaluations.
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1. Motivation
Language statistics and quantitative linguistics are widely
used to study, characterize and better understand lan-
guage, to help foreign learners or even to identify authors
(Holmes, 1994). Těšitelová (1992) provides a compre-
hensive overview of the large pool of methods available
today. Implicitly connected, natural language processing
(NLP) methods often rely on statistical methods and ma-
chine learning algorithms, which in turn massively rely on
certain textual characteristics, e.g. token frequencies, to-
ken distributions and token probability transitions. Still,
textual characteristics of corpora used for training and test-
ing such methods and algorithms are rarely analyzed and
documented. We strongly believe the successful creation
of real world NLP systems, i.e. the selection of appropriate
methods and algorithms, is only possible if the respective
text types are soundly understood. Furthermore, we believe
scientific publications in NLP must clearly document lan-
guage statistics of the used corpora. This is necessary be-
cause not all algorithms work equally on every text type and
their portability may be questionable (Sekine, 1997; Escud-
ero et al., 2000; Wang and Liu, 2011). Only by knowing the
textual characteristics of a certain text type it is possible to
estimate the transferability of proposed methods and hence
assess their real value. To our best knowledge there is no
previous work that uses language statistics to give guidance
in building NLP systems, although this is a crucial part of
every language engineering (Cunningham, 1999) process.
In the next Section, we select and present suitable language
statistics. In Section 3. we apply them to English-language
corpora from three different genres: news articles, web fora
posts and automotive repair orders. In Section 4. we carry
out a case study and demonstrate how textual characteris-
tics may give guidance to select appropriate algorithms for
a successful genre-specific information extraction system.
Finally, we draw conclusions in Section 5.

2. A Language Engineering Fingerprint
Although there is a broad range of language statistics avail-
able, we only use a carefully handpicked set. We believe
this set should be limited to support direct comparisons
within one representative chart: a language engineering
fingerprint. Furthermore, we only use language statistics,
which can be easily and quickly calculated without the need
for advanced language processing modules, e.g. part-of-
speech (POS) taggers or syntax parsers. Such modules
are usually highly text type-dependent (Sekine, 1997) and
hence cannot be directly applied to previously unknown
text types, as the selection of the most appropriate modules
is precisely the goal of the analysis.

1. Shannon’s entropy H measures the average amount of
information in an underlying data structure. Applied
in the field of language engineering, the mean amount
of information of a token ti can be calculated by ap-
proximating its probability p(ti) via its frequency in
a given corpus. The entropy as given in Formula 1 is
normalized to the vocabulary size |V |, i.e. the number
of types in the corpus:

H = −
∑

ti ∈ V

p(ti) log|V | p(ti) (1)

A high entropy indicates that many words occur with
small frequencies – instead of few words that occur
with large frequencies.

2. The relative vocabulary size RVoc (Těšitelová, 1992,
chapter 1.2.3.3) is given by the ratio of the vocabu-
lary size |V | and the total number of tokens Nm with
respect to “meaningful” words. These are defined as
words, that are not function words (Nm = {t | t /∈
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Nf})1, e.g. nouns, adjectives and verbs:

RVoc =
|V |
Nm

(2)

A small relative vocabulary size indicates simple lan-
guage, less morphological constructs and few spelling
and tokenization errors. Thus, it provides information
about word repetition and the success of dictionary-
based methods.

3. The vocabulary concentration CVoc (Těšitelová, 1992,
chapter 1.2.3.3) is defined by the ratio of the total num-
ber of tokens Ntop with respect to the most frequent
terms in the vocabulary V (Vtop = {t | t ∈ V ∧r(t) ≤
10}) and the total number of tokens N in a corpus

CVoc =
Ntop

N
(3)

where rank r(t) is defined as the position of a token t
in a frequency-ordered list. A high vocabulary concen-
tration indicates the corpus is made up of only a few
words. Dictionary- and rule-based methods are then
easier to implement and to maintain than for corpora
with low vocabulary concentration.

4. The vocabulary dispersion DVoc expresses the relative
amount of low frequency tokens (Vlow = {t | t ∈
V ∧ f(t) ≤ 10}) in the vocabulary V :

DVoc =
|Vlow|
|V |

(4)

where frequency f(t) is defined as the number of oc-
currences of the token t in a corpus. A high vocab-
ulary dispersion indicates a high fraction of spelling
and tokenization errors or a morphologically rich lan-
guage. Generally, this may significantly blow up lan-
guage models and lead to large parameter spaces for
machine learning methods. However, a high vocabu-
lary dispersion may also give the opportunity (or obli-
gation) to drastically apply pruning methods. Methods
like POS tagging or named entity recognition (NER)
are vulnerable to out-of-vocabulary words, which are
more likely to occur in a corpus with a high vocabulary
dispersion (Toutanova et al., 2003). If co-occurrences
are to be calculated, significance measures like mutual
information should be discarded for corpora with high
vocabulary dispersion, as rare events would be overes-
timated.

5. The corpus predictability CP expresses the transition
probabilities between tokens. For this, we need to cal-
culate the entropy of a first-order Markov source S of
two tokens ti, tj as given in Formula 5

H(S) = −
∑
ti

p(ti)
∑
tj

pti(tj) log pti(tj) (5)

1As function words Nf we defined: the, a, an, he, him, she,
her, they, us, we, them, it, his, to, on, above, below, before, from,
in, for, after, of, with, at, and, or, but, nor, yet, so either, neither,
both, whether

where pti(tj) denotes the probability of tj given that
it is preceded by ti. CP is then calculated by normal-
izing the entropy of a first-order Markov source by its
maximum possible entropy and subtracting it from 1:

CP = 1− H(S)
Hmax(S)

(6)

A high corpus predictability indicates a very straight-
forward writing style with words often followed by the
same successors. This is an advantageous behavior for
Hidden Markov Models (HMMs) or the calculation of
neighborhood co-occurrences. If HMMs of higher or-
der are used, the corpus predictability can be calcu-
lated accordingly.

6. A rudimentary grammatical complexity GC can be
calculated by the ratio of the number of function words
Nf to the number of meaningful words Nm:

GC =
Nf

Nm
(7)

Although this rather basic approach cannot state a real
level of grammatical structure in a corpus, it still pro-
vides evidence for the amount of effort put into ex-
pressing syntax. In conjunction with the average sen-
tence length this language statistics may give guidance
in which manner texts need to be processed, e.g. deep
or shallow. For example, it may be possible to use
rule-based POS taggers instead of more sophisticated
POS taggers and thus significantly reduce calculation
time. Sophisticated syntax parsers may be replaced
by regular expression patterns (Trabold, 2007, chapter
8.2.3).

7. The average sentence length LS influences parsing,
relation extraction etc. The length |s| of a sentence s
is defined by the amount of tokens it contains, and the
average sentence length of all sentences S is defined
as in Formula 8:

LS =
1

|S|
∑
s∈S

|s| (8)

8. The spelling accuracy SAVoc is defined by the amount
of correctly spelled words NCor with respect to the to-
tal number of tokens N :

SAVoc =
NCor

N
(9)

This measure can furthermore be divided with respect
to real-word errors and non-word errors and crucially
influences which kind of spell-checking method needs
to be employed, if any. A low spelling accuracy can
significantly reduce the performance of context-based
methods and machine learning in general.

9. Before developing an information extraction system,
one should determine the corpus’ information density
IDCorp, which is given by the ratio of relevant words
Nr which are to be extracted and the total amount of
tokens N :

IDCorp =
Nr

N
(10)
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2.1. Further Language Statistics
Apart from the language statistics listed above, there are
several more textual characteristics, which are tempting to
use. Here, we list some of them and argue why we don’t
consider them appropriate to characterize corpora for lan-
guage engineering purposes.

1. The product of a token’s rank r(ti) and its frequency
f(ti) is known to be approximately constant (Zipf,
1949), and is given by Zipf’s first law:

r(ti)f(ti) ≈ k (11)

Although this regularity does not always fit well (Melz
and Wittig, 2007), we still do not consider the devi-
ations from Zipf’s first law large enough to provide
much insight for language engineering.

2. Measures like the Gunning-Fox-Index (Gunning,
1952) are often used to assess the readability of text,
for example to select texts appropriate for children of
different ages. The Gunning-Fox-Index estimates how
many years of education are needed to understand a
given text. Although this measure is helpful for edu-
cational purposes, we do not consider it useful for lan-
guage engineering, as it merely aggregates the aver-
age sentence length and the percentage of “complex”
words containing three syllables or more, excluding
compounds and proper nouns. While the amount of
complex words may actually be a problem for a hu-
man reader, it can be argued that they do not necessar-
ily pose difficulties for machine learning algorithms,
as they can be treated as every other feature of a text.

3. Especially in technical genres and domain-specific
language, words tend to be syntactically less ambigu-
ous than in more general language, making it therefore
easier to assign POS tags to them. This is reflected in
the syntactic ambiguity AS of a corpus. AS is defined
as the average entropy of a token ti’s POS tag sj . A
token occurring with only one POS tag has an entropy
(and hence ambiguity) of zero, while its ambiguity in-
creases for more syntactic classes being assigned to it
with lesser probabilities:

AS = − 1

|V |
∑
ti

∑
sj

p(sj |ti) log p(sj |ti) (12)

A high syntactic ambiguity indicates possible diffi-
culties for POS tagging, while a syntactic ambiguity
stands for easy or even trivial POS tagging. Although
we consider this measure as highly useful for language
engineering, we discard it in the remainder, as it is
very hard to calculate without advanced language pro-
cessing modules.

4. Correspondingly to AS , the lexical ambiguity AL is
defined by the average entropy of a token ti’s meaning
mj :

AL = − 1

|V |
∑
ti

∑
mj

p(mj |ti) log p(mj |ti) (13)

Intuitively, a high lexical ambiguity complicates infor-
mation extraction massively, while corpora with only
a few ambiguous words with few meanings are easier
handle. Again, we discard this measure in the remain-
der, as there is no way to calculate it automatically.

2.2. General Remarks on Language Statistics
Although we avoided language statistics which can only
be calculated using advanced language processing meth-
ods, we consider it feasible to inspect small samples of text
manually. For example, the spelling accuracy can be semi-
manually estimated from several hundred words.
Unfortunately, most language statistics cannot easily be
normalized by corpus size and thus should be calculated
on same- or at least similar-sized corpora. Obviously, lan-
guage statistics may not be accurate enough on samples
smaller than several ten thousand words.
Finally, the language statistics selected and presented by us
cannot easily be interpreted as being in some way “better”
or “worse” for higher or lower values when comparing cor-
pora. An interpretation is always bound to the nature of the
task to be accomplished. For the same reason, it is hard or
even impossible to combine all textual characteristics into
one artificial “quality” measure of some sort.

3. Language Engineering Fingerprints of
Corpora from Different Genres

We now apply the textual characteristics described in Sec-
tion 2. to three English-language corpora from different
genres: English-language news articles from WikiNews2,
posts to automotive web fora, and automotive repair orders.
News articles were chosen as much scientific work focuses
on then, posts to web fora are of increasing importance
for web mining, and repair orders, which are scientifically
not covered yet, are highly relevant for many manufactur-
ing companies. Furthermore, news articles, posts to web
fora and repair orders reflect an increasing level of genre-
specific language. As textual characteristics are partly in-
fluenced by corpus size, language statistics are calculated
on three million token samples belonging to randomly cho-
sen sentences for each corpus.
In Figure 1 the increasing level of genre-specific language
becomes evident. Relative vocabulary size is very small
for repair orders, reflecting the restricted and highly genre-
specific language. The high vocabulary dispersion in re-
pair orders is an indication for a low spelling accuracy. In-
terestingly, the level of grammatical complexity and aver-
age sentence length decreases greatly from news to web
fora to repair orders; repair orders tend to be expressed
in short and simply structured phrases. A surprising out-
come is the small vocabulary concentration of repair orders,
which is explained by the low frequency of function words.
While the top 10 most frequent words of news and posts to
web fora mainly include function words, the most frequent
words of repair orders also include meaningful “content”
words, which are also expressed by synonyms. Repair or-
der’s vocabulary concentration is higher if calculated using
the top 100 most frequent words instead of the top 10.

2http://en.wikinews.org
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Figure 1: Language engineering fingerprints of news arti-
cles, posts to web fora and repair orders. Misspelling Ratio
is defined as 1− SAVoc.

4. A Case Study: Information Extraction
from Automotive Repair Orders

After examining the language engineering fingerprints of
news articles, posts to web fora and repair orders, we carry
out a case study to demonstrate how textual characteristics
may give guidance to select appropriate algorithms for a
successful information extraction system on repair orders
(cf. Figure 1). Their high vocabulary dispersion can be ex-
plained easily upon inspection of several hundred words:
repair orders contain a large amount of tokenization er-
rors, misspellings and technical codes and hence require an
adapted pre-processing and tokenization. The small rela-
tive vocabulary size and the high corpus predictability sug-
gests to employ a dictionary-based spelling correction us-
ing neighborhood co-occurrences (Schierle et al., 2008).
This genre-specific method indeed yields good results in
comparison to other methods.
After pre-processing, tokenization and spelling correction
we POS tag our repair orders. Different state-of-the art
methods were evaluated; evaluation results are shown in
in Figure 2. Trabold (2007) presents details regarding the
evaluation and discusses its results. Remarkably, only the
Stanford POS tagger (Toutanova et al., 2003) outperforms
the naive baseline of simply tagging every word with its
most frequent tag. This is due to a low syntactic ambigu-
ity, and the small amount of undetected tokenization errors,
misspellings and out-of-vocabulary words.
Finally, we extract relations between components, failure
symptoms, their corrections etc. On the one hand, prelim-
inary tests using the Stanford parser (Klein and Manning,
2003a; Klein and Manning, 2003b) showed, repair orders –
characterized by low grammatical complexity – cannot eas-
ily be parsed by an off-the-shelf syntax parser (Hormazábal,
2007). On the other hand, re-training existing methods or
creating a special grammar is very time consuming. How-
ever, given the low grammatical complexity, high corpus
predictability and low syntactic ambiguity of repair orders,
it is reasonable to rely on unsupervised methods for both
POS tagging and syntax parsing. Therefore, we incorpo-

Brill Stanford SVM Tree Baseline

0,88

0,89

0,9

0,91

0,92

0,93

0,94

0,95

0,96

0,97

F
-M

e
a
su
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Figure 2: POS tagging results (F-Measures) on repair or-
ders using Brill tagger (Brill, 1992), Stanford POS tag-
ger (Toutanova et al., 2003), Support Vector Machines
(Giménez and Márquez, 2004) and decision trees (Schmid,
1994) compared to a naive baseline.

rated UnsuPOS (Biemann, 2006) and UnsuParse (Hänig et
al., 2008) as a basis for our relation extraction. Although
they cannot easily be evaluated directly or compared to su-
pervised methods, their usefulness was assessed indirectly
via the performance of our rule-based relation extraction
step (Hänig and Schierle, 2009): we reach an F-Measure
of partly more than 0.90, which allows us to conclude that
UnsuPOS and UnsuParse yield satisfying results. Schierle
(2011) provides an overview of the whole system as well as
more detailed evaluations etc.
In summary, we built a system to extract information from
automotive repair orders which exhibits highly genre- and
domain-specific language. Thereby, we achieved very good
results, not necessarily because of the superiority of one or
more algorithms, but merely because each module of the
system was carefully tailored to the genre’s textual charac-
teristics.

5. Conclusion
Over the years, research in NLP has led to a plethora of
methods and algorithms, often encapsulated in modules
such as tokenization, sentence segmentation, POS tagging,
syntax parsing, NER, relation extraction etc. For each mod-
ule there is wide variety of approaches; POS tagging alone
was approached using rules (Brill, 1992), HMMs (Brants,
2000), Support Vector Machines (Giménez and Márquez,
2004), decision trees (Schmid, 1994) etc. In turn, each ap-
proach may be evaluated on a wide variety of corpora. Ob-
viously, it is hard if not impossible to compile and maintain
a comprehensive overview of all approaches, their evalua-
tions and textual characteristics of the respective corpora.
Therefore, we hope to encourage other researchers to fol-
low our endeavor and describe corpora they work on us-
ing language statistics and hence facilitate comparability,
reproducibility and transferability of their methods and re-
sults. In the light of social media, where comparatively
“new” genres like chat protocols, posts to blogs and fora,
tweets, wikis etc. are likely to all have a completely differ-
ent textual characteristics, this becomes of increasing im-
portance.
In this paper, we selected and presented a set of suitable
language statistics. Its intended use is to compare corpora
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originating from different genres and domains and to es-
timate the transferability of NLP methods and algorithms
from one corpus to another. We do not consider this set to
be complete or perfectly adequate for every language engi-
neering process, but we appeal to the scientific community
to contribute to it and to provide feedback, so that over time
a standard can be established. We measured textual charac-
teristics on corpora from three different genres and derived
their language engineering fingerprint. In a case study we
have shown, how textual characteristics may give guide to
select appropriate algorithms for a successful information
extraction system on a highly specific genre: automotive
repair orders.
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Marie Těšitelová. 1992. Quantitive Linguistics. John Ben-
jamins Publishing Company, Amsterdam/Philadelphia.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proceed-
ings of the Human Language Technologies: North Amer-
ican Chapter of the Association for Computational Lin-
guistics (HLT-NAACL), pages 173–180.

Daniel Trabold. 2007. Konzeption und Realisierung eines
multilingualen Systems zur Erkennung benannter Entit-
ten. Master’s thesis, Leipzig University.

Dong Wang and Yang Liu. 2011. A cross-corpus study
of unsupervised subjectivity identification based on cal-
ibrated em. In Proceedings of the 2nd Workshop on
Computational Approaches to Subjectivity and Sentiment
Analysis (WASSA), pages 161–167.

George K. Zipf. 1949. Human behaviour and the principle
of least-effort. Addison-Wesley, Cambridge, MA.

519


