
Tackling interoperability issues within UIMA workflows

Nicolas Hernandez

LINA (CNRS - UMR 6241) – University of Nantes
2 rue de la Houssinière – B.P. 92208, 44322 NANTES Cedex 3, France

first.last@univ-nantes.fr

Abstract
One of the major issues dealing with any workflow management frameworks is the components interoperability. In this paper, we are
concerned with the Apache UIMA framework. We address the problem by considering separately the development of new components
and the integration of existing tools. For the former objective, we propose an API to generically handle TS objects by their name using
reflexivity in order to make the components TS-independent. In the latter case, we distinguish the case of aggregating heterogeneous
TS-dependent UIMA components from the case of integrating non UIMA-native third party tools. We propose a mapper component
to aggregate TS-dependent UIMA components. And we propose a component to wrap command lines third party tools and a set of
components to connect various markup languages with the UIMA data structure. Finally we present two situations where these solutions
were effectively used: Training a POS tagger system from a treebank, and embedding an external POS tagger in a workflow. Our
approch aims at providing quick development solutions.

Keywords: UIMA, interoperability, type system, data serialization format, software component integration

1. Introduction
Over the last few years, there has been growing interest in
the Apache Unstructured Information Management Archi-
tecture 1 (UIMA) (Ferrucci and Lally, 2004) as a software
solution to manage unstructured information. In compar-
ison with GATE2 (Cunningham, 2002), its probable ma-
jor difference is that it was initiated more recently and not
by researchers but by industrials (IBM) with stronger en-
gineering and design skills. GATE presents the interests
of being used for long in the Natural Language Processing
(NLP) community and of offering a wide range of analysis
components and tools. NLTK3 remains also an interesting
framework in particular because of the availability of nu-
merous integrated third party tools and data resources, and
because of its programming language –Python– which is
well-adapted for handling text material and quick develop-
ment.
From the NLP researcher point of view, Apache UIMA
is an attractive solution for at least two reasons4: First, it
dissociates the engineering middleware problems from the
NLP issues and takes in charge many of the engineering
needs like the workflow deployment, the data transmission
or the data serialization; Second, it offers a programming
framework for defining and managing NLP objects present
in analysis tasks (such as creating or getting the annotations
of a given type).
One of the major issues dealing with any workflow man-
agement frameworks is the components interoperability.
UIMA components only exchange data. So the data struc-
ture of the shared data is important since it ensures the in-
teroperability. UIMA offers mechanisms to freely define
its own data structure and the means to handle it afterwards.
This may lead to some interoperability problems since any-

1http://uima.apache.org
2http://gate.ac.uk
3http://www.nltk.org
4See (Hernandez et al., 2010) for more reasons.

one can design its own domain model to represent the same
concepts. For example, word, mot or token can be different
names to mean the same type of information. In addition,
as shown in Figure 1, an information, such as the part-of-
speech (POS) value Noun of a word, can be represented in
several ways. In (1), it is the value of a POS feature of a
word annotation. In (2), it is the value of a whatever feature
of a POS annotation at the same offset of a word annotation.
And in (3), it corresponds itself to a type of an annotation
covering the desired text offsets of a word. In the UIMA
jargon, the definition of the data structure is called the type
system (TS).

In this paper, we address the interoperability issue by con-
sidering separately the development of new components
and the integration of existing software instruments. For the
former objective, we propose an API to generically handle
TS objects by their name using reflexivity in order to make
the components TS-independent (Section 3.1.). In the latter
case, we distinguish the case of aggregating heterogeneous
TS-dependent UIMA components from the case of inte-
grating non UIMA-native third party tools. We propose
a mapper component to aggregate TS-dependent UIMA
components (Section 3.2.). And we propose a component
to wrap command lines third party tools (Section 3.3.) and
a set of components to connect various markup languages
with the UIMA data structure (Section 3.4.). Finally we
present two situations where these solutions were effec-
tively used: Training a POS tagger system from a treebank
(Section 4.1.), and embedding an external POS tagger in a
workflow (Section 4.2.).

Our approach aims at providing quick development so-
lutions. This work is part of the efforts for building a
French-speaking community around UIMA (Hernandez et
al., 2010).

3618

Figure 1: Various data model definitions.

2. Background
The question of interoperability for sharing language re-
sources and technology is the concern of several related ini-
tiatives such as the CLARIN5 project and the META-NET6

network. Various kinds of related interoperability aspects
can be considered: the «domain models» which provide
definitions of the types of the data elements that constitute
a domain as well as the description of how these types are
structured in the domain, the «data serialization formats»
which are used to store or to remotely transmit the primary
data and its associated metadata, the «metamodels» which
are abstractions of domain models. . .

2.1. UIMA concepts
In March 2009, the UIMA metamodel was voted as a stan-
dard by the OASIS consortium7. «The specification de-
fines platform-independent data representations and inter-
faces for text and multi-modal components or services. The
principal objective of the UIMA specification is to support
interoperability among components or services.»
The Common Analysis Structure (CAS) is the data struc-
ture which is exchanged between the UIMA components.
It includes the data, subject of analysis and called the Arte-
fact, and the metadata, in general simply called the Anno-
tations, which describe the data. The annotations are struc-
tured in Views (e.g. an HTML document can have the fol-
lowing views: the HTML structure, the extracted text, and
a translation of the latter) where they are directly associ-
ated to. The annotations are made of a feature structure and
are stored in CAS index. The definition of an annotation
structure is called the Type System (TS) and consists of an
implementation of a domain model.
A UIMA workflow is made of three types of components:
the Collection Reader (CR) which imports the data to pro-
cess (for example from the Web or from the file system...)
and turns it into a CAS. The Analysis Engines (AE) which
literally process the data (including but not restricted to
NLP analysis tasks); The annotations result from AE pro-
cessing. And lastly the CAS Consumer (CC) which exports
the annotations (for example to a database or to an XML
representation of the analysis results).
The UIMA framework handles the effective transmission
of the data either as objects between components deployed
on a same computer or as XML streams by (a)synchronous
web services. In addition, the UIMA framework comes
with components which offer the possibility to serialize the

5http://www.clarin.eu
6http://www.meta-net.eu
7www.oasis-open.org/committees/uima

exchanged data into the XML Model Interchange8 (XMI)
format which is the OMG’s XML standard for exchanging
Unified Model Language (UML) metadata.

2.2. Serialization formats for exchanging data
between third party tools

As part of the ISO’s TC37 SC4, (Ide and Suderman, 2009)
defend the idea that the GrAF (Graph Annotation Frame-
work) format, which is the xml serialization of the LAF
(Linguistic Annotation Framework) metamodel (Romary
and Ide, 2004), can serve primarily as a «pivot» for trans-
ducing serialization formats. They show that it is possible
to convert the information from the GrAF to a UIMA CAS.
This is mainly made possible since both underlying meta-
models are based on a graph structure. Nevertheless the
conversion is not straightforward; Since the UIMA CAS
defines typed feature structures, the process requires the
use of external knowledge sources to be able to specify
the types of the UIMA features. Neither the outcome is
not completely bijective; The process requires the defini-
tion of UIMA additional features for being able to explicit
the graph structure of the GrAF and consequently to reverse
the process. As a consequence, any UIMA CAS cannot be
transduced into a GrAF without an adaptation of its struc-
ture.
As a matter of fact the XMI format remains an appealing
solution to store and exchange UIMA CAS.

2.3. Main trend for tackling the type system
interoperability problem

The proposed solutions to tackle the domain model
(i.e. type system) interoperability problems were similar
to the solutions proposed for tackling the XML languages
interoperability problems. The main trend was to define
a common tool- and domain-free TS. In fact, several TS
emerged: The CCP metamodel’s TS (Verspoor et al., 2009),
the DKPro’s TS at the Darmstadt University9 (Gurevych et
al., 2007), the Julie lab’s TS (Hahn et al., 2007)10 and the
U-Compare project’s TS (Kano et al., 2009; Thompson et
al., 2011)11. The former consists of a simple annotation
hierarchy where the domain semantics is captured through
pointers into external resources. The others roughly con-
sist of an abstract hierarchy of NLP concepts covering the

8http://www.omg.org/spec/XMI
9http://www.ukp.tu-darmstadt.de/software/

dkpro
10https://www.julielab.de/Resources/

Software.html
11http://u-compare.org

3619

various linguistic analysis levels.
In particular, (Thompson et al., 2011) defend the adop-
tion of the Apache UIMA framework and of the integra-
tion U-Compare system within the META-SHARE infras-
tructure which is an initiative of META-NET for sharing
language resources and technology on a range of European
languages.
In practice these type systems are still in use separately.
As we mentioned in (Hernandez et al., 2010), as often
as possible existing TS should be used, but in our opin-
ion, distinct TS will always exist and it will always be
necessary to develop software converters either to ensure
compatibility with existing TS-dependent components or
to fit with specific problem requirements. The U-Compare
project, for example, comes with some ad hoc TS convert-
ers from CCP, OpenNLP and Apache which turn them into
the U-Compare TS. It offers also some U-Compare TS to
OpenNLP.

3. Handling more easily and generically the
UIMA framework

Below we present the projects we develop for this purpose.
They are made of libraries and UIMA components.

3.1. uima-common: Re-using common UIMA codes
uima-common12 aims at assembling common and generic
code snippets that can be usefully reused in several distinct
UIMA developments (like AE or any applications). It is
mainly made of two parts: A UIMA utilities library and a
generic AE implementation.
The library defines methods to generically handle the var-
ious UIMA object types (i.e.view, annotation, feature) re-
ferring to them by string names. It centralizes redundant
codes in particular for parsing collections of these objects,
getting and setting them.
The generic AE can be used by extending its class. It allows
to develop TS-independent AE and so to handle generically
the processed views and annotations. This is made possible
by specifying the names of the handled views and annota-
tions by parameters. In addition, the AE follows a common
analysis template: It allows to perform some process (e.g..
does it start with an upper case letter) on some annotations
(e.g. the tokens)covered by some others (e.g. the sentences)
which are only present in some views (e.g. the extracted
text) by simply overwriting the right methods. The process-
ing result can be stored in a new view, or a new annotation13

only by setting their name by parameters.
In some way, it can be compared with uimaFIT14 but
uima-common is more centered on the internal develop-
ment of components while uimaFIT is more dedicated to
the development of applications with the ability to perform
dynamic configuration and instantiation of components and
workflows.
The implementation is hardly based on the
java.lang.reflect API.

12http://code.google.com/p/uima-common
13It is also possible to set or update the feature value of an an-

notation.
14http://code.google.com/p/uimafit

3.2. uima-mapper: Mapping between UIMA
objects

uima-mapper15 aims at tackling two issues: mapping
UIMA objects (annotations and features from distinct type
systems and views) and recognizing annotation patterns.
Both issues are indeed two views of a same process per-
formed on the fly by declarative rules.
In NLP, the rule-based analysis is one of the two main ap-
proaches to process the documents; The other one is based
on machine learning. The development of graph matching
systems presents two difficulties: 1. designing simple and
intuitive language for expressing rules and 2. implementing
an effective engine to process the rules over graphs.
uima-common offers some solutions when developing
new UIMA components to make them TS-independent.
Nevertheless, many components available 16 assume the
names of the view to work with and of the annotations
to process or create. uima-mapper proposes to address
this problem by inserting between two components using
the same concepts defined with distinct TS, a specific AE
which is able to translate annotations from the former TS
to the latter TS.
The AE only requires to define the parameters of the rules
file paths. A rule declares some edit operations (such as
creation) by specifying constraints over an annotations pat-
tern and over the annotations. On the creation operation
it is possible to set features with values imported from the
matched pattern. Currently the pattern can count only one
annotation and only the creation operation is supported. As
a matter of fact, this AE was first a proof of concept. The
respect of the semantic coherence of the transformation is
up to the user.
The implementation is based on W3C XPath17 as the lan-
guage to support the declaration of constraints over the
source annotations and Apache JXPath18 as the engine
which processes the constraints.
JAPE of GATE (Thakker et al., 2009; Cunningham et al.,
2011) and Unitex (Paumier, 2003) offer capabilities for
defining regular expressions over annotations. Efforts have
been performed to allow the embedding of GATE pipelines
within UIMA19; and similarly with Unitex (Meunier et al.,
2009)20. Even if the embedding of such tools can be a solu-
tion for mapping UIMA annotations, the approach seems
too complex and resources consuming compared to the
need. Indeed, it is necessary to both configure these tools
as well as the embedding; In addition to having to write the
mapping rules between UIMA objects, the user must also
supply mapping rules defining how to map between UIMA
and GATE/Unitex annotations.
Up to our knowledge, it exists currently two native UIMA
projects whose goal is to offer capabilities for recognis-
ing UIMA annotations patterns in a UIMA workflow: The
zanzibar21 project and the TextMarker component (Kluegl

15http://code.google.com/p/uima-mapper
16http://uima.apache.org/sandbox.html
17http://www.w3.org/TR/xpath
18http://commons.apache.org/jxpath
19http://gate.ac.uk/sale/tao/#x1-48400020
20http://sourceforge.net/p/gramlab
21http://code.google.com/p/zanzibar and

3620

et al., 2009)22. The former project has not been upgraded
since March 2011. The current version is hardly stable.
And despite the fact that patterns can be defined, the con-
straints over the annotation are quite limited in expressive-
ness (i.e. only the presence of a feature value can be spec-
ified). On the other hand, the TextMarker component is a
very appealing project because of the rich expressiveness it
aims at offering. It is now further developed and hosted at
Apache UIMA and there is no current stable release and it
is recommended to use the previous stable version which
remains very complex to use and quite dependent of the
Eclipse environment. In this previous version, we encoun-
tered the problem that TextMarker engine allowed only one
annotation of the same type starting at the same offset. This
limitation prevents us from using it since we could not com-
bined it with the uima-connectors’s XML2CAS AE
presented below (See Section 3.4.). The XML2CASAE pro-
duces as many annotations of the same type as there are
attributes in an XML element. There was no possibility to
express TextMarker rules for selecting a specific annotation
of this type; The TextMarker always considered the first one
at this offset in the annotation index.

3.3. uima-shell: Integrating non native UIMA
third party tools

uima-shell23 offers a way to process Shell command
over a CAS element, view or annotation, and to store the
result either as a new view or annotation. It mainly aims
at running within a UIMA workflow some external third
party tools available via command line. These tools must
perform their processing by taking the input as a file name
parameter or a standard input (stdin) and produce the result
via the standard output (stdout).
The specified CAS element to analyse will be turned into
a file argument which will be accessed by specifying the
commands and the argument tokens which precede the file
argument (i.e. PreCommand parameter) as well as the
commands and the argument tokens which follow the file
argument (i.e. PostCommand parameter).
Under a LINUX system, if the command to pro-
cess takes its input from the standard input, then the
PreCommand parameter will be set with a cat value and
the PostCommand parameter will starts with a pipe char-
acter «|» followed by the command. If the command to
process takes its input as an argument at a specific posi-
tion then the PreCommand parameter will be set with the
command and the first arguments and the PostCommand
parameter with the last arguments. In any case it is pos-
sible to set several commands pre and post the file argu-
ment. It is also possible to specify environment variables
(i.e. EnvironmentVariable parameter) which will be
available for the process running the commands.
With the uima-connectors project (See Section 3.4.),
this current component aims at solving interoperability is-
sues when dealing with non native UIMA tools. The im-
plementation is based on the Martini’Shell API24.

http://art.uniroma2.it
22tmwiki.informatik.uni-wuerzburg.de
23http://code.google.com/p/uima-shell
24http://blog.developpez.com/

3.4. uima-connectors: Connecting various text
markup languages with UIMA

uima-connectors25 mainly aims at offering solutions
to build the bridge between some markup languages and
the UIMA CAS.
The Apache UIMA Tika 16 project aims at detect-
ing and extracting metadata and structured text content
from various type MIME documents. In comparison,
uima-connectors is more dedicated to perfom map-
ping from/to text formats to/from CAS, providing solu-
tions for handling general markup language such as eX-
tended Markup Language (XML), Comma Separated Value
(CSV), whitespace-tokenized texts with a sentence per
line... or applications of these formats such as Message
Understanding Conferences (MUC), Apache OpenNLP,
CONLL (B-I-E). . .
Similar facilities are offered by other plateforms such as
U-Compare, the GrAF softwares26, GATE. The aim of
uima-connectors is to offer the most generic solu-
tion as possible in order to prevent from having to develop
ad hoc solutions or to extend existing ones. The basic
idea is to assume that there are recurrent situations where
the metamodels of these formats (XML, CSV. . .) can be
aligned with the CAS.
In practice, solutions could be collection readers, analysis
engines and CAS consumers. We preferentially adopt an
approach in terms of development of AEs which allows to
cut into any point of a workflow by specifying the view
to process. These components can complete the wrapping
performed by the uima-shell component but they can
also be used at the beginning or at the end of a processing
workflow to import or export from/to specific serialization
formats.
Examples of uima-connectors include the CSV2CAS
and the XML2CAS AEs. The CSV2CAS AE offers various
ways to create or to update annotations with CSV-like for-
matted information. The type of the annotation to handle is
given as parameter. If the annotation type exists in a speci-
fied view, the AE will update the annotations. The number
of CSV lines is so assumed to be the same as the number
of the annotations instances to update. The AE allows to
set the correspondence between features names and column
ranks.
The XML2CAS AE transduces the information from the
XML tree structure to the CAS by creating annotations
over the text spans delimited by the begin and the end
tags of XML elements. The types of the created anno-
tations are predefined and represent the XML element
and attribute nodes: XMLElementAnnotation
and XMLAttributeAnnotation. The
XMLAttributeAnnotation type, for exam-
ple, comes with dedicated features to inform about
its name (i.e. attributeName feature), its value
(i.e. attributeValue feature) and the element name
to which it belongs (i.e. elementName feature). As

adiguba/p3035/java/5-0-tiger/
runtime-exec-n-est-pas-des-plus-simple

25http://code.google.com/p/uima-connectors
26http://www.americannationalcorpus.org/

tools/index.html#uima

3621

annotations, both have begin, end and coveredText
features. This AE offers a way to process the XML
structure of any XML document without having to define
new UIMA types. In practice, we use the uima-mapper
afterwards, to turn the generic types into the specific input
annotation types of another following AEs.

4. Examples of use cases
Below we present two real uses cases where we used the
components presented in the previous section.

4.1. Mapping annotations: From FTB to
HMMPOSTaggerTrainer

In this section we present a situation where it is useful to use
a mapping AE to connect two AEs which handles distinct
annotations for the same concept. We illustrate this use case
on the task of building a statistic model for a Tagger sys-
tem from the French Treebank (FTB) corpus (Abeillé and
Barrier, 2004). We use the Apache HMM tagger trainer
16 (apache-addons:HMMPOSTaggerTrainer) to
build an HMM model from the data. The workflow is rep-
resented in Figure 2.

Figure 2: Mapping annotations: From FTB to HMM-
POSTaggerTrainer.

The FTB is available for research purpose in an XML for-
mat. Figure 3 shows an example of annotations at various
analysis levels. For this use case, we are interested by the
XML w element which marks the words. The XML cat,
lemma and mph attributes describe respectively the POS,
the lemma and some morphological information about the
words. The w element is used for simple words and multi-
word expressions; Embedded w elements do not have a cat
attribute but a catint attribute (See the first occurrence of
the w element).
The uima-connectors’s XML2CAS AE allows to
process XML content and to produce annotations for
the specified XML nodes. As described in Sec-
tion 3.4., this AE defines its own TS. Indeed, for
each word XML annotation, the AE will create a
CAS annotation XMLElementAnnotation for the el-
ement w and an XMLAttributeAnnotation for each
one of the attributes. For instance, the following
XML annotation <w cat="A" mph="A-qual-fp"
lemma="petit">petites</w> will produce three
XMLAttributeAnnotation annotations; Detail for

<SENT nb="8000">
<w cat="ADV" mph="ADV" lemma="tout au plus">
<w catint="ADV">Tout</w> <w catint="P">au</w>
<w catint="D"/> <w catint="ADV">plus</w>
</w>
<NP>
<w lemma="un" cat="D" mph="D-ind-fp">des</w>
<w cat="A" mph="A-qual-fp" lemma="petit">petites</w>
<w cat="N" mph="N-C-fp" lemma="chose">choses</w>
</NP>
<VPinf>
<w cat="P" mph="P" lemma="à">à</w>
<VN>
<w cat="V" mph="V--W" lemma="changer">changer</w>
</VN>
<PP>
<w cat="P" mph="P" lemma="sur">sur</w>
<NP>
<w cat="D" mph="D-def-fs" lemma="le">l‘</w>
<w cat="N" mph="N-C-fs"
lemma="intégration">intégration</w>

</NP>
</PP>
</VPinf>
<w cat="PONCT" mph="PONCT-S" lemma=".">.</w>

</SENT>

Figure 3: Example of annotations from the
lmf3_08000_08499ep.xd.cat.xml file of the
FTB. Some attributes have been removed or renamed for
readability purpose.

the XMLElementAnnotation is not given here. The
table 1 shows the feature names (first line) and the
corresponding values of each of the three created
XMLAttributeAnnotation annotations. begin and
end features and values are not shown to make the table
simpler. All the three annotations share the same begin
and end values.

elementName attributeName attributeValue coveredText

w cat A petites
w lemma petit petites
w mph A-qual-fp petites

Table 1: Features names and values of the
three XMLAttributeAnnotation annota-
tions created for the attributes of the XML an-
notation <w cat="A" mph="A-qual-fp"
lemma="petit">petites</w>. The begin and
end features and values are not shown for readability
purpose.

For our training purpose let consider we want to work
with the w elements which are simple words or parts of
a multiword but not a multiword. We are so interested
by the XMLAttributeAnnotation annotations which
have the following criteria: Either cat or catint as
value of the attributeName feature and w as value of
the elementName feature. In addition, in order to dis-
tinguish the XMLAttributeAnnotation annotations
which correspond to simple words from those which cor-
respond to embedding w elements (both have cat as value
of the attributeName feature), we decide to filter
them out based on the presence of a whitespace charac-
ter in the covered text. Figure 4 shows an example of
uima-mapper’s rule for mapping annotations which im-
plements this definition. The rule declares that for each
XMLAttributeAnnotation annotation, if the XPath

3622

<rule id="XMLAttributeAnnotationW2ApacheTokenAnnotation"
description="In the FTB, select the w elements which are simple words or parts of a multiword but not one">
<pattern>
<patternElement type="fr.univnantes.lina.uima.connectors.types.XMLAttributeAnnotation">
<constraint>.[(@elementName=’w’) and ((@attributeName=’cat’) or (@attributeName=’catint’))

and not(contains(@coveredText,’ ’))]</constraint>
<create type="org.apache.uima.TokenAnnotation" >
<setFeature name="posTag" value="normalize-space(./@attributeValue)"/>
</create>

</patternElement>
</pattern>
</rule>

Figure 4: Example of an uima-mapper’s rule for mapping UIMA annotations.

constraint is satisfied, then it will imply the creation
of a TokenAnnotation at the same offsets and set
its posTag feature with a value resulting from another
XPath processing on the matched annotation. This exam-
ple gives an idea of the expressive power of XPath which
allows to express constraints with many kinds of operators
(e.g. boolean, comparison, regular expression. . .) and func-
tions (e.g. string, mathematical. . .).

4.2. Integrating a third party tool: TreeTagger

In this section we show how to process UIMA CAS ele-
ments with command line tools and how to set the UIMA
CAS elements with the produced results. In particular we
describe how to integrate a command line tool with CSV-
like input and output formats. We illustrate this use case by
setting the POS and the lemma features of some CAS token
annotations with the processing results of an external POS
tagger.
As a third party tool example, we use the (Schmid, 1994)’s
POS tagger (also named «TreeTagger») which takes a word
per line and produces POS and lemma annotations as tabu-
lated values aside of each input word (i.e. petites ADJ
petit). Both input and output formats can be considered
as CSV-like formats; The input format being a special case
with a single column. We also use the Apache whitespace
tokenizer 16 (apache-addons:wst) which segments
text into word token annotations.
The workflow is represented in Figure 5. Each component
works on a specified input view and stores its result in a
specified output view. The raw text of a document is present
in the view _InitialView at the beginning of the pro-
cessing. The CAS2CSV and the CSV2CAS AEs are part of
the uima-connectors project. They take in charge the
conversion from/to CSV-like formats to/from UIMA CAS
elements. The shell AE refers to the uima-shell AE
and allows the integration of TreeTagger.
The processing proceeds like this: The Apache whites-
pace tokenizer performs the segmentation and stores
the token annotations (i.e. TokenAnnotation) in its
working input view _InitialView. The POS tag
and the lemma features are not yet set. The CAS2CSV
AE takes in parameters the names of an annotation
type (i.e. TokenAnnotation) and of the features
(i.e. coveredText) to process. For each annota-
tion instances present in the given _InitialView,
it creates a CSV-formatted line with the values of
the specified features at a specified column rank.
The result is stored in the CAS2CSV_View. The

Figure 5: Integrating a third party tool: TreeTagger.

uima-shell AE is set with the following parameters
values: The EnvironmentVariable parameter de-
clares TT_HOME=/path/to/application/home/tree-tagger, and
the PreCommand and the PostCommand parameters
declare respectively the following values: cat and
| ${TT_HOME}/bin/tree-tagger ${TT_HOME}/lib/french.par

-token -lemma -sgml. The CSV2CAS AE parses the
TT_View. Thanks to the given name of an annotation
type (i.e. TokenAnnotation) and the associations of
column ranks with feature names specified by parameters
(e.g. 1 -> posTag ; 2 -> lemma), the process updates each
annotation instance from the given _InitialView with
information coming from the CSV-formatted content; Each
line corresponds to an annotation. The POS tag and the
lemma features are so set.
It is interesting to note that the apache-addons:wst
and the CAS2CSV components can simply be removed and
functionally replaced by a command line token such as
| perl -ne ’chomp; s/(\p{IsAlnum})(\p{IsPunct})/$1 $2/g;

s/(\p{IsPunct})(\p{IsAlnum})/$1 $2/g; s/ /\n/g; print’

in the PostCommand parameter before the TreeTagger
command.

5. Conclusion
This uima-common project is a common basis for all
the uima-components we develop such as uima-mapper,
uima-shell, and uima-connectors. It was
also used for example for developing a wrapper for
the java implementations of the C99 and TextTil-
ing segmentation algorithms, written by Freddy Choi

3623

uima-text-segmenter27.
All the presented components aims at tackling the prob-
lem of interoperability within a UIMA workflow. They
were both developed and used for building workflows in
particular for importing and connecting an XML version of
the French Treebank corpus (Abeillé and Barrier, 2004) to
trainer systems such as the Apache HMM tagger28 and the
OpenNLP MaxEnt preliminary processing tools (Boudin
and Hernandez, 2012).
As perspectives, we want primarily to inform about these
solutions to motivate people to use them and to participate
to the development of these projects. Considering our short
term developments, we plan to concentrate our efforts on
the uima-mapper. We are thinking in some ways to build
UIMA annotations index which could effectively support
the implementation of recognition mechanisms for match-
ing annotations patterns. We also would like to evaluate the
performance of the various existing solutions in terms of
expressiveness and resource consuming.
The uima-connectors will also evolve. As we pre-
viously mentioned, we are more interested by generic ap-
proaches than ad hoc ones. Currently, we offer a solution
to import to the CAS, the information that can be inferred
from the tree structure of XML formats (e.g. two elements
can be considered as in relation due to the fact that one of
them encloses the other one). Since, several XML formats,
such as GrAF, are used to represent graph structures thanks
to common mechanisms (e.g. couples of id/idref attributes),
we are interested to offer a way to specify generically these
mechanisms and to align them with elements of the CAS
structure in order to be able to handle any XML documents
representing graphs.
Concerning the uima-shell, the current version does
not address the security problems such as the injections of
malicious codes or the lack of system resources to perform
safely the commands. Indeed, the commands, which are
intended to be run, are assumed to be performed by an al-
lowed user as well as to be safe for the running system.
We believe that the component should not be restricted be-
cause it runs counter to what it aims to do. And in addition,
we believe that it can not be restricted because it is impos-
sible to a priori enumerate all the unsafe use cases. The
best solutions to prevent these risks are to run the vulnera-
ble process in «jail» environments with restricted rights and
resources (i.e. to configure correctly the embedding appli-
cation servers and operating systems).

6. Acknowledgements
This work was financially supported by La région Pays
de la Loire under the DEPART project http://www.
projet-depart.org.
I also would like to express my gratitude to the reviewers
for there insightful comments.

27https://code.google.com/p/
uima-text-segmenter

28http://enicolashernandez.blogspot.com/
2011/05/construire-des-modelisations-du-french.
html

7. References
Anne Abeillé and Nicolas Barrier. 2004. Enriching a

french treebank. In Actes de la conférence LREC, Lis-
bonne.

Florian Boudin and Nicolas Hernandez. 2012. Détection et
correction automatique d’erreurs d’annotation morpho-
syntaxique du french treebank. In TALN.

Hamish Cunningham, Diana Maynard, Kalina Bontcheva,
Valentin Tablan, Niraj Aswani, Ian Roberts, Genevieve
Gorrell, Adam Funk, Angus Roberts, Danica Daml-
janovic, Thomas Heitz, Mark A. Greenwood, Horacio
Saggion, Johann Petrak, Yaoyong Li, and Wim Peters.
2011. Text processing with gate. University of Sheffield
Department of Computer Science. ISBN 0956599311,
April 15th.

Hamish Cunningham. 2002. Gate, a general architecture
for text engineering. Computers and the Humanities,
36:223–254.

David Ferrucci and Adam Lally. 2004. Uima: an architec-
tural approach to unstructured information processing in
the corporate research environment. Natural Language
Engineering, 10(3-4):327–348.

Iryna Gurevych, Max Mühlhäuser, Christof Müller, Jürgen
Steimle, Markus Weimer, and Torsten Zesch and. 2007.
Darmstadt knowledge processing repository based on
uima. In Proceedings of the First Workshop on Unstruc-
tured Information Management Architecture at Biannual
Conference of the Society for Computational Linguistics
and Language Technology, Tübingen, Germany.

Udo Hahn, Ekaterina Buyko, Katrin Tomanek, Scott Piao,
John McNaught, Yoshimasa Tsuruoka, and Sophia Ana-
niadou. 2007. An annotation type system for a data-
driven nlp pipeline. In The LAW at ACL 2007 – Proceed-
ings of the Linguistic Annotation Workshop, pages 33–
40. Prague, Czech Republic, June 28-29, 2007. Strouds-
burg, PA: Association for Computational Linguistics.

Nicolas Hernandez, Fabien Poulard, Matthieu Vernier, and
Jérôme Rocheteau. 2010. Building a French-speaking
community around UIMA, gathering research, education
and industrial partners, mainly in Natural Language Pro-
cessing and Speech Recognizing domains. Proceedings
of the LREC 2008 Workshop ’New Challenges for NLP
Frameworks’, La Valleta, Malta, 05.

Nancy Ide and Keith Suderman. 2009. Bridging the gaps:
interoperability for graf, gate, and uima. In Proceed-
ings of the Third Linguistic Annotation Workshop, ACL-
IJCNLP’09, pages 27–34, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Yoshinobu Kano, Luke McCrohon, Sophia Ananiadou, and
Jun’ichi Tsujii. 2009. Integrated NLP evaluation sys-
tem for pluggable evaluation metrics with extensive in-
teroperable toolkit. In Proceedings of the Workshop on
Software Engineering, Testing, and Quality Assurance
for Natural Language Processing (SETQA-NLP 2009),
pages 22–30, Boulder, Colorado, June. Association for
Computational Linguistics.

Peter Kluegl, Martin Atzmueller, and Frank Puppe. 2009.
Textmarker: A tool for rule-based information extrac-
tion. In Christian Chiarcos, Richard Eckart de Castilho,

3624

and Manfred Stede, editors, Proceedings of the Biennial
GSCL Conference 2009, 2nd UIMA@GSCL Workshop,
pages 233–240. Gunter Narr Verlag.

Frédéric Meunier, Philippe Laval, Gaëlle Recourcé, and
Sylvain Surcin. 2009. Kwaga : une chaîne uima
d’analyse de contenu des mails. In First French-
speaking meeting around the framework Apache UIMA
at the 10th Libre Software Meeting, University of Nantes,
July.

Sébastien Paumier. 2003. A Time-Efficient Token Rep-
resentation for Parsers. pages 83–90. Proceedings of
the EACL Workshop on Finite-State Methods in Natu-
ral Language Processing.

Laurent Romary and Nancy Ide. 2004. International Stan-
dard for a Linguistic Annotation Framework. Natural
Language Engineering, 10(3-4):211–225, September.

Helmut Schmid. 1994. Probabilistic part-of-speech tag-
ging using decision trees. In Proceedings of the Confer-
ence on New Methods in Language Processing, Manch-
ester, UK.

Dhaval Thakker, Taha Osman, and Phil Lakin. 2009. Gate
jape grammar tutorial, February 27.

Paul Thompson, Yoshinobu Kano, John McNaught, Steve
Pettifer, Teresa Attwood, John Keane, and Sophia Ana-
niadou. 2011. Promoting interoperability of resources
in meta-share. In Proceedings of the Workshop on Lan-
guage Resources, Technology and Services in the Shar-
ing Paradigm, pages 50–58, Chiang Mai, Thailand,
November. Asian Federation of Natural Language Pro-
cessing.

Karin Verspoor, William Baumgartner Jr., Christophe
Roeder, and Lawrence Hunter. 2009. Abstracting the
types away from a uima type system. In 2nd UIMA
Workshop at Gesellschaft für Sprachtechnologie und
Computerlinguistik (GSCL), Tagung, Germany, October.

3625

