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Abstract
A significant amount of spatial information in textual documents is hidden within the relationship between events. While humans have
an intuitive understanding of these relationships that allow us to recover an object’s or event’s location, currently no annotated data
exists to allow automatic discovery of spatial containmentrelations between events. We present our process for building such a corpus
of manually annotated spatial relations between events. Events form complex predicate-argument structures that model the participants
in the event, their roles, as well as the temporal and spatialgrounding. In addition, events are not presented in isolation in text; there
are explicit and implicit interactions between events thatoften participate in event structures. In this paper, we focus on five spatial
containment relations that may exist between events: (1) SAME, (2) CONTAINS, (3) OVERLAPS, (4) NEAR, and (5) DIFFERENT. Using
the transitive closure across these spatial relations, theimplicit location of many events and their participants canbe discovered. We
discuss our annotation schema for spatial containment relations, placing it within the pre-existing theories of spatial representation. We
also discuss our annotation guidelines for maintaining annotation quality as well as our process for augmenting SpatialML with spatial
containment relations between events. Additionally, we outline some baseline experiments to evaluate the feasibility of developing
supervised systems based on this corpus. These results indicate that although the task is challenging, automated methods are capable of
discovering spatial containment relations between events.
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1. Introduction

Events in text implicitly convey spatial information. Im-
plicit spatial inference occurs when no spatial information
is explicitly associated with an event. For instance, in the
sentence “The [bombing] victim [died] instantly”, we un-
derstand that the spatial bounds ondied happened within
the spatial bounds onbombing. Yet this is not directly
stated by the contextual evidence. Two further examples
of implicit spatial grounding are illustrated by:

(1) [Rafiq Hariri]PARTICIPANT [submitted]E1 his resignation
during a 10-minute [meeting]E2 with the head of state
at the [Baabda presidential palace]LOCATION.

(2) As [Egyptian columns]PARTICIPANT [retreated]E3, Israel’s
aircraft[attacked]E4 them, using napalm bombs. The
[attacks]E5 destroyed hundreds of vehicles and
[caused]E6 heavy casualties in [Sinai]LOCATION.

In Example (1), recognizingRafiq Hariri was located in
theBaabda presidential palacein the eventE1 (submitted)
requires understanding the spatial relationship betweenE1
andE2 (meeting). Moreover, the temporal connectivedur-
ing groundsE1 temporally within the time interval associ-
ated withE2. While a temporal relation does not always
guarantee a spatial relation, in this case an OCCASION dis-
course relation exists betweenE1 andE2, allowing the spa-
tial inference to be made as well. Since the temporal re-
lation indicates eventE2 temporally contains eventE1, the
inference thatE2 also spatially containsE1 may be made as
well. As E2 is contained within the locationBaabda presi-
dential palace, E1 is also contained within this location by
the transitive property. This allows us to draw the inference
that E1’s participantRafiq Hariri is located at the palace

as well. In Example (2), understanding that theEgyptian
columnsare spatially related toSinai requires understand-
ing the spatial relationships between both coreferential and
non-coreferential events. In this example, the event corre-
sponding toE3 (retreated) refers to a motion whose source
is the same location as the eventE4 (attacked). EventE4
is coreferential with eventE5 (i.e., they are bothmentions
of the same event). Further,E5 has the result eventE6
(caused), which is located inSinai. These two examples
show that spatial containment relations between events can
be inferred by relying on many discourse phenomena, in-
cluding coreference and temporal relations.

Using these types of relations to determine the location
of events and their participants fits into the larger work
of recovering implicit information (Palmer et al., 1986),
where semantically relevant information is found outside
an object’s syntactic scope. The difficulty with a gener-
alist approach to recovering long-distance semantic argu-
ments, however, is that there is no one set of relations that
describes how all implicit information can be recovered.
Rather, the method for recovery depends on the type of
information being sought. Temporal information, for in-
stance, can be recovered through a very different set of re-
lations than manner or purpose information. This work is
part of an effort to create one such method for acquiring
implicit spatial information through spatial containmentre-
lations between events. Currently, we are unaware of any
linguistic resource of manually annotated spatial contain-
ment relations between events. We expect the ability to au-
tomatically identify spatial containment relations between
events will improve the performance of generalized implied
semantic role labelers.

In this paper, we describe our method for building such a
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resource. We consider five basic spatial containment rela-
tions between events:

1. SAME: Two eventsE1 andE2 have indistinguishable
spatial bounds.

2. CONTAINS: Either E1’s spatial bounds containE2 or
vice versa (this is a directed relation).

3. OVERLAPS: E1 andE2 share partial spatial bounds
but neither is a sub-set of the other.

4. NEAR: E1 andE2 do not share spatial bounds but they
are within relative proximity of each other.

5. DIFFERENT: E1 andE2 have distinguishably different
spatial bounds.

Annotation of all five types of containment relations is per-
formed on SpatialML (Mani et al., 2008).
The remainder of this paper is organized as follows. Sec-
tion 2 outlines related work in event relations and implicit
information recovery. Section 3 discusses our annotation
schema, its strengths and weaknesses, as well as our guide-
lines for annotators. Section 4 describes the process for the
creation of our corpus, provides analysis of the annotated
documents, and describes the baseline experiments we per-
formed to determine the types of linguistic processing nec-
essary for the automatic recognition of our spatial relations.
Finally, Section 5 summarizes our work and proposes fu-
ture directions for research.

2. Related Work
Event relations represent important knowledge that can be
distilled from documents, contributing to discourse and
semantic processing, as well as general comprehension
of textual information. Among the first to tackle inter-
event relation recognition were the researchers that devel-
oped TimeML (Pustejovsky et al., 2003a) and its annotated
TimeBank corpus (Pustejovsky et al., 2003b). Many event
relations follow from discourse theory (Hobbs, 1985b),
yielding relations such as causation (Do et al., 2011), coref-
erence (Chen et al., 2009; Bejan and Harabagiu, 2010),
and temporal ordering (Chambers and Jurafsky, 2008).
Along with these types of inter-event relations, spatial rela-
tions between pairs of events allow us to better understand
the knowledge that is derived from dependencies between
events. In this work, we classify relations according to their
inferred spatial relationships, which receive comparablylit-
tle attention in discourse processing.
Several models of spatial representation in text have been
considered, such as ISO-Space (Pustejovsky et al., 2011),
SpatialML (Mani et al., 2008), and STML (Pustejovsky
and Moszkowicz, 2008). However, the primary goal of
these models and their corresponding annotated corpora is
to capture spatial relationships explicitly stated in textor
the handling of specific sub-classes of events such as mo-
tion events. None of these models consider implicit spatial
relations between events.
SpatialML in particular is designed to represent spa-
tial locations, largely geographic locations and culturally-
relevant landmarks referred to with the PLACE tag. PLACEs

Figure 1: Comparison of our spatial containment relations
with RCC-8.

are disambiguated when necessary (e.g., to differentiate be-
tween Paris, France and Paris, Texas). Further, SpatialML
includes two types of relations. The PATH relation ex-
presses a spatial trajectory (e.g., “[northwest] of the capital
[New Delhi]”). The LINK relation expresses containment
(e.g., “a [well] in [West Tikrit]”). While the PATH relation
could be used to describe the spatial relationship between
events (e.g., “the [evacuations] were occurring south of the
[riots] ”), this kind of relation is not commonly encoun-
tered. The LINK relation, however, is directly analogous
to the relations we studied in this research, and we compare
the types of containment relations in SpatialML to our own
relation types below.

A comparison between our relations and the well-known
RCC-8 specification (Randell et al., 1992) relations is
shown in Figure 1. Notably, we combine four relations into
CONTAINS and add a NEAR relation. SpatialML makes
similar simplifications, and is identical to our relations with
the exception that it specifies an extended connection re-
lation similar toEC from RCC-8. This, however, is com-
monly expressed when two locations border each other
(e.g., “the border between [Lebanon] and [Israel]”). Since
the spatial boundary of an event is almost always under-
specified, this relation is unlikely to be conveyed in implicit
event relations and we thus omitecfrom consideration.
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Figure 2: Spatial containment schema. Note that only the CONTAINS relation is directed, all other spatial containment
relations are undirected.

3. Annotation Schema and Guidelines
3.1. Definitions

We define anevent using the TimeML (Pustejovsky et
al., 2003a) convention: a situation that happens or occurs.
Eventmentionsare words or phrases that denote events in
natural language documents and are limited to tensed verbs,
event nominals, and stative modifiers. For brevity, we re-
fer to mentions simply as events unless the context requires
further clarification.
For LOCATIONs, we follow the SpatialML convention,
which includes both named (e.g., Japan) and nominal (e.g.,
village) toponyms. As with SpatialML, our LOCATIONs
could be extended beyond geographic entities to include
other types of locations such as biological markers. Our
spatial relations would be valid for such domains as well.
However, our annotated corpus is limited to the newswire
domain, so we focus on geographic locations. Note that not
all locations are necessarily event locations (e.g., in “the
United States [fought] in Afghanistan”, Afghanistanis a
LOCATION but United Statesis a PARTICIPANT).
We limit our definition of PARTICIPANT to persons, orga-
nizations, and physical objects to guarantee all participants
have spatial properties. To determine which PARTICIPANTs
and LOCATIONs to associate with an event, we limit the an-
notators to the syntactic scope of the event. In other words,
the scope expected by a semantic role labeler.

3.2. Schema

Our annotation schema is illustrated in Figure 2. Events are
linked to explicit locations in their syntactic scope. There
are 3 LOCATION sub-types: COMPLETE, ORIGIN, and
DESTINATION. The COMPLETE sub-type indicates that
the location identifies the entire spatial bound of the event:
it starts and ends at this location without leaving. The
ORIGIN and DESTINATION sub-types indicate the event ei-
ther starts or ends at that location, respectively.
A PARTICIPANT may be a person, organization, or physical
object. There are 3 PARTICIPANT sub-types: PRESENT,
REMOTE, and TRANSITIONAL. The PRESENT sub-type
indicates the participant is physically present at the loca-
tion of the event. The REMOTE sub-type indicates that
the participant is not physically present at the location of
the event, yet participates nonetheless. This is possible
largely through figurative language such as metonymy or
metaphor (e.g., “the United Statesentered the war”). The

TRANSITIONAL sub-type indicates that the participant was
both present and remote, but at different times. This is com-
mon for motion events, where a participant may start within
the spatial bounds of the event but finish elsewhere, or vice
versa. For example, in the following sentence,soldier is
present only at the beginning of the event, whileballot is
the event’s theme and thus present for the entire motion):

(3) The [soldier]PARTICIPANT [sent]E7 his [ballot]PARTICIPANT

for the [Maine]LOCATION [election]E8.

The TRANSITIONAL sub-type itself has two further sub-
types: P→R (present to remote) and R→P (remote to
present).

3.3. Annotation Guidelines

Due to the fact that spatial containment relations between
events are largely implicit, they often require some degree
of intuition about the spatial bounds of an event. Beyond
being exposed to a limited number of examples, an annota-
tor must largely rely on his or her intuition about the spatial
bounds of an event. This is not entirely unprecedented in
natural language annotation, as Pan et al. (2011) asked an-
notators to provide their intuition for an event’s temporal
duration. For an example of how the annotator is asked to
provide their intuition of an event’s spatial bounds, given
the text “the [bombing] victim [died]”, the annotator must
determine the expected spatial bounds for thebombingand
diedevents, then determine if there is a relationship. This is
highly intuitive (does one die immediately from a bombing,
or does one’s location change first?). Obviously, the context
may aid in this tremendously. If the text above is followed
by “in the hospital”, one can reasonably assume the vic-
tim died in a different location, so the events would have
a DIFFERENT relation (this relation is used as a negation
of the four primary event relations when there is sufficient
information to understand the events have non-intersecting
spatial bounds). However, if the text above is followed by
“ instantly”, one can reasonably assume the victim died on
the scene of the bombing. In this case the most appropri-
ate relation is to say that thebombingevent CONTAINS the
died event, since the spatial bounds for the bombing was
likely larger.
Annotating spatial containment relations is further compli-
cated by the fact that a document withn events has a pos-
sibleO(n2) number of event relations. We therefore pro-
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Example (1)

Example (2)

Example (3)

Example (4)

Example (5)

Example (6)

Example (7)

Figure 3: Spatial containment relations for Examples (1)-(7).

vided annotators with guidelines to simplify the annotation
process1. For example, annotators were only required to
look at the previous three sentences when searching for re-
lated events. Since most long-distance relations will be the
result of event coreference, we feel this is a reasonable limi-
tation. Furthermore, since spatial containment relationsare
transitive (i.e., if eventA contains eventB andB contains
eventC, thenA containsC), there is no need to annotate
the transitivity, as this can be computed automatically.

3.4. Additional Examples

Here we present examples to cover each type of relation.
The three examples above as well as the following exam-

1For more information, see our annotation guideline:
http://www.hlt.utdallas.edu/∼kirk/spatial containmentstandard.pdf

ples below are illustrated in Figure 3.
As previously discussed, in Example (1) the inference that
Rafiq Hariri was in theBaabda presidential palacefor
eventE1 (submitted) can be drawn by connectingE2 (meet-
ing) to E1 with a CONTAINS relation. Similarly, in Exam-
ple (2) the inference thatEgyptian columnsare spatially
related toSinaican be drawn with three separate relations,
as shown in Figure 3. Note that a strict interpretation of the
transitive closure of this graph does not place theEgyptian
columnsin Sinai, but only spatially related to it. We dis-
cuss this limitation as well as others in the next section.
Example (3) illustrates a TRANSITIONAL PARTICIPANT

(soldier), who is the agent of a motion event. The mo-
tion eventE7 (sent) has an OVERLAPS relation with event
E8 (election). Note that both Example (2) and (3) exhibit
motion events (retreatedand sent) intersecting with non-
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motion events (attackedandelection). The notable differ-
ence between these examples and why they merit different
relations is the spatial bounds of the retreat is assumed to
entirely encompass the spatial bounds of the attack (thus
CONTAINS), while the send event does not encompass the
entire election, assumed to take place across the entire state
of Maine (thus OVERLAPS).
Example (4) also exhibits an OVERLAPS relation:

(4) Wilson, an airplane mechanic whose [unit]PARTICIPANT is
about to [drive]E9 north into [Iraq]LOCATION for a one
year [tour]E10 of duty, put his finger on a problem that
has bedeviled the Pentagon for more than a year.

Here, it is assumed that eventE9 (drive) will only cover
a subset of the spatial bounds of eventE10 (tour). This
example also exhibits a non-COMPLETELOCATION. Since
eventE7 starts from outsideIraq, the LOCATION is marked
as the DESTINATION.
Example (5) exhibits a NEAR relation:

(5) The rock [concert]E11 was marred by [fights]E12

between [fans]PARTICIPANT in the [parking lot]LOCATION .

Here, the spatial bounds of eventE11 (concert) are assumed
to be limited to the stage and audience area (e.g., a concert
hall or field). EventE12 (fights) is instead related with a
NEAR relation. This allows us to rule out the incorrect in-
ference that theconcertwas located in theparking lot.
Example (6) exhibits a DIFFERENT relation:

(6) [They]PARTICIPANT [broadcasted]E11 that particular
football [match]E14 due to its title implications,
whereas other simultaneous [matches]E15 had little
effect.

Here, eventE14 (match) is marked as DIFFERENT from
eventE15 (matches). This example demonstrates both our
primary motivations for including the DIFFERENTrelation:
(1) to provide examples where possibly coreferential events
are both non-coreferential and do not share spatial bounds,
and (2) to explicitly state that two events are not spatially
related. The spatial bounds of two events are not necessar-
ily D IFFERENT if they cannot be connected by a transitive
closure operation (instead, their spatial relationship issim-
ply unknown), so the DIFFERENT relation allows for such
an explicit statement when clear.
Example (7) exhibits a PARTICIPANT classified as RE-
MOTE:

(7) The drone [pilot]PARTICIPANT [targeted]E16 and
[destroyed]E17 the [compound]PARTICIPANT .

Since thepilot is not present at thecompound’s destruc-
tion (instead, thedroneis present), he or she is considered
REMOTE for eventE17 (destroyed) but PRESENT in event
E16 (targeted). This is based on the intuition that the target-
ing is done both locally (i.e., by the pilot and his/her control
center) and remotely (i.e., by the drone), while the destroy-
ing is done entirely by the drone and it’s weapons systems.
The events are connected via an OVERLAPS relation as the
pilot is not considered spatially part ofE17 (destroyed), nor
is thecompoundconsidered spatially part ofE16 (targeted),

so neither is a subset of the other.
Note that in many of these examples there exists the possi-
bility of multiple valid interpretations. While this certainly
makes annotation difficult, it also highlights the vague na-
ture of implicit spatial relations and reinforces our decision
for a relatively simple set of spatial relations.

3.5. Current Limitations

We believe the primary limitation of our relations center
around the lack of granularity in the event, PARTICIPANT,
and LOCATION relations. The choice of a level of gran-
ularity plays an important role in natural language infer-
ence (Hobbs, 1985a). When deciding the proper level of
detail for our representation, we took a pragmatic approach
based on two competing factors: (1) increasing granular-
ity raises the level of difficulty of annotation, lowering an-
notator agreement on an already difficult annotation task
and thus reducing the effectiveness of an approach based
on our data, and (2) decreasing granularity reduces inferen-
tial power, reducing the effectiveness of an approach based
on our data. We therefore chose to use a basic set of rela-
tions, with a few key exceptions as highlighted above. If
automated methods prove successful on this data, the issue
of granularity may be re-visited and the annotation revised
for many of the following limitations.
The examples previously discussed give an indicator of the
strengths and limitations of our set of relations, particularly
as they relate to motion events. We integrated basic sup-
port for motion end-points into PARTICIPANTs (through the
TRANSITIONAL sub-type) and LOCATIONs (through the
SOURCE and DESTINATION sub-types), but omitted many
of the other properties of motion from these relations. Fur-
ther, we omitted motion properties from the event relations
entirely.
Example (4) illustrates how this lack of granularity may
transfer into sub-optimal inferences. We would like to
know that eventE10 (tour) takes place inIraq, but that
LOCATION is only attached to eventE9 (drive) as a
DESTINATION. Using two relations instead of one would
allow for the desired inference: (1) at the beginning of the
drivemotion event, the relation betweenE9 andE10 would
be DIFFERENT (or NEAR if indicated by the context), (2)
at the end of thedrive motion event, the relation would
be thatE10 CONTAINS E9. SinceIraq is a DESTINATION

LOCATION, we could then infer that at least part of thetour
was located inIraq. Similar inferences could be made for
Example (3) to determine that theballot’s final LOCATION

was inMaine.
Other motion properties could be useful as well, such as
the path of a motion event. Instead of simply representing
the SOURCEand DESTINATION, integrating arbitrary mid-
points and directions (possibly including a temporal com-
ponent) would allow for additional inferences to be made.
In natural language text, however, such details about mo-
tion events are usually omitted as the spatial properties of
events are almost always underspecified.
Other granularity limitations involve PARTICIPANT and
LOCATION relations. Some PARTICIPANTs, such as the
Egyptian columnsin Example (2), largely define the spatial
bounds of the event (e.g., the spatial bounds of the retreat
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Figure 4: Spatial containment relation annotator.

were defined by the locations of the retreating columns),
while other PARTICIPANTs form a small part of the over-
all event (e.g., theballot in Example (3) is a small part of
theelectionevent). Similarly, knowing how the LOCATION

is spatially related to the event would be useful for infer-
ence. For now, we simply assume the event CONTAINS the
PARTICIPANT, while the LOCATION CONTAINS the event.
As with all the previously mentioned granularity issues, our
primary goal with this data is to create a set of basic event
relations conveying implicit spatial containment relation-
ships. If, in the future, automated methods can achieve suf-
ficient accuracy on these basic relations, the granularity of
our annotations can be increased to suit inference needs.

4. Corpus Creation and Analysis
We chose to annotate our spatial containment relations on
the SpatialML corpus (Mani et al., 2008). SpatialML al-
ready contains a wealth of spatial information, including
location mentions, their gazetteer normalizations, and rela-
tions between locations. Thus it is natural to use our spatial
event relations to augment the corpus’s existing spatial in-

formation. Many of the SpatialML documents are conver-
sations and broadcast transcripts, which we do not expect
to contain a significant amount of spatial event information,
so our annotation effort has focused on annotating the 160
documents in SpatialML derived from newswire.
Annotators were provided with a custom annotation tool,
shown in Figure 4, for efficient annotation. This tool sim-
plifies the process of searching for related events and en-
forces consistency in the annotations. To aid the annotators,
we automatically annotated events using TARSQI (Saurı́ et
al., 2005) and person/organization entities using BIOS2.
To get a feel for the difficulty of the task, we gave a
brief overview of the task to our three annotators (without
showing them the annotation guideline) and asked them to
each annotate the same five documents. As expected, ini-
tial agreement was very low when evaluated with Fleiss’
Kappa (Fleiss, 1971). Initial agreement on whether two
events are related (without the relation type) was 0.23,
which falls into the “fair agreement” category from Lan-

2http://www.surdeanu.name/mihai/bios/
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Figure 5: Distribution of spatial containment relations in
our corpus.

dis and Koch (1977). Agreement on the relation type was
0.51 (“moderate agreement”). After providing the anno-
tation guideline and reviewing disagreements, the annota-
tors proceeded to individually annotate approximately 12
documents each (depending upon length). On average,
a SpatialML newswire document took an annotator ap-
proximately one hour to annotate. Next, three documents
were chosen to be annotated by all annotators, showing
improved agreement. Agreement on whether two events
are related for these documents was 0.45 (“moderate agree-
ment”), while agreement on the relation type improved to
0.64 (“substantial agreement”). Because these relations are
largely implicit and based entirely on the annotator’s spa-
tial interpretation of the event, it is likely that near-perfect
agreement is not a practical goal. After this, we have
proceeded with single-annotation for the remaining docu-
ments. Currently, approximately half of the newswire doc-
uments from SpatialML have been annotated by at least one
annotator. We plan to make an initial version of these an-
notations publicly available soon.
Figure 5 illustrates the distribution of spatial containment
relations in our annotated corpus. Clearly, SAME and
CONTAINS stand out as the most annotated relations, while
NEAR and OVERLAPS are rare. This is largely due to the
fact that these relations require more contextual justifica-
tion than the SAME and CONTAINS relations. SAME and
CONTAINS can usually be determined through an intuitive
understanding of each event’s semantics.
To evaluate the difficulty of this task, we propose a few
simple, supervised features to act as a baseline and illustrate
the importance of integrating more semantic components.
The four features are:

1. The two event words (e.g., the feature value for
the first event pair from Example (1) would be
submitted::meeting).

2. The two event lemmas (e.g.,submit::meeting).

3. The words between the events (e.g.,his,
resignation, during, a, 10-minute).

4. The hypernyms of the events using a first-
sense assumption (e.g.,refer::gathering,
send::gathering, . . . , move::abstraction,
move:entity).

Relation Exists (binary)

Feature Set P R F1

EW 13.7 31.0 19.0
EL 14.7 33.4 20.4
WB 14.3 57.9 22.9
HN 17.9 32.6 23.1

EW + HN 19.7 31.4 24.2
EL + HN 19.4 31.5 24.0
WB + HN 25.8 39.9 31.3

EW + WB + HN 27.8 37.5 31.9
EL + WB + HN 27.6 38.0 32.0

EW + EL + WB + HN 29.1 35.5 32.0

Table 1: Baseline experiments for whether two spatial
events are connected by a spatial containment relation.EW

= event words;EL = event lemmas;WB = words between,
HN = hypernyms.

Relation Type (5-way)

Feature Set %

EW 58.3
EL 57.7
WB 52.1
HN 54.9

EL + EW 57.9
WB + EW 53.1
HN + EW 54.8

Table 2: Baseline experiments for the type of spatial con-
tainment relation that connects two events. See Table 1 for
legend.

We experimented with these features using a support vector
machine implementation (Fan et al., 2008).
The results of these experiments are shown in Ta-
bles 1 and 2. These results indicate that while automatic
recognition of spatial containment relations between events
is possible, a far richer set of semantic features is necessary
to both automatically recognize and categorize these rela-
tions. Given that only around 10% of event pairs within a
3-sentence window are marked as having a spatial contain-
ment relation, anF1-measure of 32.0 shows that even basic
lexico-semantic methods can capture many cases of spatial
containment relations.
The best-performing experiment for relation type classifi-
cation uses only the words in the two events. Neither the
context words between the events or the use of hypernyms
to generalize the events improve relation type classifica-
tion. However, the result using this feature is still quite
poor given that the most frequent class baseline is around
50%. This suggests that the features in these baseline ex-
periments do not capture the relevant spatial information.
Given that theWB (word between) feature performed so
poorly, it is likely that the lexical context offers little evi-
dence of the relation type. This validates our assertion that
this task is largely implicit and requires some combination
of discourse clues and world knowledge about the seman-
tics of the two related events.
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Upon analysis, it seems clear that in order for an automatic
method to prove succesful on this task, it must incorporate:
(1) an understanding of event semantics to represent how
pairs of events are related (such as using event scenarios
(Bejan, 2008) or narrative schemas (Chambers and Juraf-
sky, 2008)), (2) event coreference to form chains of identi-
cal events, (3) discourse relations that hold between events,
and (4) a sense of the relative spatial bounds of events (e.g.,
events that happen at the level of cities and nations as op-
posed to those that happen at the level of individual human
interactions).

5. Conclusion
In this paper, we have discussed our motivation and an-
notation schema for spatial containment relations between
events, placing it within previous work in both event re-
lations (e.g., TimeML) and spatial representation (e.g.,
RCC-8, SpatialML). We described our process for creat-
ing a corpus with these event relations and analyzed the
current state of our corpus, which is still undergoing de-
velopment. We performed a set of baseline experiments
with simple lexico-semantic features in order to determine
the feasibility of using these annotations for creating an au-
tomatic system for detecting spatial containment relations
between events. In our analysis, we outlined several key
components necessary to perform automatic recognition of
our event relations, including event semantics, event coref-
erence, discourse relations, and approximate spatial bound-
ing. For future work, we plan to integrate many of these
approaches into an automatic approach for recognizing the
spatial containment relations between events.
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