
Building a 70 billion word corpus of English from ClueWeb

Jan Pomikálek, Miloš Jakubíček, Pavel Rychlý

NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic
Lexical Computing Ltd., Brighton, United Kingdom

Abstract
This work describes the process of creation of a 70 billion word text corpus of English. We used an existing language resource, namely
the ClueWeb09 dataset, as source for the corpus data. Processing such a vast amount of data presented several challenges, mainly
associated with pre-processing (boilerplate cleaning, text de-duplication) and post-processing (indexing for efficient corpus querying using
the CQL – Corpus Query Language) steps. In this paper we explain how we tackled them: we describe the tools used for boilerplate
cleaning (jusText) and for de-duplication (onion) that was performed not only on full (document-level) duplicates but also on the level of
near-duplicate texts. Moreover we show the impact of each of the performed pre-processing steps on the final corpus size. Furthermore we
show how effective parallelization of the corpus indexation procedure was employed within the Manatee corpus management system
and during computation of word sketches (one-page, automatic, corpus-derived summaries of a word’s grammatical and collocational
behaviour) from the resulting corpus.

Keywords: corpus, clueweb, English, encoding, word sketch

1. Introduction
Text corpora–large collections of electronic texts–are one of
the essential resources for linguistics and computational lin-
guistics in particular. They have applications in a wide range
of fields, such as machine translation, speech recognition,
lexicography, language learning and teaching, etc.
A distribution of words in a natural language follows the Zipf
law (Zipf, 1949). Its simple interpretation is that there are
only few words which are used frequently and many words
which are used rarely. The same applies to other language
phenomena, such as collocations, phrases, patterns, etc. In
order to get evidence about the rare phenomena a lot of
text is required. In general, the more text is available, the
more distinct language phenomena can be found in it. Thus,
everything else being the same, a larger corpus is always
better than a smaller corpus.
In the recent years, Web corpora (text corpora created from
the Web) became very popular due to the availability of
a vast amount of electronic texts on the Web. With relatively
low costs, Web corpora can be built in sizes which would be
virtually impossible to achieve using traditional corpus cre-
ation methods. Nevertheless, building useful Web corpora
is not straightforward and requires a lot of expertise.

2. Building the corpus
A common Web corpus building procedure is as follows.
First, a set of Web pages has to be retrieved. This is typically
done using a web crawler. Alternative approaches include
BootCaT (Baroni and Bernardini, 2004) or Corpus Factory
(Kilgarriff et al., 2010). Next, a language filter should be
applied in order to weed out documents not in the language
of interest. Web pages need to be converted to plain text
along with removing boilerplate parts, such as navigation
links, advertisements, copyright notices, etc. Duplicate and
near-duplicate texts have to be detected and preserved only
in one instance. It is also useful if the corpus undergoes
a linguistic annotation, such as part-of-speech tagging. If
the corpus data is to be used directly by humans (researchers,
lexicographers, language learners), as the last step, the cor-

pus has to be indexed using a specialised software called
corpus manager.
Despite being principally straightforward, web crawling
is a technically difficult task, especially when large scale
crawls are considered. Though the number of freely avail-
able web crawling software is substantial, the truly robust
solutions suitable for multi-terabyte crawls are rare. Also,
when crawling for corpus data, it is typically required that
pages not in the language of interest are avoided. This may
be difficult to achieve using a third-party software. Last but
not least, even if all other problems can be resolved, doing
large scale crawls in an academic environment takes a lot
of time since the available technology (both software and
hardware) is limited.
ClueWeb091 is a collection of ca 1 billion Web pages in
10 languages collected by Carnegie Mellon University in
January and February 2009. The dataset is freely available
for research purposes. This collection is a valuable resource,
since (i) unlike constantly changing Web it is a fixed dataset
which makes a reproducible research possible and (ii) it
saves researchers from struggling at doing their own web
crawls.
For building our corpus, we used the English part of
ClueWeb which comprises roughly one half of the whole
collection, i.e. ca 500 million Web pages. The first stage
of the processing included removing boilerplate and lan-
guage filtering. For removing boilerplate, we used jusText
(Pomikálek, 2011)2 – our heuristic based boilerplate removal
tool. Since we wanted to be sure that all texts included in the
corpus are indeed in English, we applied a language filter as
the next step. We employed the trigram.py module,3 which
classifies input text based on the frequencies of triples of
characters. It compares this profile with a profile of a model
text and outputs a similarity score between 0 and 1. We used
a filtering thresholds of 0.4 which we found to give good

1http://lemurproject.org/clueweb09.php
2http://code.google.com/p/justext
3http://code.activestate.com/recipes/326576-language-

detection-using-character-trigrams/

502



Value Size
word forms 68,845,137,110

numbers 1,485,033,080

alphanumeric 70,330,170,190

punctuation 9,849,840,275

others 1,810,813,890

total tokens 81,990,824,355

documents 138,988,120

Table 1: Overall corpus characteristics

results in our previous experiments.
In the next step, we removed duplicate and near-duplicate
data from the corpus. This is described in the next section.
As the last step, we performed part-of-speech tagging using
TreeTagger (Schmid, 1994).

3. Deduplication
Removing duplicate and near-duplicate texts was one of
the two challenging parts in the processing pipeline. The
enormous size of the processed dataset obviously prohibited
the naive approach – examining each pair of documents for
duplicate content. Rather than that, we used onion4, a tool
we developed specifically for de-duping corpus data. Most
other existing de-duplication methods, such as Broder’s
shingling algorithm (Broder, 2000) or Charikar’s algorithm
(Charikar, 2002), can only identify highly similar pairs of
documents and fail to detect near-duplicates at intermediate
level (Pomikálek, 2011). This is a problem for text corpora
where any artificial duplicates (those which are not a result
of a natural or coincidental independent use of the same
sequence of words) cause problems. Onion, on the other
hand, can identify and remove near-duplicates at any level
of similarity.
Onion is an n-gram based one pass deduplication algorithm.
It processed the input documents (or paragraphs, depending
on user’s preferences) one by one. For each document, all
n-grams of words are extracted (10-grams by default) and
compared with the set of previously seen n-grams (union of
the n-grams of previously seen documents). This identifies
the parts of the document which already exist in the cur-
rently processed part of the corpus. If the proportion of text
within these duplicated parts is above a predefined thresh-
old, the document is discarded. Otherwise, the document is
preserved and its n-grams are added to the set of previously
seen n-grams.
A major drawback of this simplified version of the algorithm
is that it has to hold in memory the set of n-grams of all pro-
cessed documents, except for the discarded ones. Obviously,
the size of the set grows as the algorithm progresses and
by the end of processing the number of contained n-grams
is usually close to the total number of words in the corpus.
This is because in a typical corpus, most n-grams (more
than 90 %) have a single (unique) occurrence. For instance,
for processing a corpus of 10 billion words, we may expect

4http://code.google.com/p/onion

that more than 9 billion of n-grams will have to be held in
memory. Assuming 8 bytes per n-gram5 and no memory
overhead of the used data structure, more than 67 GB RAM
would be required.
In order to reduce memory requirements, onion can precom-
pute the set of all duplicate n-grams (n-grams with two or
more occurrences) in the whole corpus. Using this set, any
n-gram unique in the corpus can be identified (it is not in the
set). In the stage of the deduplication algorithm where new
n-grams are added to the set of previously seen n-grams,
all unique n-grams can be pruned (since it is guaranteed
that they will not be seen again, there is no point in storing
them). This reduces the size of the set and thus the memory
requirements significantly, since, as we already mentioned,
the unique n-grams typically constitute the vast majority
(more than 90 %) of all n-grams in the corpus.
When precomputing the set of duplicate n-grams, or more
precisely the set of hashes of duplicate n-grams, the algo-
rithm divides the hash space into non-overlapping intervals
(or buckets, 10 by default). Each interval is associated with
a file. In a single pass over all n-grams in the corpus, a hash
of each n-gram is computed and stored in the file correspon-
dent to the value of the hash. Duplicate hashes are then
found in each file individually by sorting it in memory. The
number of intervals (buckets) must be such that sufficiently
small files are created and in-memory sorting is possible.
In Table 2 we summarize the influence of each step on
the resulting corpus size during preparation of a subpart of
ClueWeb that consisted of about 7 % of the whole data set
(for efficiency reasons intermediate results were not stored
when the whole corpus was processed).

4. Parallelization of processing
All processing has been done on a single powerful server
with eight 8-core Intel Xeon X7560 2.27 GHz CPUs and
440 GB RAM. As a disk storage we used a 70 TB RAID-6
disk array with 2 TB 7200 rpm SAS 6 Gbps hard drives.
Despite using a single server, the availability of 64 CPU
cores allowed for a massive parallelization.
For the initial stage (removing boilerplate, language filter-
ing) and the last stage (POS-tagging), the parallelization
was completely straightforward. We simply split the corpus
into X equally sized parts and processed them with X con-
currently running processes of the same type. The X was 50
for removing boilerplate and language filtering, and 20 for
POS-tagging.
Parallelizing the de-duplication stage was more difficult and
only possible to a certain extent. We first reduced the amount
of duplicated data by identifying identical documents using
their MD5 hashes and keeping only one instance of each.
This has been done by splitting the corpus into 10 parts and
processing them independently and in parallel. Apparently,
this procedure did not account for identical documents in
different parts, but it still reduced the amount of duplicated
data significantly. The purpose of this step was mainly to
reduce the CPU and RAM resources required for the next
step.
We then ran 10 instances of onion’s n-gram hash generation
program (hashgen) on the 10 corpus parts using 100 buckets.

5The algorithm stores 64-bit hashes rather than raw n-grams.

503



stage word count % token count
original subcorpus 24,633,016,767 n/a n/a

after removing boilerplate 11,363,624,711 46.1 % n/a

after language filtering 9,586,878,336 84.4 % n/a

after removing exact duplicates 8,983,831,725 93.7 % 10,359,277,678

after block level de-duplication 7,279,959,176 81.0 % 8,390,930,801

Table 2: Overview of subcorpus (7 %) size throughout processing. The percentage values are relative to the previous row.
Word count refers to the number of space separated tokens.

This yielded 1,000 files. We then concatenated the files
corresponding to the buckets of the same type ending up
with 100 files containing distinct lists of hashes. Though
the duplicate hashes could be found in each of these files
independently, it was not possible to do this in parallel due to
memory constraints. Thus, the complete set of all duplicate
hashes has been obtained by sorting these 100 files one by
one. Also, the de-duplication itself only used a single CPU.
The overview of the parallelization process in terms of used
CPU time and memory is provided in Table 3.

5. Corpus Encoding
For manual linguistic introspection, text corpora are usually
subject to specific encoding (indexation) by specialized tools
(corpus managers, corpus database management systems).
Appropriate indexation makes it possible to perform fast and
complex search even for billion word corpora (Jakubíček
et al., 2010). For this purpose we used the Manatee/Bonito
corpus management system (Rychlý, 2000; Rychlý, 2007).
For obvious reasons the indexation procedure was of less
interest what regards its time and space complexity – what
mattered was the efficiency of resulting queries to the corpus
while the time required to perform the whole encoding was
bearable even if it lasted several dozens of hours.
This was all true up to and including billion word corpora.
However, advancing by another order of magnitude revealed
that this step of corpus finalization needs to be revisited:
sequential algorithms for corpus indexation would even with
high-tech equipment require not hours or days, but rather
weeks and months to finish. For the first time in the 20 years
history of text corpora encoding, the amount of processed
data has outrun the computer performance that is commonly
available.

5.1. Parallelization of Corpus Encoding
To speed up the corpus encoding, the whole process has
been parallelized so as to make it possible to deploy the
encoding procedure in a single-host multi-process or even
multi-host cluster or cloud environment.
Unfortunately, the encoding process cannot be parallelized
in an entirely trivial way, i.e. simply by separating the corpus
into several datasets that could be processed independently
and their results would be just merged in the end – and we
believe that this holds not only for Manatee, but for any
corpus management system, since the very basic thing such
a system needs to perform is a string (type) to id (index
number) mapping of the underlying lexicon and these values
are likely to be included in multiple subsequent indexing

–and of course must be consistent across the whole corpus
which would not be guaranteed by trivial parallelization.
One obvious solution to this issue would consist of rein-
dexing the whole lexicon and dependent indices at the end
of the encoding process but considering the target size of
the corpus (let’s emphasize it again: we are talking about
corpora of 10 to 100 billion words) this might slow down the
parallelization to the extent that it might not even outperform
its simple sequential predecessor.
In Figure 1 we outline the workflow of a much more effi-
cient approach that has been implemented in the Manatee
corpus management system and exploits the Zipf probability
distribution of the lexicon that can be for this purpose refor-
mulated as follows: when processing the corpus, the size of
lexicon increment is inversely proportional to the number of
tokens processed. In other words, the lexicon grows vastly
only at the beginning of the processing and tends to keep
almost the same size at its end.
Therefore we can process first 10 (20, 50, . . . ) million words
sequentially at the very beginning of the encoding process
and hereby prepare a solid lexicon basis that will require
only infrequent updates in further parallel processing that
will gain a significant speedup, as given in Table 4.
Besides the parallelization, special handling of unique struc-
ture attributes (like document’s URL) has been implemented
in order to speed up the encoding since such attributes do
not require building most of the indexation structures (like
inverted index), need just a basic lexicon (string to attribute
id mapping).

5.2. Parallel Computation of Word Sketches
Besides basic encoding of the corpus for the Manatee sys-
tem, the word sketch relations (Kilgarriff et al., 2004) have
been computed on the resulting corpus. The computation
of word sketches consists in evaluation of a series of com-
plex CQL queries (see e.g. (Jakubíček et al., 2010) for an
overview of CQL – Corpus Query Language). Fortunately,
at least for some word sketch relations this procedure can be
easily parallelized by computing separate relations (or even
queries) in parallel and merging their results. By applying
this approach we managed to speed up the evaluation of
word sketches on the corpus by factor of 8 down to about 8
days.

6. Conclusion
In this paper we presented a newly created 70 billion word
corpus of English that originates from the ClueWeb data
set. We described the process of converting the collection of

504



Step CPU cores Time RAM
removing boilerplate + language filtering 50 108 hours < 1GB

removing identical documents 10 9 hours 5 GB (10 x 0.5 GB)

generating hashes of n-grams 10 1 hour < 1GB

finding hashes of duplicate n-grams 1 9 hours 10 GB

de-duplication 1 65 hours 148 GB

POS-tagging 20 44 hours < 1GB

Table 3: Processing times, RAM requirements

Figure 1: Overview of the parallel encoding workflow

Web pages into a linguistically useful text corpus. Our main
focus was on de-duplication, which presented the major
challenge. Finally, a parallelization procedure for corpus
encoding within the Manatee corpus management system
has been presented that speeds up the whole indexation
process by more than factor of 5.

7. References
Marco Baroni and Silvia Bernardini. 2004. BootCaT: Boot-

strapping Corpora and Terms from the Web. In Proceed-
ings of LREC, volume 4.

Andrei Broder. 2000. Identifying and Filtering Near-
Duplicate Documents. In Combinatorial Pattern Match-
ing, pages 1–10. Springer.

Moses S. Charikar. 2002. Similarity Estimation Techniques
from Rounding Algorithms. In Proceedings of the Thirty-
Fourth Annual ACM Symposium on Theory of Computing,
pages 380–388. ACM.

Miloš Jakubíček, Pavel Rychlý, Adam Kilgarriff, and Diana
McCarthy. 2010. Fast Syntactic Searching in Very Large
Corpora for Many Languages. In PACLIC 24 Proceed-
ings of the 24th Pacific Asia Conference on Language,
Information and Computation, pages 741–747, Tokyo.

A. Kilgarriff, P. Rychlý, P. Smrž, and D. Tugwell. 2004. The
Sketch Engine. In Proceedings of the Eleventh EURALEX
International Congress, pages 105–116, Lorient, France.
Universite de Bretagne-Sud.

Adam Kilgarriff, Siva Reddy, Jan Pomikálek, and Avi-
nesh PVS. 2010. A corpus factory for many languages.

In LREC Workshop on Web Services and Processing
Pipelines. Valetta, Malta: ELRA.

Jan Pomikálek. 2011. Removing Boilerplate and Dupli-
cate Content from Web Corpora. Phd thesis, Masaryk
University.

Pavel Rychlý. 2000. Korpusové manažery a jejich efektivní
implementace. PhD Thesis, Masaryk University, Brno.

Pavel Rychlý. 2007. Manatee/Bonito - A Modular Cor-
pus Manager. In 1st Workshop on Recent Advances in
Slavonic Natural Language Processing, pages 65–70,
Brno.

Helmut Schmid. 1994. Probabilistic Part-of-Speech Tag-
ging Using Decision Trees. In Proceedings of Interna-
tional Conference on New Methods in Language Process-
ing, volume 12, pages 44–49. Manchester, UK.

George Kingsley Zipf. 1949. Human Behavior and the
Principle of Least Effort. Addison-Wesley Press.

505



sequential encoding parallel encoding, unique attributes handling speedup
76 days 7 days > 10

sequential sketch computation parallel sketch computation speedup
64 days 8 days > 8

Table 4: Comparison of sequential and parallel encoding of the 70 billion EnClueWeb corpus

506


