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Abstract
In Natural Language Generation, the task of attribute selection (AS) consists of determining the appropriate attribute-value pairs (or
semantic properties) that represent the contents of a referring expression. Existing work on AS includes a wide range of algorithmic
solutions to the problem, but the recent availability of corpora annotated with referring expressions data suggests that corpus-based
AS strategies become possible as well. In this work we tentatively discuss a number of AS strategies using both semantic and surface
information obtained from a corpus of this kind. Relying on semantic information, we attempt to learn both global and individual AS
strategies that could be applied to a standard AS algorithm in order to generate descriptions found in the corpus. As an alternative, and
perhaps less traditional approach, we also use surface information to build statistical language models of the referring expressions that
are most likely to occur in the corpus, and let the model probabilities guide attribute selection.
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1. Introduction
In Natural Language Generation (NLG) Systems, Referring
Expressions Generation (REG) is the task of providing lin-
guistic forms to describe discourse objects, as in ‘the man
with a red hat’, ‘him’, ‘Mr. Johns’, etc. Much of the re-
search in the field has focused on the computation of the
semantic contents of referring expressions to be realised as
definite descriptions (e.g., ‘Please follow the left corridor’),
known as the attribute selection (AS) task. AS is also the
focus of this paper.
Attribute selection consists of determining the appropriate
attribute-value pairs (or semantic properties) that represent
the contents of a referring expression. The definition of
what exactly an ’appropriate’ attribute is remains an open
research question, but it is generally agreed that these at-
tributes should help ruling out potential distractors (i.e.,
other objects in the same context as the intended referent)
whilst preventing false conversational implicatures in the
sense defined by H. P. Grice (Grice, 1975).
Existing work on AS includes a wide range of algorith-
mic solutions (Dale and Reiter, 1995; Krahmer et al., 2003;
Paraboni et al., 2007). In recent years, however, the avail-
ability of corpora annotated with referring expressions data
such as TUNA (van Deemter et al., 2006; van Deemter et
al., 2011) and GRE3D (Viethen and Dale, 2008) suggests
that corpus-based AS strategies become possible as well.
In this work we tentatively discuss a number of AS strate-
gies using both semantic and surface information obtained
from the TUNA corpus. Relying on semantic information,
we attempt to learn both global and individual AS strategies
that could be applied to the Incremental algorithm (Dale
and Reiter, 1995) in order to generate TUNA descriptions.
As an alternative, and perhaps less traditional approach, we
also use surface information to build statistical language
models of the referring expressions that are most likely to
occur in the corpus, and let the model probabilities guide at-
tribute selection using the graph-based approach described
in (Krahmer et al., 2003).

2. Background
One of the best-known approaches to AS is the Incremen-
tal algorithm described in (Dale and Reiter, 1995), which
takes as an input a context set C containing domain objects
with their corresponding properties, and a list P represent-
ing the order in which the attributes will be considered for
selection. One particular object in C is the target r to be de-
scribed by means of a referring expression (i.e., a uniquely
identifying set of properties), and the remaining objects are
assumed to be distractors. The goal of the algorithm is to
compute a list of attributes L such that L uniquely describes
r and no other distractor in C.
The Incremental algorithm works by iterating over the list
of preferred attributes P and adding to the description L un-
der construction the attributes of the target object r that help
ruling out at least one distractor, until the point in which L
uniquely describes r. For instance, consider the following
domain entities and their properties:

E1 : (type, chair), (size, small), (colour, black)
E2 : (type, chair), (size, large), (colour, white)
E3 : (type, desk), (size, small), (colour, black)
E4 : (type, chair), (size, small), (colour, red)

Example 1 - A context set conveying four entities and their
referable attribute-pair values

In this example, assuming the preferred order P = {type,
size, colour}, we may refer to E1 as L = {type-chair, size-
small, colour-black}, which could be realised as ‘the small
black chair’. The reference to the size attribute rules out
E2, which is large (i.e., not small), the reference to type
rules out E3, which is a desk, and the reference to colour
rules out E4, which is red. Using the same P strategy E2

would be described as ‘the large chair’, E3 simply as ‘the
desk’ and E4 as ‘the small red chair’. Attributes that do
not rule out any distractors are best avoided since they may
lead to false conversational implicatures (Grice, 1975).
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In this work we will consider the problem of generating sin-
gular referring expressions in the Furniture domain1 as seen
in the TUNA corpus of referring expressions (van Deemter
et al., 2006). The TUNA corpus consists of situations of
reference (or trials) collected in a number of controlled ex-
periments for the purpose of REG research. Each TUNA
trial comprises a number of referable objects represented
by sets of semantic properties, including a target object
and its distractors. In addition to that, each trial includes a
uniquely identifying description of the target object as pro-
duced by a native or fluent speaker of English. TUNA de-
scriptions are represented in the corpus both as a set of se-
mantic properties (or attribute set) and as the actual surface
string (or string description) uttered by each participant.
The following is a simplified example of a single entity def-
inition adapted from the TUNA corpus (a typical TUNA
trial will contain several such definitions, one for each ob-
ject in the context):

<Entity Id=”23” Image=”desk.gif” Type=”target” >

<Attr Name=”colour” Type=”literal” Value=”grey” />
<Attr Name=”orient” Type=”literal” Value=”front” />
<Attr Name=”type” Type=”literal” Value=”desk” />
<Attr Name=”size” Type=”literal” Value=”large” />
<Attr Name=”x-dim” Type=”gradable” Value=”unk” />
<Attr Name=”y-dim” Type=”gradable” Value=”unk” />

</Entity>

The actual description produced in each trial is represented
as the following simplified example, also adapted from the
TUNA corpus:

<String Description> the gray desk </String Description>
<Attribute Set>

<Attr Id=”a2” Name=”type” Value=”desk” />
<Attr Id=”a1” Name=”colour” Value=”grey” />

</Attribute Set>

Different portions of the TUNA corpus have been exten-
sively used in a series of Shared Tasks (Belz and Gatt, 2007;
Gatt et al., 2008; Gatt et al., 2009), including an early ver-
sion of one of our present baseline systems described in
(Lucena and Paraboni, 2008; Lucena et al., 2010). For fur-
ther details on the TUNA corpus we refer to (Gatt and Belz,
2010) and (van Deemter et al., 2011). In what follows we
will use semantic information obtained from the Furniture
subcorpus of singular descriptions in two machine learning
approaches to AS discussed in Section 3. Word string in-
formation is the basis of a shallow AS approach described
in Section 4.

3. Learning Attribute Selection Strategies
from Corpora

Using the input-output pairings (i.e., every context C and
description L pairs) provided by the TUNA corpus as dis-
cussed in the previous section, we consider two learning
methods for AS. In both cases, we take as learning fea-
tures the set of integer values representing the discrimina-
tory power of each referable attribute (i.e., the number of

1Available from www.csd.abdn.ac.uk/ agatt/tuna/corpus/

distractors ruled out by each attribute of the target object,
such as colour, size etc.) For instance, in a context set as
seen in previous Example 1, assuming that we would like to
refer to E4, the corresponding discriminatory power values
would be defined as d type=1, d size=1 and d colour=3.
In the first learning method, we will attempt to learn possi-
ble Pj orderings (defined as nominal values) that, if applied
to the Incremental algorithm, would produce the desired
output L for each given input C. In the second method, we
will use the input C to (binary) decide whether to select
each attribute individually. We will call these our Global
and Individual AS classifiers, which are discussed sepa-
rately below.

3.1. Global AS classification
In (Dale and Reiter, 1995), the preferred order P in which
attributes are considered for selection will determine the ac-
tual AS strategy of the algorithm, and by varying the order
in P it is possible to produce a wide range of alternative de-
scriptions of the target object. For instance, suppose that
we use the preferred order P = {colour, type, size} in the
context illustrated in previous Example 1. In this case, a
reference to E3 would be described as ‘the black desk’ and
not simple as ‘the desk’ as the preferred order P = {type,
size, colour} would obtain.
Assuming that we would like to generate descriptions us-
ing the Incremental algorithm, we will use standard learn-
ing techniques to discover possible Pj strategies that would
produce the same results as those seen in the corpus. To
this end, we exhaustively run the Incremental algorithm for
each situation of reference (i.e., a target object and distrac-
tors as seen in the training corpus), attempting every pos-
sible Pj strategy (i.e., every permutation of the target at-
tributes) that (a) starts with type2 and (b) produces the de-
sired output For instance, the possible strategies that would
successfully produce, e.g., ‘the white chair’ as a descrip-
tion of E2 in Example 1 are P1 = {type, colour, size} and
P2 = {colour, type, size}, but since we assume type to have
a fixed position, only P1 needs to be considered.
If a strategy Pj produces the expected output (i.e., the same
uniquely distinguishing description found in the corpus)
then a training instance is created, in which the learning at-
tributes are the discriminatory power values of the context
objects, and the (nominal) class value to be learned is the
strategy Pj . Finally, given that a single referring expres-
sion may be produced by multiple Pj strategies, we keep
only the most frequent strategy applicable to each input.
The following Table 1 shows four learning instances for the
context in Example 1 using arbitrary descriptions L as ex-
amples of the kind of output string found in the TUNA cor-
pus. The learning attributes d type, d size and d colour
represent discriminatory power values as discussed above.
The class to be learned is a nominal value Pj representing
the most frequent attribute ordering (as seen in the corpus)
that would produce the desired description if used as the P
parameter in the Incremental algorithm. For instance, ‘tsc’

2Keeping the type attribute in fixed (i.e., first) position means
that type is always included in the output description as in (Dale
and Reiter, 1995), and this helps reduce the number of permuta-
tions to be considered.
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stands for P ={type, size, colour}. In our training data we
identified 120 distinct AS strategies, although nearly a third
of them are highly infrequent, occuring less than 10 times
each. The expected output descriptions are included in Ta-
ble 1 for illustration purposes only, and they are not learn-
ing attributes.

Example d type d size d colour Pj

E1 small black chair 1 1 2 tsc
E2 white chair 1 3 3 tcs
E3 small desk 3 1 2 tsc
E4 red chair 1 1 3 tcs

Table 1: Examples of learning instances for Global AS clas-
sification considering the context in previous Example 1.

Using a training set as above, we applied J48 decision tree-
induction (Witten and Frank, 2005) to build a model that,
given a context of reference, selects an appropriate Pj strat-
egy for each input. However, given that the choice for one
attribute may rule out others, we notice that this is not ex-
pected to be a highly accurate model of AS, but simply an
estimate of which initial P strategy to use in each case, with
average Precision = 0.562, Recall = 0.989 and F-measure
= 0.715 using 10-fold cross-validation. Figure 1 shows the
pruned tree for the most frequent AS strategies, which in-
cludes attributes that we have not considered in the previous
examples.

Figure 1: Global AS classifier

Given a target object r and the set V of discriminatory
power values of the input context C, a description of r is
generated by submitting the input information to the model,
and then using the resulting class Pj as the P parameter
in the Incremental algorithm, which in turn generates the
output description L. This procedure can be summarised as
follows.

Input:
r : the target object
W : the set of discriminatory power values in C
C : the context set

P ← GlobalClassifier(W)
L← MakeReferringExpression(r,C,P)
return(L)

The algorithm consists of making a call to the decision tree
model to obtain the strategy P applied to the Incremental al-

gorithm. The results obtained by this method are discussed
in Section 5.

3.2. Individual AS classification

As an alternative to the Global AS classifier, we also at-
tempt to learn whether to select each attribute individually
as follows. For each TUNA trial taken from a training por-
tion of the corpus, we generate one training instance for
every referable attribute aj except type, thus creating five
training instances for each TUNA trial. As in the previ-
ous approach, the learning attributes represent the discrim-
inatory power of each attribute of the target object. In the
present method, however, the class to be learned is defined
as a binary condition representing whether each aj attribute
(colour, size, orientation, x-dimention and y-dimension)
was actually selected to appear in the output description.

Table 2 shows examples of learning classes for the exam-
ple descriptions in previous Table 1 (s colour represents
whether the colour attribute should be selected etc.) The
last three classes have all their values set to zero because
these attributes were not used in the previous examples. For
the learning attributes under consideration, we refer to pre-
vious Table 1.

Ex. s colour s size s orient s x s y

E1 1 1 0 0 0
E2 1 0 0 0 0
E3 0 1 0 0 0
E4 1 0 0 0 0

Table 2: Examples of learning classes for Individual AS
classification. The learning attributes are the same from
Global AS classification (d type, d size and d colour ).

From this data set we induced five J48 classifiers using 10-
fold cross-validation to determine whether to select colour,
size, orientation, x-dimension and y-dimension attributes
independently. However, this method was only successful
for the selection of size and orientation attributes. These
results are shown in Table 3.

Class Precision Recall F-measure

Colour 0.643 0.514 0.500
Orientation 0.784 0.806 0.790
Size 0.886 0.895 0.891
X-dimension 0.621 0.516 0.501
Y-dimension 0.640 0.558 0.561

Table 3: Individual AS classification

The induced trees for size and orientation attribute selection
are shown in Figure 2 and Figure 3.
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Figure 2: Individual size AS classifier

Figure 3: Individual orientation AS classifier

The use of the individual classifiers as part of a simple REG
algorithm is illustrated as follows, in which The RulesOut()
function is taken to return the set of objects for which the
given property is true.

Input:
r : the target object
P : the list of possible attributes, sorted by frequency
W : the set of discriminatory power values in C
C : the context set

L← ∅
for each ai ∈ P do

if( IndividualClassifier(ai , W) == true )
P ← P − ai

L← L ∪ (ai, vi)

C ← C− RulesOut (ai, vi)

repeat
if(C == ∅) return(L)
for each ai ∈ P do

if(RulesOut(ai, vi) 6= ∅)
L← L ∪ (ai, vi)

C ← C− RulesOut (ai, vi)

if(C == ∅) return(L)
repeat
return(L)

The algorithm starts by including all attributes suggested
by the binary classifiers in the description L under construc-
tion. If L still remains ambiguous after all classifiers have
been attempted, the algorithm iterates over a fixed P pref-
erence order based on frequency. The list P starts with the
attribute type, which has the highest frequency in the cor-
pus, and which is always included in the description, as in
(Dale and Reiter, 1995). Additional attributes are selected
(in this case against the classifiers advice) until L becomes
uniquely distinguishing, or until there is no more properties
to be considered in P. The results of this method are also
discussed in Section 5.

4. Word-based Attribute Selection
Our previous approaches take full advantage of the seman-
tic annotation provided by the TUNA corpus to learn possi-
ble AS strategies. However, since this kind of information
is unlikely to be available in other domains, it is tempting
to ask whether we can extract AS strategies directly from
word strings. Thus, in a third corpus-based approach to
REG, we attempt to use surface information taken from the
corpus to guide the (otherwise strictly semantic) AS task.
The word-based approach consists of a standard implemen-
tation of the Graph-based algorithm described in (Krahmer
et al., 2003) using a modified cost function based on lan-
guage model probabilities. Briefly, this algorithm takes as
an input a context graph V in which nodes represent entities
and the edges are properties (self-loops are atomic proper-
ties and edges linking two nodes are relational properties.)
The goal of the Graph algorithm is to build a sub-graph H
that represents a uniquely distinguishing description of the
target object. This is achieved by tentatively adding each
possible attribute (or graph edge) to the sub-graph under
construction with lowest possible cost, which is determined
by a customisable cost function. For details regarding the
Graph-based algorithm, see (Krahmer et al., 2003).
We use the Graph-based algorithm with a cost function de-
fined by word string probabilities obtained from a language
model as follows. First, the word strings in the training
portion of the corpus were translated into our target lan-
guage (Portuguese) and a trigram language model of the
target expressions was created. The use of the language
model in the cost function of the REG algorithm is illus-
trated below. The functions addEdge() and removeEdge()
are standard graph methods, the function Realise() is taken
to call an auxiliary surface realisation engine, and the func-
tion perplexity() evaluates the language model for the given
word string.

Input:
aj : the candidate attribute under consideration
L : the graph under construction
M : the language model

addEdge(L,aj)
sj ← Realise(L)
p← perplexity(M,sj)
removeEdge(L,aj)
return(p)

Each candidate attribute aj is provisionally added to the de-
scription L under construction at the beginning of the algo-
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rithm, and removed once again when the algorithm termi-
nates. At each step, the description L under consideration is
realised as a word string sj using a simple template-based
surface realisation engine of Portuguese definite descrip-
tions. Next, the language model is evaluated against sj , and
the model perplexity value p is returned to the main (Graph-
based) REG algorithm. The algorithm will then take p as
the cost of adding aj to the description L, and ultimately de-
cide whether to select aj permanently or not. Thus, we use
word string probabilities to predict which semantic prop-
erties should be selected in the REG task. Interestingly,
although the focus of our work is the AS strategy, this ap-
proach produces not only an output attribute set, but also a
valid surface realisation form as a by-product. These results
are presented in the next section.

5. Evaluation
For evaluation purposes, the three corpus-based methods
are compared to two baseline systems. The first baseline
is a standard implementation of the Graph algorithm pre-
sented in (Krahmer et al., 2003), in which we defined a cost
function based on the frequency of each attribute in the cor-
pus. In this case, the most frequent attribute (which in the
TUNA Furniture domain happens to be type) is assigned
the lowest cost. The second baseline is the heuristic-based
algorithm discussed in (Lucena et al., 2010; Lucena and
Paraboni, 2008), which was developed specifically to mir-
ror the descriptions found in the TUNA corpus.
The results are summarised in Table 4 as both Dice and
MASI set similarity scores (sorted by MASI means), both
of which have been often applied to the evaluation of REG
algorithms in the TUNA corpus (van Deemter et al., 2011).
For a discussion on the evaluation of REG algorithms using
these and other - intrinsic and extrinsic - metrics, see also
(Gatt and Belz, 2010).

System Dice MASI
Mean SD Mean SD

Word-based 0.64 0.2 0.26 0.2
Frequency-based 0.53 0.3 0.32 0.3
Global Classifier 0.69 0.3 0.44 0.3
Individual Classifier 0.78 0.2 0.52 0.4
Heuristic-based 0.78 0.2 0.55 0.4

Table 4: Results

We performed two separate one-way ANOVAs on Dice and
MASI scores, in both cases followed by Tukey HSD test
(α = 0.01). We found significant differences between
the systems in both Dice (F(4,1323)=63.45, MSE=0.068,
p<0.01) and MASI scores (F(4,1323)=29.3, MSE=0.136,
p<0.01). The homogeneous subsets found are shown in
Table 5.
Both Individual and Global classifiers are statistically sim-
ilar to the Heuristic-based approach. These scores are how-
ever lower than those presented in the 2008 TUNA Shared
Task (Gatt et al., 2008), in which 14 systems reported Dice
scores ranging from 0.23 to 0.86, and MASI scores ranging
from 0.09 to 0.70 for the Furniture data. However, as our

System

Word-based A
Frequency-based A B
Global Classifier B C
Individual Classifier C
Heuristic-based C

Table 5: Homogeneous subsets for Dice and MASI scores.
Systems which do not share a letter are significantly differ-
ent at α = 0.01.

test data set the is not the same used in (Gatt et al., 2008),
the comparison is not straightforward. The Heuristic-based
system, for instance (previously called USP-EACH-FREQ)
reported Dice = 0.82 and MASI = 0.62 in (Gatt et al., 2008).

6. Final Remarks
This paper presented a number of AS strategies using both
semantic and surface information obtained from a corpus
of referring expressions. Although the corpus-based ap-
proaches do not generally outperform the tailor-made algo-
rithm in (Lucena et al., 2010), we notice that these prelim-
inary results may still be considered satisfactory given that
our approaches are in principle adaptable to other domains,
whereas the work in (Lucena et al., 2010) remains largely
domain-specific. Regarding the difference between our ap-
proaches, we notice that even though the learning approach
outperforms word-base REG, it still requires a semantically
annotated corpus, which may not be easily obtainable for
real-world applications in general.
The word-based approach, by contrast, requires only a cor-
pus of word strings. As future work we intend to refine both
the learning strategies and the statistical language models
used by each method to improve their results, and extend
the evaluation to different domains, e.g., by considering the
People domain in TUNA (van Deemter et al., 2006).
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