
Risk Analysis and Prevention: LELIE, a Tool dedicated to Procedure and
Requirement Authoring

Flore Barcellini (1), Camille Albert (2), Corinne Grosse (1), Patrick Saint-Dizier (2)

(1) CNAM-CRTD, 41 Rue Gay Lussac, Paris, France
(2) IRIT-CNRS, 118 route de Narbonne 31062 Toulouse cedex France,

Flore.Barcellini@cnam.fr, stdizier@irit.fr

Abstract
In this paper, we present a tool that detects business errorsin technical documents such as procedures or requirements.The objective is
to improve readability and to check for some elements of contents so that risks that could be entailed by misunderstandings or typos can
be prevented. Based on a cognitive ergonomics analysis, we survey a number of frequently encountered types of errors andshow how
they can be detected using the<TextCoop> discourse analysis platform. We show how errors can be annotated, give figures on error
frequencies and analyze how technical writers perceive oursystem.

Keywords: authoring tool, requirements, logic programming

1. Objectives
The main goal of the LELIE project is to produce an anal-
ysis and a piece of software based on language processing
and artificial intelligence that detects and analyses poten-
tial risks of different kinds (first health and ecological, but
also social and economical) in technical documents. We
concentrate on procedural documents and on requirements
(Hull et al. 2011) which are, by large, the main types of
technical documents used in companies.
Given a set of procedures (e.g. production launch, main-
tenance) over a certain domain produced by a company,
and possibly given some domain knowledge (ontology, ter-
minology, lexical), the goal is to process these procedures
and to annotate them wherever potential risks are identi-
fied. Procedure authors are then invited to revise these doc-
uments. Similarly, requirements, in particular those related
to safety, often exhibit complex structures (e.g. public reg-
ulations, to cite the worse case): several embedded condi-
tions, negation, pronouns, etc., which make their use dif-
ficult, especially in emergency situations. Indeed, proce-
dures as well as safety requirements are dedicated to action:
little space should be left to personal interpretations.
Risk analysis and prevention in LELIE is based on three
levels of analysis, each of them potentially leading to errors
made by operators in action:

• Detection of inappropriate ways of writing: complex
expressions, implicit elements, complex references,
scoping difficulties (connectors, conditionals), inap-
propriate granularity level, involving lexical, semantic
and pragmatic levels, inappropriate domain style,

• Detection of domain incoherencies in procedures : de-
tection of unusual ways of realizing an action (e.g. un-
usual instrument, equipment, product, unusual value
such as temperature, length of treatment, etc.) w.r.t.
similar actions in other procedures or to data extracted
from technical documents,

• Confrontation of domain safety requirements with
procedures to check if the required safety constraints
are met.

The LELIE project is obviously very vast. We concentrate
in this paper on the first task: the detection of inappropri-
ate ways of authoring procedures and requirements. These
two textual ’genres’ share some characteristics since they
both obey forms of operational style, but they also have
their own specificities. Requirements are of two types: pre-
vention requirements (how to avoid risks) and emergency
ones (what to do when a problem occurs). We concentrate
our investigations on industrial documents, while enrich-
ing our studies with a few large-public documents which
are in general much more free and complex linguistically
speaking. The documents we consider in this project range
from short emergency notices to large procedures that may
be more than 100 pages long. These large documents often
follow authoring guidelines proper to the company which
must also be taken into account and checked, similarly to
grammatical and general style constraints.

Most industrial areas have now defined authoring recom-
mendations on the way to elaborate, structure and write
procedures of various kinds. However, our experience with
technical writers shows that those recommendations are not
very strictly followed in most situations. Our objective isto
develop a tool that checks ill-formed structures w.r.t. these
recommendations and general style considerations in pro-
cedures and requirements when they are written.

In addition, authoring guidelines do not specify all the as-
pects of document authoring: our investigations on author
practices have indeed identified a number of recurrent er-
rors which are linguistic or conceptual which are usually
not specified in authoring guidelines. These errors are ba-
sically identified from the comprehension difficulties en-
countered by technicians in operation using these docu-
ments to realize a task or from technical writers themselves
which are aware of the errors they should avoid.

We concentrate on those errors which are related to tech-
nical document authoring which are obviously not detected
by standard text editors such as Microsoft Word or by pro-
fesional authoring tools.

698



2. The Situation and our contribution
Risk management and prevention is now a major issue. it
is developed at several levels, in particular via probabilis-
tic analysis of risks in complex situations (e.g. oil storage
in natural caves). Detecting potential risks by analyzing
business errors on written documents is a relatively new ap-
proach.
Authoring tools, in particular for simplified languages,
have emerged two decades ago (e.g. one of the first
investigated at Boeing, then at IBM: acrocheck/link, SPSS,
see a synthesis at:
http://www.shu.ac.uk/prospectus/course/141/).
International style standards have been
formulated, e.g. Hunt overrides,
http://www.techknowledgecorp.com/help/tools.html),
Madpak
(http://www.madcapsoftware.com/products/madpak/
overview.aspx). (Ament 2002) and (Weiss 2000) devel-
oped a number of useful methodological elements for
authoring technical documents and error identification and
correction.
The originality of our approach is that :

• authoring recommendations are made flexible and de-
pend on context, for example if negation is not al-
lowed in instructions in general, there are however
cases where it cannot be avoided because the positive
counterpart cannot so easily be formulated, e.g.do not
throw the acid into the sewer: butthrow where?. Simi-
larly, references are allowed if the referent is close and
non-ambiguous. However, this requires some knowl-
edge.

• following observations in ergonomics in the project,
a specific effort is realized concerning the well-
formedness (following grammatical and cognitive
standards) of discourse structures and their regularity
over entire documents (e.g. instruction or enumera-
tions all written in the same way),

• the production of procedures includes some controls
on contents, in particular action verb arguments, as in-
dicated in the second objective above, via the Arias
prototypical action base, e.g. avoiding typos or confu-
sions among well syntactically and semantically iden-
tified entities such as instruments, products, equip-
ments, values, etc.

• there is no real requirement analysis system based on
language, that can check authoring recommendations.
The main products are Doors and Doors-Trec, Ob-
jecteering, Reqtify and Craddle which are essentially
text databases with query facilities and some traceabil-
ity functions carried out via attributes. However, there
are ongoing attempts to improve Doors possibilities
with some forms of conceptual analysis based on pre-
defined attributes, but this results in a relatively limited
expressive power,

• the authoring tool includes facilities for French speak-
ing authors who need to write in English, supporting

typical errors they make via ’language transfer’ (Gar-
nier 2010, 2011). This point is not addressed here.

This project, LELIE, is based on the TextCoop system
(Saint-Dizier, 2012), a system dedicated to language anal-
ysis, in particular discourse (including the taking into ac-
count of long-distance dependencies). This project also
includes the Arias action knowledge base that stores pro-
totypical actions in context, and can update them. It also
includes an ASP solver to check for various forms of inco-
herence and incompleteness. The kernel of the system is
written in Prolog SWI, with interfaces in Java. The project
is at the moment realized for French, an English version is
under development.
The system is organized according to the following princi-
ples:

• the system is parameterized: the technical writer may
choose the error types he wants to be checked, and the
severity level for each error type when there are sev-
eral such levels (for example there are several levels
of severity associated with fuzzy terms which indeed
show several levels of fuzziness),

• the system simply tags elements identified as errors,
the correction is left to the author. However, some help
or guidelines are offered. For example, guidelines to
reformulate a negative sentence into a positive one are
proposed,

• the way errors are displayed can be customized to the
writer’s habits.

We present below a kernel system that deals with the most
frequent and common errors made by technical writers in-
dependently of the technical domain. This kernel needs an
in-depth customization to the domain at stake. For exam-
ple, the verbs used or the terminological preferences must
be implemented for each industrial context. Our system of-
fers the control operations, but these need to be associated
with domain data.
Finally, to avoid the variability of document formats, the
system input is an abstract document with a minimal num-
ber of XML tags as required by the error detection rules.
Managing and transforming the original text formats into
this abstract format is not dealth with here.

3. Categorizing language and conceptual
errors found in technical documents

In spite of several levels of human proofreading and valida-
tion, it turns out that texts still contain a large number of sit-
uations where recommendations are not followed. Reasons
are analyzed in e.g. (Beguin, 2003), (Mollo et al. 2004,
2008).
Via ergonomics analysis of the activity of technical writers,
we have identified several layers of recurrent error types,
which are not in general treated by standard text editors
such as Word or Visio, the favorite editors for procedures.
Here is a list of categories of errors we have identified.
Some errors are relevant for a whole document, whereas
others must only be detected in precise constructions (e.g.
in instructions, which are the most constrained construc-
tions):

699



• general layout of the document: size of sentences,
paragraphs, and of the various forms of enumerations,
homogeneity of typography, structure of titles, pres-
ence of expected structures such as summary, but also
text global organization following style recommenda-
tions (expressed in TextCoop via a grammar), etc.

• morphology: in general passive constructions and fu-
ture tenses must be avoided in instructions,

• lexical aspects: fuzzy terms, inappropriate terms such
as deverbals, light verb constructions or modals in in-
structions, detection of terms which cannot be asso-
ciated, in particular via conjunctions. This requires
typing lexical data.

• grammatical complexity: the system checks for vari-
ous forms of negation, referential forms, sequences of
conditional expressions, long sequences of coordina-
tion, complex noun complements, and relative clause
embeddings. All these constructions often make doc-
uments difficult to understand,

• uniformity of style over a set of instructions, over titles
and various lists of equipments, uniformity of expres-
sion of safety warnings and advice,

• correct position in the document of specific fields:
safety precautions, prerequisites, etc.

• structure completeness, in particular completeness of
case enumerations w.r.t. to known data, completeness
of equipment enumerations, via the Arias action base,

• regular form of requirements: context of application
properly written (e.g. via conditions) followed by a
set of instructions,

• incorrect domain value, as detected by Arias.

When a text is analyzed, the system annotates the original
document (which is in our current implementation a plain
text, a Word or an XML document): revisions are only
made by technical writers. When documents are inspected
in batch mode, a score of the document global quality level
may be produced.
Tags are customized to authors, they are made explicit and
easy to understand, as shown in the following two short
examples where a possible way of tagging is proposed:

Move the vacuum compressor pump<to the area: WHICH
ONE?>. <For instance: EXAMPLE of WHAT?>, close to
the water storage or to the pool.<It: WHO?> should be
on a higher level than<the source of water : VAGUE?>
and<probably: VAGUE?> 3 feet away. If you are working
on a pool,<it: WHO?> connects to the skimmer line.

The vagueness of the ’example’ is due to the previous
indeterminacy of the ’area’: TextCoop rules allows, via
the Dislog language to deal with non-adjacent structures in
texts. The second example, translated from French, shows
the detection of enumerations which are not homogeneous:

- Open the canal JD34.
- <you must maintain: STYLE NOT uniform> pressure
during 1 minute<at least: VAGUE?>.
- then close<the flood-gate: WHICH ONE?> quickly at
100 %.
- <Do not: NEGATION> open<it WHAT?> again in the
next minute.

Besides tags which must be as explicit as possible, colors
indicate the severity level for the error considered (the same
error, e.g. use of fuzzy term, can have several severity lev-
els). The most severe errors must be corrected first. At the
moment, we propose four levels of severity:

1. ERROR: must be corrected,

2. AVOID: preferably avoid this usage, think about an
alternative,

3. CHECK: this is not really bad, but it is recommended
to make sure this is clear. This level is also used to
ask users make sure that argument values are correct,
when non-standard ones are found,

4. ADVICE: possibly not the best language realization,
but this is probably a minor problem. It is not clear
that there are alternatives. However, if there are, refor-
mulations are welcome.

We evaluate in section 5.5 how text authors react to these
recommendations: how many errors are indeed corrected,
how severe they are found, and which errors are left un-
changed. An illustration is given in Figure 1 at the end of
this paper.

4. Linguistic Model and Implementation
Let us now present our correction system and its perfor-
mances. It is based on a system of usage rules that detects
ill-formed constructions, rules are written by hand from
ergonomics observations and recommendations. Rules
are developed on the<TextCoop> platform (Saint-Dizier
2012) and written in the Dislog language.<TextCoop> is
based on logic programming, structures and errors are de-
tected on the basis of rewrite rules. These rules may be
associated with various forms of reasoning and knowledge
(Kintsch 1988) (Grosz et al. 1986).
The kernel system includes about 75% of the set of errors
observed in writing and reading phases by the ergonomists
of the project. This is relatively large. However, some final
tuning will remain to be done for each company when the
system is deployed, in order to take into account company
usages, in particular lexical. The errors not included are es-
sentially related to the style imposed by companies, which
will be developed separately, and to the domain terminol-
ogy preferences and practices, which can be very diverse.
Portability and customization are obviously central issues
in this work and a methodology must be realized to evalu-
ate techniques, feasibility and costs.
For each error type, a cluster of detection rules is produced.
The system first makes a discourse analysis of the docu-
ment following the RST theory and principles (Man et al.
1988) (Marcu 1997, 2000). Our rules in Dislog identify in

700



particular: titles, pre-requisites, warnings, advice, instruc-
tions, goals, purposes, conditions, etc. in fact most dis-
course structures related to explanation as found in this type
of document (Bourse and Saint-Dizier 2012). This is real-
ized also by a set of rule clusters, executed sequentially, in a
precise order implemented by means of a cascade of rules.
Then, the various errors are checked one after the other, us-
ing another cascade. The type of discourse structure to be
inspected is specified in the rules using the tags which have
been produced during the discourse analysis.
Lexical resources have been developed accordingly. These
contain, for example:

• standard terms such as determiners, negation, pro-
nouns, conjunctions, modals, etc.

• lists of fuzzy terms, with a severity level,

• lists of application dependent verbs and deverbals, to-
gether with their subcategorization frames, selectional
restrictions, and argument types, this is associated
with the Arias knowledge base contents,

• lists of positively or negatively oriented terms respec-
tively used to identify advice and warnings.

In addition, rules are associated with a morphological an-
alyzer, a POS tagger and a number ’local’ grammars, in-
cluded in the<TextCoop> environment.

5. Error synthesis and analysis
Let us now report here the errors which have received an
in-depth treatment in the system kernel. We focus on lex-
ical, grammatical and stylistic errors and give their main
characteristics.
We indicate the following main features: the type of error,
its severity (1 to 4, 4 being the highest), its global frequency
(1 to 4) and its portability (1 to 4, 4 meaning easy to adapt
to any context).

5.1. Lexical-based errors
The following criteria have been evaluated:

error type severity frequency portability

fuzzy term 3 3 3

verb arguments 3 2 1

preferred terms 2 2 1

domain terms
terms to avoid 3 2 1

deverbals 2 3 2

modals 2 2 1

light verb 2 1 2
constructions

verb diversity 3 3 3

pronouns 4 4 1

’Verb argument’ relates controls on the nature and com-
pleteness of verb arguments realizations for recurrent in-
structions. In general objects, instruments and values (Ph,
weights, durations, volts, etc.) are checked. This is realized
via a simple verb argument recognition grammar included
in <TextCoop> environment. Semantic controls require

the use of a domain terminology or ontology. They are in
general only partial.
’Preferred terms’ means that the term found must be recon-
sidered and that there is a preferred term, often a domain
term. This is identified via specific relations in the domain
terminology.
’Terms to avoid’ are terms judged inappropriate in the do-
main (e.g. instead ofcontrol usemake sure that). These
are often very specific and need to be specified in the sys-
tem for each company, activity or even group of technical
writer.
In general, modals, light verb constructions and deverbals
must be avoided unless they are really part of the domain
language. Modals may appear in warnings and advice, not
in instructions where they somewhat hide the injunctive
character of an instruction. Light verbs and deverbals in-
troduce some linguistic complexity which is often judged
unnecessary.
’Verb diversity’ is a measure of the number of distinct verbs
used in instructions. It is often recommended to limit the set
of verbs to a minimum which can be as low as 20 or 30.
’Pronouns’ indicates the use of a pronouns where the an-
tecedent may not be so easy to identify. To limit complex-
ity of the treatment, the system tags pronouns which appear
at the beginning of sentences, these seem to be the most
difficult to relate to an antecedent.

5.2. Grammar-based errors
The following criteria have been evaluated:

error type severity frequency portability

negation 3 4 1

embedded clauses 4 3 1

term position 3 3 1

coordination 4 3 1

noun complements 3 3 4

passives 2 3 1

future 2 2 1

’Negation’ includes double as well as simple negation, the
latter with a much lower severity level. Negative forms can
be very diverse. In instructions, standard forms such asnot,
do not, neverare tagged, negative terms such asavoidare
also tagged since they convey a negative meaning. Trans-
forming a negative expression into a positive expression is
often very challenging as illustrated above. For that pur-
pose, we propose a few correction schemas. However, the
best practice is to ask the technical writer to make sure that
the negative expression is clear (or to make it as clear as
possible) if he does not want to change it.
’Embedded clauses refers to relative clauses which are em-
bedded in instructions in particular. Their understanding
may lead to misinterpretations.
’Term position’ refers to preferences which must be de-
tected, in particular a number of company styles require
verbs to appear first in instructions (possibly with negation).
In other situations, conditions must appear first. Initial po-
sition is basically checked, we do not at the moment control
terms or constructions which are in final positions in in-
structions (e.g. as low level goals are in general, to clearly
indicate they are local).

701



’Coordination’ and ’noun complements’ indicated a too
high level of these constructions in any part of the docu-
ment.

As can be noted, in contrast with lexical errors, grammar-
based errors are generic and require low portability costs.

5.3. Style and Discourse errors

This level includes a number of criteria that depend on the
style of the company. We simply survez three generic ones
here.

error type severity frequency portability

sentence length 3 3 1

references 4 3 1

enumerations 3 4 3

Documents often contain very long sentences. We propose
here several severity levels depending on the length, which
can be parameterized. ’References’ indicates references to
other document portions which are not adjacent, they there-
fore require a document traversal which may not be com-
fortable for technicians in operation.

Finally, ’enumerations’ evaluates the regularity of the ex-
pressions in a list of enumerated items. Since this task is
very complex and requires flexibility, a number of criteria
are checked and a diagnosis is produced. For example, the
contents of the three first terms is checked and a regular-
ity measure is produced that depends on the terms and their
position. In order to avoid complex parsing or access to a
large variety of lexical data, basically closed word classes
and verbs are considered. These are often the most frequent
categories found starting enumerations. Nouns could also
be checked, however, via the domain terminology.

5.4. Errors as found in texts

To evaluate our error detection system we first evaluate its
impact in texts. We considered about 300 of full text pages
(procedures and requirements) from three main French
companies, involved in three very different industrial areas
(energy, chemistry and transportation). For confidential-
ity reasons, let us call them A, B, and C. These companies
have quite a large group of technical writers (about 30 to
50 each, with well-trained staff and beginners). Each com-
pany has very different authoring constraints and validation
processes. Documents are in French for the moment, the
system is under development for English.

The results given below show the amount of errors that have
been detected. The figures for each error is an average for
1000 lines of text. As it can be noted, the error rate is far
from being negligible: about one error every two lines, not
counting domain related errors. This clearly shows the im-
portance of our system. Only errors which do not require a
high portability cost are reported in this chart since we use
the kernel system.

error type global result A B C

fuzzy term 66 44 89 49

deverbals 29 24 14 42

modals 5 0 12 0

light verbs 2 2 2 3

verb diversity average low high low

pronouns 22 4 48 2

negation 52 8 109 9

embedded clauses 7 0 5 0

term position 56 57 82 33

coordination 6 0 10 0

noun complements 36 28 62 15

passives 34 16 72 4

future 2 2 4 1

sentence length 108 16 221 24

enumerations average low high average

references 13 33 22 2

It is difficult at this stage to analyze the reasons for high
levels of errors in some cases. It must also be taken into ac-
count that the technicians that use (or are supposed to use)
these documents probably have very different technical lev-
els, some of them being capable of understanding complex
statements. It must also be taken into account that some
documents have an everyday use whereas others serve in
emergency or infrequent situations. These latter certainly
need a more accurate writing and proofreading.

5.5. User reaction

Given these errors, it is now of much interest to measure
how technical writers react to the errors which are displayed
in their texts. An objective measure (besides their satis-
faction of dissatisfaction) is to count the number of errors
which have been corrected. Several strategies can be de-
ployed by technical writers at this level:

1. an error has been found relevant and has indeed been
corrected appropriately. Futhermore, the writer may
wish to keep track of his correction for further situa-
tions or for other writers, as an example,

2. an error has been found relevant, but considering the
text segment at stake, the writer realizes that the cor-
rection must be done on a larger scale,

3. an error has been found relevant and has been cor-
rected, but it has generated another error,

4. an error has been found relevant but the author (and his
colleagues) has no correction in mind, or he does not
fully understand the error. The error is left unchanged
in the text possibly for later inspection. The writer
may also look for similar errors in the text to see if
and how they have been corrected,

5. an error that the writer does not want to correct, for
various reasons, in particular because it is minor or it
does not alter the understanding of the sentence,

6. an error indicated by the system, but that turns out to
be a wrong diagnosis: the text span is perfectly cor-
rect.

702



Point 4 relates a frequent situation. For that purpose, al-
though we cannot anticipate corrections for each situations,
we can nevertheless propose partial correction schemas.
We review below, in French and English (glosses) a few
such schemas.

• Negation: (1) s’assurer que X ne V (where X is a noun
or an NP and V a verb: ensure that X does not V)
rewrites into: éviter que X V (avoid X to V). (2) X ne
V que lorsque rewrites into: X V seulement lorsque
(not appropriate in English):Cette vanne n’est utiliśee
que lorsque..., cette vanne s’utilise seulement lorsque.
However, in this latter example, a middle reflexive
construction is introduced.

• Deverbals, light verb constructions and passives: the
direct verb form can be proposed, together with a re-
organization of the verb arguments.

• Complex groups of conditions or contexts in a sen-
tence: reformulation as the action to realize followed
by a list (with an appropriate typography) of the con-
ditions in case of high pressure, or if the temperature
is higher that 50 degrees, stop the injection, or if the
bore concentration goes above 5%.can be rewritten
into:
stop the injection:
(1) in case of high pressure,
(2) in case the temperature is higher that 50 degrees,
or (3) in case the bore concentration is above 5%.

The first experimental results we get concerning user re-
action are the following, given a few correction schemas.
Numbers refer to the six above cases. Results are based on
small samples of corrected texts submitted to writers and
are still quite exploratory. We noted a great interest from
technical writers and their desire to improve their texts as
much as possible, sometimes beyond the errors which have
been detected.

writer’s attitude 1 2 3 4 5 6

situation frequency (%) 31 26 8 15 8 12

6. Conclusion and perspectives
We have presented in this paper the first phase of the LELIE
project: detecting authoring errors in technical documents
that may lead to risks. We surveyed here a number of er-
rors: lexical, business, grammatical, and stylistic. Errors
have been identified from ergonomics investigations. The
system is now fully implemented on the<TextCoop> plat-
form and has been evaluated on a number of documents. It
is then of much interest to evaluate user’s reactions.
We have implemented the system kernel. The main chal-
lenge ahead of us is the customization to a given industrial
context. This includes, among others:

• accurately testing the system on the company’s doc-
uments so as to filter out a few remaining odd error
detections,

• introducing the domain knowledge via the domain on-
tology and terminology, and enhancing the rules we
have developed to take every aspect into account,

• analyzing and incorporating into the system the au-
thoring guidelines proper to the company that may
have an impact on understanding and therefore on the
emergence of risks,

• implementing the interfaces between the writer’s doc-
uments and our system, with the abstract intermediate
representation we have defined,

• customizing the tags expressing errors to the users
profiles and expectations, and enhancing correction
schemas.

When sufficiently operational, the kernel of the system will
be made available on line, and probably the code will be
available in opensource mode or via a free or low cost li-
cense.

7. Acknowledgements
This project is funded by the French national Research
agency ANR, under the Emergence programme. We also
thanks reviewers for their comments and the companies that
showed a strong interest in our project, let us access to their
technical documents and allowed us to observed their tech-
nical writers. For confidentiality reasons, these companies
are not mentioned explicitly here.

8. References
Ament, K., Single Sourcing. Building modular documenta-

tion, W. Andrew Pub, 2002.
Béguin, P. Design as a mutual learning process between

users and designers Interacting with computers, 15 (6),
2003.

Bourse, S., Saint-Dizier, P., A Repository of Rules and
Lexical Resources for Discourse Structure Analysis: the
Case of Explanation Structures, LREC 2012, Istanbul.

Garnier, M., Correcting errors produced by French speak-
ers: the case of misplaced adverbs, Calico, Amherst,
2010.

Garnier, M., Correcting errors in N+N structures in the pro-
duction of French users of English, EuroCall, Notting-
ham, 2011.

Grosz, B., Sidner, C., 1986. Attention, intention and the
structure of discourse, Computational Linguistics 12(3).

Kintsch, W., 1988.The Role of Knowledge in Discourse
Comprehension: A Construction-Integration Model,
Psychological Review, vol 95-2.

Hull, E., Jackson, K., Dick, J., Requirements Enginnering,
Springer, 2011.

Mann, W., Thompson, S., 1988. Rhetorical Structure The-
ory: Towards a Functional Theory of Text Organisation,
TEXT8 (3) pp. 243-281. Thompson, S.A. (eds), 1992.
Discourse Description: diverse linguistic analyses of a
fund raising text, John Benjamins.

Marcu, D., 1997. The Rhetorical Parsing of Natural Lan-
guage Texts, ACL’97.

Marcu, D., 2000.The Theory and Practice of Discourse
Parsing and Summarization, MIT Press.

Mollo, V., Falzon, P., Auto and allo-confrontation as tools
for reflective activities. Applied Ergonomics, 35 (6), 531-
540, 2004.

703



Mollo, V., Falzon, P. , The development of collective relia-
bility: a study of therapeutic decision-making. Theoreti-
cal Issues in Ergonomics Science, 9(3), 223-254, 2008.

Saint-Dizier, P., 2012. Processing Natural Language Argu-
ments with the<TextCoop> Platform,Journal of Argu-
mentation and Computation.

Weiss, E.H., Writing remedies. Practical exercises for tech-
nical writing, Oryx Press, 2000.

704



Figure 1: An output sample.

705


