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Abstract
The present paper explores a wide range of word sense disambiguation (WSD) algorithms for German. These WSD algorithms are
based on a suite of semantic relatedness measures, including path-based, information-content-based, and gloss-based methods. Since
the individual algorithms produce diverse results in terms of precision and thus complement each other well in terms of coverage, a
set of combined algorithms is investigated and compared in performance to the individual algorithms. Among the single algorithms
considered, a word overlap method derived from the Lesk algorithm that uses Wiktionary glosses and GermaNet lexical fields yields
the best F-score of 56.36. This result is outperformed by a combined WSD algorithm that uses weighted majority voting and obtains
an F-score of 63.59. The WSD experiments utilize the German wordnet GermaNet as a sense inventory as well as WebCAGe (short
for: Web-Harvested Corpus Annotated with GermaNet Senses), a newly constructed, sense-annotated corpus for this language. The
WSD experiments also confirm that WSD performance is lower for words with fine-grained sense distinctions compared to words with
coarse-grained senses.
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1. Introduction
Word sense disambiguation (WSD) has been a very active
area of research in computational linguistics. Most of the
work has focused on English. One of the factors that has
hampered WSD research for other languages has been the
lack of appropriate resources, particularly in the form of
sense-annotated corpus data. The present paper focuses on
WSD for German and utilizes the German wordnet Ger-
maNet (Kunze and Lemnitzer, 2002; Henrich and Hinrichs,
2010) as a sense inventory as well as WebCAGe (Hen-
rich et al., 2012) (short for: Web-Harvested Corpus Anno-
tated with GermaNet Senses), a newly constructed, sense-
annotated corpus for this language.
Due to the lack of sense-annotated corpora for German
prior to the construction of WebCAGe, there has been rel-
atively little research on WSD for this language.1 The pur-
pose of this paper is to help close this gap. More specifi-
cally, it has the following three goals:

1. To apply a much wider range of WSD algorithms to
German since the range of methods that has thus far
been applied to German is rather limited.

2. To study the combination of WSD methods in either
majority or weighted majority voting schemes as well
as in a Borda count setup.

3. To study the effect of linking the GermaNet knowl-
edge base with other web-based lexical resources such
as the German version of Wiktionary2 (Henrich et al.,
2011). This mapping was performed for the purpose
of including Wiktionary sense definitions into Ger-
maNet and is particularly relevant for word overlap

1For more discussion, see Section 3. below.
2http://www.wiktionary.org/

methods, which have previously been shown to per-
form well for English WSD by Pedersen et al. (2005).

The remainder of this paper is structured as follows: Sec-
tion 2 provides a brief overview of the German wordnet re-
source GermaNet. Related work is discussed in Section 3.
Section 4 introduces the methods and algorithms for WSD
that are used in this paper. The performance of the different
WSD algorithms is evaluated in Section 5. Finally, there
are concluding remarks and an outlook to future work in
Section 6.

2. GermaNet Resource
GermaNet (Kunze and Lemnitzer, 2002; Henrich and Hin-
richs, 2010) is a lexical semantic network that is modeled
after the Princeton WordNet for English (Fellbaum, 1998).
It partitions the lexical space into a set of concepts that are
interlinked by semantic relations. A semantic concept is
represented as a synset, i.e., as a set of words whose indi-
vidual members (referred to as lexical units) are taken to be
(near) synonyms. Thus, a synset is a set-representation of
the semantic relation of synonymy. There are two types of
semantic relations in GermaNet. Conceptual relations, e.g.,
hypernymy, part-whole relations, entailment, or causation,
hold between two semantic concepts, i.e. synsets. Lexical
relations, e.g., antonymy, hold between two individual lexi-
cal units. GermaNet covers the three word categories of ad-
jectives, nouns, and verbs, each of which is hierarchically
structured in terms of the hypernymy relation of synsets.
GermaNet’s version 6.0 covers 93407 lexical units, which
are grouped into 69594 synsets.
Sense definitions are a crucial component for wordnets.
Until recently, GermaNet included sense definitions only
for a small number of lexical units. However, compre-
hensive sense definitions are badly needed in order to en-
hance its usability for a wide variety of NLP applications,
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including word sense disambiguation. In order to add sense
descriptions to GermaNet, a semi-automatic mapping was
performed that enriches GermaNet’s lexical units with Wik-
tionary sense definitions. This mapping is the result of a
two-stage process: an automatic alignment, which achieves
93.8% accuracy, followed by a manual post-correction –
see Henrich et al. (2011).

3. Related Work
Word sense disambiguation has been a widely studied nat-
ural language processing task in recent years. It goes be-
yond the scope of the present paper to provide a compre-
hensive account of the state of the art in WSD. See Agirre
and Edmonds (2006) as well as Navigli (2009) for a more
in-depth survey and discussion of WSD methods. In this
section, we will focus on existing work on word sense dis-
ambiguation for German, so as to be able to relate the re-
search reported in the present paper to previous research
on this language. All research on word sense disambigua-
tion work for German (Steffen et al., 2003; Widdows et al.,
2003; Broscheit et al., 2010) has focussed on the lexical
sample task for WSD, i.e., the disambiguation of a fixed
set of polysemous target words. The number of ambiguous
target words used in these studies has been rather small,
ranging from 24 (Widdows et al., 2003) to 40 (Steffen et
al., 2003; Broscheit et al., 2010) nouns. By contrast, the
all-words WSD task consists of disambiguating each and
every word that appears in a test corpus. If a lexical token
contained in the corpus is not ambiguous, this is of course
trivial. For ambiguous words, the assumption is that the
surrounding corpus context will aid in identifying the cor-
rect sense of the given target word. In recent work, Navigli
et al. (2007; 2010) have successfully applied graph-based
disambiguation methods to this all-words disambiguation
task. We agree that the all-words disambigation task is ul-
timately more meaningful and more realistic from a cogni-
tive perspective, relating computational approaches to lan-
guage processing by humans. However, the all-words task
has higher prerequisites in terms of sense-annotated cor-
pora that do not currently hold for German. Nevertheless,
the present study significantly goes beyond the previous
studies on German word sense disambiguation in that a to-
tal of 1499 nouns are included in the lexical sample dis-
ambiguation task compared to the much smaller samples
used by Steffen et al. (2003), Widdows et al. (2003), and
Broscheit et al. (2010).
The earliest German WSD studies that we are aware of are
those of Steffen et al. (2003) and Widdows et al. (2003)
who apply unsupervised methods for domain-specific WSD
on medical texts. Steffen et al. (2003) apply two sepa-
rate WSD methods: One method automatically determines
domain-specific senses of ambiguous target words on the
basis of their relative statistical relevance across several do-
main specific corpora. The other method is instance-based
and uses k-nearest neighbor classification.
Widdows et al. (2003) perform automatic WSD for English
and German and derive their sense inventory for these two
languages from the Medical Subject Headings thesaurus
(MeSH) contained in the Unified Medical Language Sys-
tem (UMLS). They apply two unsupervised WSD meth-

ods: i) bilingual disambiguation based on parallel corpus of
English-German medical scientific abstracts obtained from
the Springer Link web site3, and ii) collocational disam-
biguation as introduced by Yarowsky (1995) which uses
multi-word expressions and collocations from UMLS as
seed examples for Yarowsky’s algorithm.
The studies of Steffen et al. (2003) and Widdows et al.
(2003) both focus on the medical domain and are thus
domain-dependent. A recent study that performs WSD on
a domain-independent German corpus is that of Broscheit
et al. (2010). It uses GermaNet as a knowledge base and
the graph-based algorithm Personalized PageRank (PPR) of
Agirre and Soroa (2009) as well as a voting approach that
combines PPR with the unsupervised algorithms of Lapata
and Keller (2007) and McCarthy et al. (2004) for determin-
ing the most frequent sense. The best results reported by
Broscheit et al. (2010) are not obtained by the voting ap-
proach but rather by the PPR algorithm alone. In order to
compare the performance of the algorithms described in the
present paper with the results of Broscheit et al. (2010), the
Personalized PageRank algorithm is included in the set of
experiments described in Section 5.

4. Word Sense Disambiguation Algorithms
4.1. Semantic Relatedness Measures
In order to be able to apply a wide range of WSD algo-
rithms to German, we have reimplemented the same suite of
semantic relatedness algorithms for German that were pre-
viously used by Pedersen et al. (2005) for English WSD4.
Following their terminology, these relatedness algorithms
can be grouped into path-based, information-content-based,
and gloss-based. The algorithms used in the present work
in each of these categories are summarized in the following
list. See Budanitsky and Hirst (2006) for a detailed descrip-
tion.

4.1.1. Path-Based Measures
The following path-based measures all use the GermaNet
graph-structure and compute the shortest path between two
concepts contained in the graph.

• lch: Similarity between two concepts is computed
as the negative logarithm of the length of the short-
est path between the concepts (limited to hyper-
nymy/hyponymy relations only) over the path length
of the overall depth of the wordnet – as introduced by
Leacock and Chodorow (1998).

• wup: Conceptual similarity between two concepts is
computed as the shortest path length (limited to hy-
pernymy/hyponymy relations) between the two con-
cepts, normalized by the depth of their lowest common
subsumer (LCS) – as introduced by Wu and Palmer
(1994).

3http://link.springer.de/
4The publication of this paper will be accompanied by

making this suite of semantic relatedness algorithms freely
available for academic research – see http://www.sfs.uni-
tuebingen.de/GermaNet/tools.shtml
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Figure 1: Algorithm for disambiguating a target word applied for each relatedness measure.

• hso: For computing the semantic relatedness between
two concepts, the length of the shortest path between
the concepts (not limited to the hypernymy/hyponymy
relations) and the change of ”direction” (i.e., the rela-
tions in a wordnet can be grouped into upwards, down-
wards, and horizontal) are considered – as introduced
by Hirst and St. Onge (1998).

• path: Relatedness between two concepts is computed
as a function of the distance between two nodes and
the longest possible ’shortest path’ between any two
nodes in GermaNet.

4.1.2. Information-content-based Measures
These measures rely on the information content (IC) of a
concept in the GermaNet graph that is estimated by the rel-
ative frequency of this word in a large corpus. In the present
case, these frequencies were obtained from the TüPP-D/Z5,
a German newspaper corpus of 200 Mio. words.

• res: Similarity between two concepts is computed as
the IC of their LCS in the graph – as introduced by
Resnik (1995).

• jcn: Similarity between two concepts is computed as
the inverse of their distance (measured as the sum of
the ICs of the concepts minus double the IC of their
LCS) – as introduced by Jiang and Conrath (1997).

• lin: Similarity between two concepts is measured as
the IC (multiplied by two) of their LCS over the sum of
the ICs of the concepts – as introduced by Lin (1998).

4.1.3. Gloss-based Measures
The following measures, based on the idea of Lesk (1986),
use paraphrases from GermaNet and Wiktionary for count-
ing word overlaps. The Wiktionary paraphrases are linked

5http://www.sfs.uni-tuebingen.de/en/tuepp.shtml

to corresponding GermaNet senses via the automatic map-
ping between GermaNet and Wiktionary described in Hen-
rich et al. (2011). Furthermore, the use of lexical fields,
i.e., bags of words from surrounding synsets, can be exam-
ined for calculating word overlaps. By the mapping from
GermaNet to Wiktionary, such lexical fields can also be ob-
tained for Wiktionary.

• lesk-Gg: Use glosses from GermaNet

• lesk-Gw: Use glosses from Wiktionary

• lesk-Lg: Use lexical fields from GermaNet

• lesk-Lw: Use lexical fields from Wiktionary

• lesk-Ggw-Lgw: Use glosses and lexical fields from
both GermaNet and Wiktionary

• lesk-Gw-Lg: Use glosses from Wiktionary and lexical
fields from GermaNet

4.2. WSD Using Semantic Relatedness Measures
For each relatedness measure taken in isolation, the word
sense disambiguation of a polysemous target word in a
given sentence starts with a calculation of semantic relat-
edness for all sense combinations in question as illustrated
in Figure 1. That is, a relatedness measure rel(ts, cs) is cal-
culated for each sense tsi of the target word to each sense
csjk of each word j in the context window. The computed
relatedness values are illustrated in the table in Figure 1.
In a next step, all calculated values per target word are
summed and the target word yielding the highest sum is
defined to be the overall disambiguation result returned by
that relatedness measure. Formally, the overall WSD result
of a single relatedness measure is defined as:

resultrel := max
ts∈T

∑
ts∈T,cs∈C

rel(ts, cs)

where T is the set of all target word senses and C the set
containing all senses of all words in the context.
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4.3. Combined WSD Algorithms
It has been shown for various NLP tasks, including part-
of-speech tagging (van Halteren et al., 2001; Henrich et
al., 2009) and word sense disambiguation (Florian and
Yarowsky, 2002), that multiple classifier systems outper-
form single decision systems. Further, the performance of
such methods is usually better the more diverse the individ-
ual systems are (Polikar, 2006). Since the WSD algorithms
used in the present paper are based on rather different un-
derlying ideas, they are likely to produce diverse results.
Therefore, combining them into a joint classifier appears
like an obvious direction to pursue. In order to be able to
combine the values of the individual algorithms into a joint
overall score, the values returned by the single relatedness
measures were normalized from zero to one.
In order to further boost the performance of a combined
algorithm, we experimented with maximizing the preci-
sion of the single algorithms. To this end, modified vari-
ants of the single algorithms were developed by introduc-
ing thresholds that allow the algorithms to yield non-zero
values only if their scores are above a certain value and
therefore, in effect, introduce minimal levels of confidence.
This, of course, leads to a loss in coverage and recall of
the single algorithms. However, a combined algorithm can
compensate for this loss, as long as the coverage of the sin-
gle modified algorithms complement one another.
The following list summarizes some of the combined algo-
rithms that we have experimented with and whose results
will be shown in the Evaluation section (Polikar, 2006):

• Majority voting: Each relatedness measure votes for
a candidate sense of the target word. The votes are
summed with weight 1; and the target word sense with
the highest count(s) win(s).

• Weighted majority voting: Each relatedness measure
votes for a candidate sense of the target word. The
votes are summed with a specified weight (per relat-
edness measure); and the target word sense with the
highest count(s) win(s).

• Borda count: Each relatedness measure rankorders the
candidate senses of the target word. The first ranked
sense receives a value of N−1 (where N is the amount
of senses the target word has), the second ranked sense
gets N − 2 votes, etc. Thus, the last ranked candidate
sense receives 0. The values are summed for each tar-
get word sense; and the sense with the highest value(s)
win(s).

5. Evaluation
5.1. The WebCAGe Sense-Annotated Corpus
All experiments recorded in this paper use WebCAGe6

(Henrich et al., 2012), a web-harvested corpus annotated
with GermaNet senses, which is based on the sense align-
ment of GermaNet senses with Wiktionary senses. As
described in Section 2, the original purpose of this map-
ping was to automatically add sense descriptions to Ger-
maNet. However, the alignment of these two resources

6See http://www.sfs.uni-tuebingen.de/en/webcage.shtml

opens up a much wider range of possibilities for data min-
ing community-driven resources such as Wikipedia and
web-generated content more generally. It is precisely this
potential that was fully exploited for the creation of the
WebCAGe sense-annotated corpus. Wiktionary senses are
frequently illustrated by one or more example sentences,
which in turn are often linked to external references, includ-
ing Wikipedia articles7, sentences contained in the Guten-
berg project8, and other textual web sources. Therefore, the
GermaNet-Wiktionary alignment and the various pointers
contained in Wiktionary example sentences make it possi-
ble to automatically assemble a corpus annotated with Ger-
maNet senses. More specifically, WebCAGe contains a to-
tal of 1499 sense-annotated polysemous nouns (on average
2.6 senses in GermaNet) that occur 6847 times in 6413 sen-
tences. These occurrences are distributed over the different
subcorpora as follows: 4103 occurrences in the Wiktionary
example sentences themselves, 1643 in the Wikipedia arti-
cles, 655 in the texts from the Gutenberg project, and 446
in the texts harvested from other web materials.
In order to evaluate the performance of the various algo-
rithms, a 2:1 ratio between the training and testing data
was used.9 Thus, we randomly picked every third file from
the text types of Wikipedia, Gutenberg, and external web
sources, as well as every third example sentence from Wik-
tionary to be included in the test corpus. The remaining
files/sentences constitute the training corpus.

5.2. Profiling the Suite of WSD Algorithms
In order to evaluate the above-described WSD setup, an ex-
tensive set of experiments using many different measures
of relatedness and various algorithms for combining those
individual results was performed. All experiments were run
on the test set of WebCAGe (as described in Section 5.1.)
and are restricted to the word class of nouns with a con-
text window of 51 words. The reason for only considering
nouns is due to the fact that – with the exception of hso
and lesk-* – all relatedness measures were intended for this
word class only. Table 1 shows the results for the individ-
ual disambiguation results using one relatedness measure
at a time as illustrated in Figure 1. The coverage (column
Cov.) is calculated as the number of sentences, where the
measure returns a result, compared to the overall number of
sentences used for the evaluation.
Table 1 shows that, with the exception of hso, the path-
based measures (rows 1, 2, and 4) and the information-
content-based measures (rows 5 to 7) yield good results
in terms of coverage ranging from 87.7% to 95.7%. By
comparison, the gloss-based Lesk algorithms which use
only GermaNet glosses (lesk-Gg) or Wiktionary glosses
(lesk-Gw) score considerably lower in coverage and there-
fore also yield a recall which is below all of the path- and
information-content-based measures (again with the excep-
tion of hso). This can only be due to the fact that the glosses
do not contain enough lexical material. This defect can be
remedied by including lexical material in the lexical fields

7http://www.wikipedia.org/
8http://gutenberg.spiegel.de/
9The use of a 2:1 ratio is recommended by Agirre and Ed-

monds (2006, page 77) for evaluations of the WSD tasks.
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Method Cov. Recall Prec. F1
lch 92.51% 47.17% 50.99% 49.01
wup 91.31% 49.16% 53.84% 51.40
hso 63.43% 41.35% 65.20% 50.61
path 95.70% 49.48% 51.71% 50.57
res 90.52% 45.66% 50.44% 47.93
jcn 93.86% 46.14% 49.15% 47.60
lin 87.73% 46.69% 53.22% 49.75
lesk-Gg 14.26% 5.90% 41.34% 10.32
lesk-Gw 76.33% 43.75% 57.31% 49.62
lesk-Lg 78.57% 49.40% 62.88% 55.33
lesk-Lw 97.93% 53.31% 54.43% 53.86
lesk-Ggw-Lgw 99.76% 53.71% 53.83% 53.77
lesk-Gw-Lg 92.83% 54.34% 58.54% 56.36

Table 1: Evaluation results for semantic relatedness mea-
sures.

obtained for both resources (lesk-Lg and lesk-Lw). There
are considerable jumps in coverage from 14.26% (lesk-
Gg) to 78.57% (lesk-Lg) and from 76.33% (lesk-Gw) to
97.93% (lesk-Lw). An almost complete coverage (99.76%)
can be achieved by lesk-Ggw-Lgw which makes use of lex-
ical fields and glosses from both resources. These dra-
matic jumps in coverage underscore the usefulness of en-
riching GermaNet with sense descriptions from Wiktionary
for such gloss-based algorithms. This answers in the af-
firmative one of the leading questions for the research re-
ported here, namely, to study the effect of the GermaNet-
Wiktionary mapping on word overlap WSD algorithms.
Among the different variants of the Lesk algorithm dis-
cussed so far, the lesk-Gw and lesk-Lg stand out from the
rest in terms of precision (57.31% and 62.88%, respec-
tively). For this reason, we included a final variant lesk-
Gw-Lg which achieves the overall best F-score of 56.36.10

Notice also that two algorithms (hso and lesk-Lg) consider-
ably outperform this best overall algorithm in terms of pre-
cision and another algorithm (lesk-Ggw-Lgw) in terms of
coverage. This apparent heterogeneity of performance pro-
vides good motivation for investigating a combined WSD
algorithm that can exploit the relative virtues of the best
performing single algorithms. In order to further boost the
performance of the combined algorithms, the precision of
the single algorithms is maximized by introducing thresh-
olds that allow the algorithms to yield non-zero values only
if their scores are above a certain value – as explained in
Section 4.
Table 2 shows the performance of those modified variants
of the single algorithms.11 The precision of these modified
algorithms is much higher (6% to 16%) compared to the
precision of the corresponding algorithms in Table 1. Only
for hso the precision has not increased significantly (2.7%

10As mentioned above, this best result matches the findings of
Pedersen et al. (2005) for English WSD where the Lesk algorithm
also yielded the overall best results.

11Note that Table 2 does not include threshold variants of the
Lesk algorithms, since the Lesk algorithms fail to consistently ex-
hibit more reliable results above a certain threshold.

Method Cov. Recall Prec. F1
lch w. threshold 29.96% 20.00% 66.76% 30.78
wup w. thresh. 56.97% 35.78% 62.80% 45.58
hso w. threshold 39.20% 26.61% 67.89% 38.24
path w. thresh. 29.96% 20.00% 66.76% 30.78
res w. threshold 53.86% 30.76% 57.10% 39.98
jcn w. threshold 23.03% 12.75% 55.36% 20.73
lin w. threshold 39.60% 25.42% 64.19% 36.42

Table 2: Evaluation results for semantic relatedness mea-
sures with thresholds.

only). Further, there is an apparent loss in coverage, and
therefore also in recall, which depends on coverage. This
loss in coverage and recall of the single algorithms can be
compensated in a combined algorithm as long as the cover-
age of the single algorithms complement one another.
The best results are achieved by combining all the single al-
gorithms in Tables 1 and 2. Table 3 (rows 1 to 3) shows the
results of the experiments with combined algorithms. The
best overall result with an F-score of 63.59 is achieved by
weighted majority voting (abbreviated as wmv in Table 3).
The training set was used to obtain the optimal weights for
the individual algorithms used in this wmv algorithm.

Method Cov. Recall Prec. F1
Majority voting 100% 56.73% 56.73% 56.73
wmv 100% 63.59% 63.59% 63.59
Borda count 100% 59.92% 59.92% 59.92
PPR 100% 49.96% 49.96% 49.96
Random 70.92% 18.96% 26.74% 22.19

Table 3: Evaluation results for combinatory algorithms and
baselines.

As mentioned in Section 3, the state-of-the-art Personal-
ized PageRank algorithm (Agirre and Soroa, 2009) (see row
PPR in Table 3), which yielded the best results for German
WSD reported by Broscheit et al. (2010), was also run on
the test data. As shown in Table 3, the PPR algorithm per-
forms considerably lower than any of the combined algo-
rithms and many of the single algorithms described in Ta-
ble 1. Finally, a random sense baseline (again, see Table 3)
was outperformed by a wide margin by all algorithms listed
in Tables 1 and 3, with the exception of lesk-Gg, in terms
of recall and precision.

5.3. Profiling WSD for Individual Words
The purpose of this section is to further analyse the experi-
mental results for the single and combined WSD algorithms
presented in the previous section. To this end, we have
chosen a set of 16 nouns which occur a minimum of 18
times in the test set. For reasons of space, it is not possible
to show the performance of these words for all of the sin-
gle and combined WSD algorithms discussed in the previ-
ous section. Therefore, only the best performing algorithm
(in terms of F-measure) for each of the categories of path-
based, information-content-based, gloss-based, and com-

580



Occurrences Senses Methods
Word in test corpus GN C-GN wup lin lesk wmv
Brauerei 40 2 1 70.97 70.97 46.67 37.50
Dank 56 2 1 46.15 33.33 51.06 38.30
Schnecke 95 2 2 55.56 66.67 86.27 51.85
Option 124 2 2 52.05 71.43 51.35 75.68
Raclette 25 2 2 75.86 68.97 82.76 80.00
Araber 27 2 2 41.18 35.29 87.50 88.24
Eichel 34 2 2 32.00 32.00 56.00 92.31
Export 24 2 2 92.31 92.31 91.67 92.31
Elf 30 2 2 71.43 69.23 85.71 100
Besetzung 52 3 2 40.58 32.35 28.99 22.86
Steuer 71 3 2 56.10 65.85 35.29 90.70
Atrium 39 3 3 84.21 58.18 72.41 55.17
Ende 18 3 3 14.81 29.63 7.14 71.43
Aspiration 21 3 3 66.67 88.89 66.67 88.89
Bogen 58 4 4 34.48 50.91 34.48 68.97
Feld 79 5 3 48.89 45.45 45.83 4.17

Table 4: Individual evaluation results (F-score) for selected words.

bined are included: wup, lin, lesk-Gw-Lg (abbreviated as
lesk in Table 4), and weighted majority voting (abbreviated
as wmv). Table 4 summarizes the performance (F-score) of
each of these algorithms for the individual words in ques-
tion. Table 4 also lists for each word the occurrence count
in the test set of WebCAGe (column occurrences) and the
number of senses in GermaNet (column GN).

The column C-GN in Table 4 lists the number of coarse-
grained GermaNet senses that can be obtained by cluster-
ing the existing sense distinctions contained in GermaNet.
The motivation for such a clustering is the following: In
the past, it has been called into question whether wordnets
constitute the right type of resource to provide sense in-
ventories for word sense disambiguation. This critique has
been levied particularly against the Princeton WordNet for
English since it makes very fine sense distinctions (partic-
ularly for words with many wordnet senses) which cannot
reliably be replicated by human annotators with sufficient
inter-annotator agreement (Palmer et al., 2007). The lack
of reliable inter-annotator agreement for such words seems
troublesome since it is unreasonable to expect that an auto-
matic WSD algorithm should perform better than humans
would on the same task. This insight has led to clustering
fine-grained WordNet sense distinction into coarse-grained
sense groupings, either by manually reconciling differences
in human annotator judgements (Palmer et al., 2007) or
by an automatic mapping from WordNet senses to more
coarse-grained senses provided by the Oxford Dictionary
for English (Navigli, 2006). Moreover, Palmer et al. (2007)
have shown for the English Verb Lexical Sample Task of
SensEval-2 that the WSD performance improves from an
accuracy of 77.1% for fine-grained sense distinctions to an
accuracy of 81.4% for coarse-grained sense distinctions.
Navigli (2006) showed an improvement from 65% to 78%
for the SensEval-3 all words task, using the WSD system
Gambl (Decadt et al., 2004), which scored the best for this
SensEval-3 shared task.

The average ambiguity rate of 2.6 GermaNet senses for po-
lysemous nouns in WebCAGe is slightly lower compared
to the Princeton WordNet (average of 2.79 noun senses for
version 3.0). However, manual inspection of the words
profiled in Table 4 has shown that their sense distinctions
sometimes suffer from the same kinds of deficiencies wit-
nessed by the human annotators when they used the Prince-
ton WordNet for manual sense-annotation of English texts.
One such deficiency described in Palmer et al. (2007) con-
cerns sense subsumption, which involves the choice be-
tween a more general or a more specific sense entry.

An example of this sort is the noun Steuer, which has
a total of three senses in GermaNet with the following
paraphrases that illustrate these senses: (1) nicht zweckge-
bundene Abgabe an den Staat ’general purpose tax paid
to the government’, (2) Vorrichtung zum Lenken eines
Fahrzeuges ’device for steering a vehicle’, and (3) Vor-
richtung zum Steuern von Fahrzeugen ’device for driving
vehicles’. Sense (1) is clearly distinct from the other two
senses. However, senses (2) and (3) have nearly identical
paraphrases and are thus closely related. It is therefore sen-
sible to collapse these two senses into one. As a result,
Steuer then has the two coarse-grained senses described by
paraphrases (1) and (2) above.

Another deficiency of fine-grained sense distinctions dis-
cussed by Palmer et al. (2007) concerns vague contexts,
that is, contexts that are applicable to more than one sense
of a target word. An example of this sort is the noun Beset-
zung, which has a total of three senses in GermaNet with
the following paraphrases that illustrate these senses: (1)
Zuteilung einer Stelle, eines Postens, einer Rolle an jeman-
den ’assignment of a position, post, role to someone’, (2)
Militär: die Stationierung von Truppen in einem fremden
Gebiet ’military: stationing of troops in a foreign territory’,
and (3) Gesamtheit der Künstler (Schauspieler, Musiker)
eines Werkes ’ensemble of artists (actors, musicians) for
the performance of a piece of art’. Here, senses (1) and
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(3), while distinct, are at the same time clearly overlapping
in coverage. This leads to the dilemma, that for the disam-
biguation of a target word the contexts will often not suffi-
ciently discriminate between the senses in question. For ex-
ample, in the sentence Chris ergänzt die jetzige Besetzung
des Theaters optimal. ’Chris is the ideal addition to the cur-
rent team composition of the theater.’ it is unclear whether
Besetzung refers to the set of jobs in the theater (sense 1)
or to the cast for a particular theater play (sense 3). As in
the case of sense subsumption it therefore makes sense to
collapse senses (1) and (3) and assign two coarse-grained
senses to the word Besetzung.
The WSD experiments for the words in Table 4 were carried
out with the ordinary GermaNet senses (listed under GN).
The reason for also including the coarse-grained senses C-
GN in the table is to be able to distinguish those words
where the number of GN and C-GN senses coincides from
the ones where two or more of the fine-grained senses can
be collapsed. This distinction turns out to be a good indi-
cator for differences in WSD scores obtained by the overall
best scoring wmv combined algorithm. With one excep-
tion, the words where two or more senses can be collapsed
(i.e. C-GN < GN, for Brauerei, Dank, Besetzung, and Feld
in Table 4), performed lower for this combined algorithm
in comparison with those words where no senses could be
collapsed (i.e., C-GN = GN). The exception is Steuer (C-
GN=2 < GN=3), for which wmv anomalously performs
extremely well. This result corroborates the findings of
Navigli (2006) and Palmer et al. (2007) that fine-grained
sense distinctions lead to worse results than coarse-grained
ones.
The results in Table 4 also corroborate the finding described
in Section 5.2 that the individual algorithms exhibit a rather
heterogeneous behavior and deviate in their performance
on a word-to-word basis, thus confirming the usefulness of
applying combined algorithms to the WSD task.

6. Conclusion and Future Work
In summary, the present paper has explored a wide range of
WSD algorithms for German. Among the single algorithms
considered, a variant of the Lesk algorithm (lesk-Gw-Lg)
that uses Wiktionary glosses and GermaNet lexical fields
yields the best F-score of 56.36. Since the individual al-
gorithms produce diverse results in terms of precision that
complement each other well in terms of coverage, a set of
combined algorithms outperform the score of the best in-
dividual classifier. The best overall result is obtained by
a combined WSD algorithm that uses weighted majority
voting and yields an F-score of 63.59. This result contra-
dicts the previous finding of Broscheit et al. (2010) who
did not obtain better results by combining individual WSD
algorithms. The present study also applied the Personalized
PageRank individual classifier which performed best over-
all in the study reported by Broscheit et al. but not in the
experiments reported here.
The WSD experiments also confirm that WSD performance
is lower for words with fine-grained sense distinctions com-
pared to words with coarse-grained senses. In future work,
we plan to rerun the experiments reported here with a
coarse-grained GermaNet sense inventory in order to ascer-

tain whether this will lead to improved results for German,
as Navigli (2006) and Palmer et al. (2007) reported for En-
glish.
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