An Open Source Persian Computational Grammar

Shafgat Mumtaz Virk?, Elnaz Abolahrar®
®Department of Applied IT,
University of Gothenburg, Sweden
®Rachna College of Eng. & Tech.,
University of Eng. & Tech. Lahore, Pakistan
bDepartment of Computer ScienéeEng.

Chalmers University of Technology, Sweden
E-mail: virk@chalmers.seelnaz.abolahra@gmail.com

Abstract

In this paper, we describe a multilingual og®urce computational grammar of Persian, developed in Grammatical Framework
(GF) P A type-theoretical grammar formalism. We discuss in detail the structureffefetit syntactic (i.e. noun phrases, verb
phrases, adjectival phrases, etc.) categories of Persian. First, we show how to structure and construct these catiely@ligs indi
Then we describe how they are glued together to makefaetied sentences in Persian, while maintaining the grammatical features
such as agreement, word order, etc. We also show how some of the distirattivesfef Persian, such as #mafeconstruction, a&
implemented in GF. In order to evaluate the grammarOs correctness, and to demonstrate its usefulness, e sugpmaddr
Persian in a multilingual application grammar (the Tourist Phrasebook) using the reported resource grammar.

Keywords: Grammatical Framework, Abstract syntax, Concrete syntax.

_ (Ranta 2009a) that encodes the syntactic constructions
1. Introduction of a natural language. For example modification of a

The idea of providing assistance to programmers in theNoun by an adjective is a syntactionstructionand it is

form of software libraries is not new. ttan be tracked developed as part ofresource gramar development. A
back to 1959, when JOVIAL gave the concept of collection of such syntactic constructions is called a
COMPOOL (Communication Pool). In this approach, the ~ résource grammar. A resource grammar is supposed to be
code and data that provide independent sees are written by inguists, who have sufficiengrammatical
made availablein the form of software libraries. Kknowledge (i.eknowledge abouword order, agreement
Software libraries are now at the heart of modern features etc.) of thetargetnatural language. The other
software engineering, and many programming languages type of grammarthat one can writein GF is an

(e.g. C, C++, Java, Haskeletc.) come with buitn application grammarlt is a domain specific grammar
libraries. However, the idea of providing natural that encodes semantic constructions. This is supposed to
language grammars as softwaibraries is relatively b€ written by domain experts, whdave a better
new. k was first introdued in CLE (Core Language understanthg of the domain specificterms. An
Engine:Alshawi, 1992; Rayner2000. GF (Grammatical ~ aPplication grammar may use a resource grammar as a
Framework: Ranta 2004) is another example that Supporting library (Ranta2009b) through a common
provides natural language gmmars in the form of resourcegrammanpPI®.

libraries. GF is a special purpose programming language Furthemore every grammar in GF has two levels:
designed for developing natural language processingabstract syntavand concrete syntaxwhich are based on
applications Historically, GF and its libraries have been Haskell Curry’s distinction of tectogrammaticaland

used © write a number of application grammars phenogrammaticadtructures (Curryl963).The dstract
including GFKey* (authoring and translation of software ~syntax is independent of any language and contains a list
specifications), TALK (a multilingual and multimodal ~ ©Of categoriesdad, and a set of tredefining rules(fun).
spoken dialogue system), and WebAlfmultilingual The concete syntax contains rules telling how the
generation of mathematical exerciségpreover,GF has abstract syntax categories and trees are linearized in a
support br an increasing number of natural languages. particular language. Since the abstract syntax is common
Currently, it supports23 languagegsee the status of GF {0 @ set of languagdslanguages that are part ibie GF

resource library® for more details). resource libranpit is possible to havenultiple parallel
GF providedibrariesin the form of resource grammadds ~ CONcCrete syntaxefsr one abstract syntaXhis makes the

GF. A resourcegrammar is a genergurpose grammar ~[ésource grammar means ing linearization rules
(lincat and lin) of the abstracsyntax trees foa given

natual language. This is a challenigg task, as it

Yhttp://www.key-project.org/ requires comprehensive knowledge of ti@rgetnatural
http://www.talk-project.org/
*http://webalt.math.helsinki.fi/content/index_eng.html ® http://www.grammaticalframewérorg/lib/doc/synopsis.html

*nttp://www.grammaticalframework.org/lib/doc/status.html GF resource grammar API

languageas well asa practical programming experience
of GF. In this paper we describe the developmernhef
Persian resource grammar.

Persian is an Iranian language within the Hhdmian cat NP ;

branch of the Inddcuropean family of languages. It is lincat NP:Type = {s : NPForm=>Str;
widely spoken in Iran, Afghanistan, Tajikistan, and a - AgrPes ;
Uzbekistan. In Iran it is also called Farsi, and the total animacy : Animacy };
number of Fasi speakers is abouO@nillion (Bahrani
2011). It has a suffix predominant morphology, though
there are a small number of prefixes as well
(Megerdoomian 2000). Persian tense system is
structured around tense, aspect and mood. Verbs agree
with ther subject in number and pers, and there is no
grammatical gender (Mahootiyat997). Persian has a
relatively free word order (Mler, 2010), but declarative
sentences are mostly structured as O(S) (0) (PP) VQOrhis means that a NP is a record (indicated by curly

Structure: A NP has the following structure:

Where

param NPForm = NPEzafe ;

param Ezafe = bEzafe | aEzafe | enClic;
param AgrPes = AgPes Number PPerson;
param Number= Sg | PI;

param PPersor= PPersl | PPers2| PPers3;
param Animacy= Animate | Inanimate ;

Optional subject (S) is followed by an optional object brackets) of three fields. Thaurpose of different fields

(O), which is fdlowed by an optional propositional
phrase (PP). All these optional components precede the
verb (V).

In Sections 2 and 3, we talk about morphology and
syntax (two necessary c@onents of a grammar)
followed by an example in &tion 4. Covelge and
evaluaton is discussedn Section § while relatedand
future work follows in &ctions 6

2. Morphology

Every GF resource grammar has a test lexicon of almost
450 words. These words belong to different lexical
categories (both open and closed), and have been
randomly selected for test purposes. Different
inflectional forms of these words are built through
special functions called lexical paradigms. These lexical
paradigms take the canonical form of a word and build
finite inflection tables. However, the morphological
details are beyondhe sope of this paperwhich
concentrates on the syntactical details.

3. Syntax

While morphology is about principles and rules of
making individual words, syntax is about how these
words are grouped together to make wietimed
sentences in a particular language. In this section, we
talk about the syntax of Persian. First, in thBowing
subsections we discuss different syntactic categories (i.e.
noun phrases, verb phrases, adjectival phrases, etc.)
individually. Then we show how they are glued together
to make clauses and sentences in sections 3.5 and 3.6
respectively.

3.1 Noun Phrase

A noun phrase is a single word or a group of
grammatically related words that function as a noun. It
consists of a head nounvhich is constructed athe
morphological leveland one or more optional modifiers.

of a NP is explained below.

¥ @Qdefined as€NPForm=>S® idnterpreted

as OsO is an object of the tyN@Rdrm=>StO,
where the type NlPForm=>St0 is a table type
structure. In GF, we use such table type structures
to formulate inflection tables. In briebs@tores
different forms of a noun phrase corresponding to
the parameters bBzaf® (a formwithout the
ezafe® suffix), @Ezaf® (a form with thezafe
suffix) and éncClicd (a form with the nelitic
particle). For example consider the following
table for the noun Ohousel.

. NPCbEzafe =>I"#$ -- X!"n%¥%h

. NPC aEzafe =p"#$%- X!"n¥h i:

. NPC enClic =} #$%& X!"n¥h I"i"
. AgPes Sg PPers3

animacy . Animate

Q0N v n

These forms are then used in the construction of
clauses and/or other categories. For exaniple
Persiarthe @Ezafe@rm is used in modifications
like adding an adjective e.g. DH$ % &'()
X!"n¥%h bzrg big houseO, and in showing
possession e.g. © # !"#$ X!"n¥%h mn, my
houseO. TheAClicd form is used in constructions
where the noun is followed by a relatickuse
e.g. O# $%&' () "#$X! "n¥%h kh A:nj" ! "st the
house which is thereO.

¥ @0 is the agreement parameter and stores
information about number and person of a noun
phrase. This information is used for agreement
with other categories.

¥ Q@nimacy) keps the information about
whether the noun phrase is animate or inanimate.
This information is useful in the subjeeatrb
agreement at clause level.

In Persian modifiers mostly followthe noun they

® Ezafe construatin is a special grammatical feature of Persian,

modify, even though in lined cases they can precede it. which is used to link the words in phrases (Samvelian, 2007). It

Below, we show the structure of moun phraseNP) in
our implementation, followed by its construction.

is inherited from Arabic and is commonly used to express
noun-adjective linking.

Construction: The head noun corresponds to the
morphological category nourN). The morphological
categoryN is first converted to an intermediate category
common noun@N), through the following function:

fun UseN : N-> CN ; -- !"#$ X! "n3h, house

Where a common noun has the followingisture:

lincat CN =
Animacy};
It deals with modification of a noun by different
modifiers including but not limited to adjectives,
quantifiers, determineygtc. We have different functions
for these modifications. Caeider the following function
that is used for adjectival modiftion:

{s :

Ezafe=>Number=>Str ; animacy :

fun AdjCN : AP->CN ->CN;
- I"#$ | 1"#$ X! "n¥shibzrg , big house

And its linearization rule for Persiangéven below:

lin AdjCN ap cn = {
s = table { bEzafe => table {
Sg =>cn.s ! akEzafe ! Sg ++ ap.s ! bEzafe;
Pl =>cn.s ! aEzafe ! Pl ++ ap.s | bEzafe
h
aEzafe => table {
Sg=>cn.s ! akEzafe | Sg ++ ap.s ! aEzafe;
Pl =>cn.s ! aEzafe ! Pl ++ ap.s | aEzafe
I3
enClic => table {
Sg =>cn.s ! akEzafe ! Sg ++ap.s ! enClic;
Pl =>cn.s ! aEzafe ! Pl ++ ap.s | encli
h
animacy = cn.animacy
h

The above linearization ruleakes an adjectival phrase

Note how the @ operator is used as a syntactic sugar
with parameter variableef» andnO to compress the
branches of a tabl®gether. Also note that®is used as
selection operator to select different values from the
inflection table and 430 is used as a concatenation
operator.

The resulting common noun is then converted to a noun
phrase (NP) through different functions degding on the
constituents othe NP. In the simplest cas® common
noun without any articlecan be used as a mass noun
phraselt is constructed through the following function:

fun MassNP

:CN> NP ;--I" | A"b, water

And its linearization rule is:

lin MassNP cn = {s =\ez=>cn.s!ez!Sg
a = AgPes PPers3 Sg ;
animacy = cn.animacy
b
This function takes a common noun anchwerts it to a
NP.

Few others functionf the construction of a NP are:

fun DetCN : Det> CN-> NP ;

-- I"#, mrd, man
fun AdvNP : NP-> Adv -> NP ;

- "#$% &'()*,pi"rs! "md "z, Paris today
fun DetNP : Det> NP ;

-- I"# $%@& "n pnj, these five

3.2 Verb Phrase

A verb phrase normally consists of a verb and one or
more optional complements. It is the most complicated
category in our constructisn First, we e&plain the
structure otthe Persian verlphrasen detail and then e

and a common noun and builds a modified common continue withthe description ofts construction.

noun. As explained prewoustsGDn the above given

code is an inflection table from OEzafe to Number to sirycture: In our construction a verb phrase (VP) has

stringd, and stores different inflectional fsrraf a
modified common noun. Sindeersian adjectives do not

the following structure:

inflect for number, we use the same form of an adjective, ¢4t vp :

both for gD and®IO parameters of the common noun.

However, adjectlves have three forms corresponding to ¢

dEzafd, dEzaf® andedClicdd (see Section 3.3). As it is

clear in the above code, whenever a common noun is ¢omp

modified by an adjective, theaEraf® form of the
common nounis used. Moreover, the modifier follows
the common noun to ensure the proper word order.

GF provides a syntactic sugar for writing the above table 54y

lincat VP Type ={

: VPHForm => {inf : Str} ;
» Str;

. AgrPes =>6tr;

obj

vComp :AgrPes => Str;
embComp: Str;
inf . Str;

. Str;

concisely. For example the above given code can be };

replaced by the following simplified version

lin AdjCN ap cn = {

S =\\ez,n => cn.s ! aEzafe ! n ++ ap.s ! ez;
animacy = cn.animacy
b

Where

param VPHForn¥ VPTense Polarity VPPTense AgrPes
| VPImp Polarity Number
| VVForm AgrPes
| VPStem1

| VPStem2 ;

param VAPTense= VPPres Anteriority

|VPPast Anteriority
|VPFutr Anteriority
|VPCond Anteriority ;

param Anteriority = Simul | Anter ;

A brief explanation of different fiekland their purpose
is given below:

¥ As explained previously®0 is an inflection
table and here, istores the actual verb form. We
make different forms ofa verb at verb phrase
level. The paramete@PHFornO in the above
code storesthese different forms A Drief
overview of these forms and their usage is given
below:

- @Q/PTens® is a constructor with context
parameterslarityd, ¥PPTens® andAQrPe.

It stores different forms of a verb inflecting for
Qolarityd, ®ns® andAQrPe® (wherdé\grPes =

xv! "stn, wantO therefore it will follow the
auxiliary verb.

¥ @mbCom@is a simple string and is used
when adeclarativeor interrogative sentence is
used as a complement afverb. For example in
this sentence !@$% &' ()#* +' - ./$0 &', 1#u"

mi* gwi"d kh mn d"rm m" xu" "hm, she says
that | am sleepingO, the sente@#$% &' ()#* +'

mn d "rm m" xu'!"hm, | am sleepingO® is the
complement of the verld"@$, gftn, to sayO. This
type of complement comes at the very end of a
clause. The reason behind storing different types
of complements in different fields is than
Persian these different complements take different
positions within a clause (see section 3.4 for more
details).

¥ (nfO simply stores the infinitive form of the
verb.

¥ @dW is a string field and stores an adverb.

AgPes Number PPersprThese forms are used to Construction: The verb phrase (VP) onstructed from

make nominal declarative sentenetghe clause
level.

the morphological category verb (V) by providing its
complements. In the simplest cassiagle verb without

- &/PImpd stores the imperative form of a verb any complementsan be used as a verb phrase. We

inflecting for polarity and number.

- @/VFormO stores the form of a ewhich is
used when a verb takéise roleof a complement

of another verb (i.e. in the construction Owant to
runO, 1 rund is used as a complement of the

fun UseV
I"#$%&Xu" "bi"dn, sleep

create this verb phrase through the following function:

'V ->VP;

auxiliary verb OwantO. In English the infinitive of And its linearization rule is:

the second verb(@ run® is used as the
complement of the auxiliary ve@®war, but in
Persian in most cases the present subjunctive
form of the second verb
complement of the auliary verb. We name this
form the &VFormO It inflects for number and
person.

- Finally @PStemD and\®Stem® storahe
present and past roots of the verb, which have
different forms in Persian.

¥ @bj0 is a string type field, vahi stores the
direct objecf averb.

¥ @ompd is an inflection tablehich storeshe
complements of verly thoseother than a direct
object. The complement needs to be in agreement
with the subjectboth in number and person.
Therefore, we keep all the inflectional forms (for
number and person) of a complement. This
parameter is used to store indirect objects of
di-transitive verbs.

¥ OvCompO a@other inflection table inflecting
for number and person. When a verb is used as a
complement of arauxiliary verb, we store itni

this field. Unlike Ocomp® or OoHid, type of
complement follows the auxiliary verb. For
example in the sentence!'@$%" |&#$' #$! "u"

mi" xu'! "hd bxu!"bd, she wants to sleepO, the
verb O I"#$%& xu' "bi"dn to sleepO is the
complement of the auxiliary verb O#$%&

lin UseV v =predVyv;
is used as the Where
oper predV : Verb> VPH =\verb-> {

s =\\vh =>
case vh of {

VPTense pol (VPPres Simul) (AgPes n p) =>
{inf =verb.s ! VF pol (PPresent Primperf) pn };
VPTense pb(VPPres Anter) (AgPes n p) =>
{inf = verb.s ! VF pol (PPresent PrPerf)pn};
VPTense pol (VPPast Simul) (AgPes n p) =>
{inf =verb.s I VF pol (PPast PstAorist) pn};
VPTense pol (VPPast AnteiAgPes n p) =>
{inf =verb.s ! VF pol (PPast PstPerf)pn};
VPTense pol (VPFutr Simul) (AgPes n p) =>
{inf =verb.s ! VF pol (PFut FtAorist)pn };
VPTense pol (VPFutr Anter) (AgPes n p) =>
{inf = verb.s ! VF pol (PPresent PrPerf)pn}
VPTense pol (VPCond Simul) (AgPes n p) =>
{inf = verb.s ! VF pol (PPast Pstimperf) pn};
VPTense pol (VPCond Anter) (AgPes n p) =>
{inf = verb.s ! VF pol (PPast Pstimperf) pn};
VPImp pol n =>{inf = verb.s ! Imp pol n};
VVForm (AgPes n p) =>
{inf = verb.s ! Vvform (AgPes n p)} ;
VPSteml => { inf = verb.s ! Rootl}
VPStem2 => { inf = verb.s ! Root2}

3
obj ={s =[] ; a = defaultAgrPes} ;
comp =_=>];
vComp =_=>1];

embComp =[];
inf = verb.s ! Inf;
adv =];

b

This operation (indicated by keywordp@© in the above

code) converts a verka (morphological category) to a

verb phrased syntactic category)At the morphological
level, Persiarnverbs inflect fotense (presefgastfuture),

aspect (perfective/imperfectiagrist), polarity
(positivénegative), person {12"'3%, and number
(SgPI). All these morphological formsare stored in an
inflection tableat the morphological levelandare used
in this operation to make different forms e verb

This function simply converts the morphological
category adjective (A) to the syntactic category
adjectival phrase (AP). lts linearization rule for Persian
is very simple because an adjective and an adjectival
phrase have the same structure. This is as simple as given
below:

lin PositAa=a;

It is possible to construct adjectival phrases from other
categories. We have one function for each corresponding
construction including the followings:

fun ComparA: A-> NP-> AP ;

" #$ %& 'Yogrm tr! 'z mn , warmer than |
fun AdjOrd : Ord-> AP ;

I"#$ %#&grm triln, warmest

phrase level. For example, the boldfaced line in the fun CAdvAP : CAdv-> AP-> NP-> AP ;

above code builds a part of the inflection tats® This
part stores the forms dhe verb that correspond tdhe

(Present, Simul) combation of tense and anteriority,
and all possible combinations of polarity and agreement

(represented by variablegdfd for polarity andd@Pes n

I"# $%&"# ,(bh j !Ibi! j! In, as cool as John
fun AdAP : AdA->AP-> AP ;
I"# $%&, Xilli! grm, very warm

3.4 Adverbs andother Closed Gategories

pO for agreement). All the complement fields of this verb agverbs aremade at morphological level, but it is also

phrase are left blank or initialized to default \edu

possble to construct them at stactic level form other

These complements are provided through other Verbcategories for example from adjectives. We have
phrase construction functions including but not limited t0 geparate construction functions for adverbs and other

the followings:

fun ComplVV :VV ->VP->VP;

"#S #%&'("), (1 "u™) mi" xu""hd bdu"dwant to run
fun ComplVS :VS->S ->VP;
M#S "% &'() #E ") ,("u") mi" gu"i"d "u" mi"
say that she runs
fun ComplVQ : VQ->QS->VP;

"AS #%& '()+ -/ 00 () ,(1"u") dr #b !"st th
ksi" mi"dvd , wonder who runs

du"d,

These functions enrich the verb phrase bpvling
complements. The redidg verb phrase is then uséd
makingclauses, which is discussed in section 3.5.

3.3 Adjectival Phrase

closed categories e.g. pronouns, quantifigts A few of
them are listed here:

fun PositAdvAdj : A-> Adv ;
I"#$ %&bh grmi! , warmly
fun PossPron : Prot» Quant ;
I" (# $%&) , (X! 'In%h i) mn, my (house)
fun AdviP :IP->Adv->1IP;
I"#$% #& '() *+, tth ksi! dr g !rils, who in Paris

3.5 Clauses

While a phrase is a single word or a group of
grammatically related @rds, a clausés a single phrase

or a group of phrases. Another difference is that a clause
may have both a subject and a predicatésadwn, while

a phrae cannothawe both at the same time. Though

In our construction an adjectival phrase has the sometimesit is possible that a clause does not have any

following structure:
lincat AP = {s: Ezafe => Str ; adv : Str};

Again OsQ@tores different forms corresponding tioe

subject at all, and is only composedaaferb phrase.

Structure: In our construction a clause has the following
structure:

parameters ObEzafe® (before Ezafe), OaEzafe® (aft¥pcat Clause : Type = {sVPHTense => Polarity =>

Ezafe) and OenClicO (Hitc). OadvO is a string ldie
which stores the correspondinfprm, which is used
whenanadjectiveis used as an adverb
Adjectival phrases are constructed from
construction functions. The simplest one is:

fun PositA : A-> AP ; --I"#, grm , warm

Order => Str} ;

Where

. -) the paramvPHTense = VPres |VPas |VFut |VPerfPres
morphological category adjective (A) through different

|VPerfPast |VPerfFut|]VCondSimul
[VCondAnter ;

This shows that a clause is a record with only one field

labeled as €. Itstores clauses with variable tense,

polarity and orderdeclarativéinterrogativg, which are
fixed at sentence level'’he GF resource grammar API

tense system covers only 8 possibilities through the

combination of four tensespresent past future and
conditiona) and two anteriorities afitersimul). The

<Neg,VPerfFut> => case vp.wish of {
True => vp.s | VPTense Neg (VPPres Anter) agr ;
False => vp.s | VPTense Neg (VPFutr Anter) agr};
<Pos,VCondSimul> =>
vp.s | VPTense Pos (VPCond Simul) agr;
<Neg,VCondSimul> =>
vp.s ! VPTense Neg (VPCond Simul) agr;

common API tense system is not adequate for Persian.p,s vcondAnters =>

tense system - which is structured around tense, aspect,

vp.s | VPTense Pos (VPCond Anter) agr;

and mood. However, in our current implementation we <Neg VCondAnter> =>

stick to the common API tense system, dhds cover
only eight possibilities. A better approach is to

implement the full tense system of Persian and then map

vp.s ! VPTense Neg (VPCond Anter) agr };
quest =case ord of
{ ODir =>[]; OQuest =>"A:yA" };

it to the common resource API tense system. Thisin _
approach has been applied in the implementation of Urduduest ++ subj ++ vp.adv ++ vp.comp ! np.a ++

(Shafgat et. al 2010) and Punjgl$ihafgat et. al 2011)
tense systems

Construction: A clause is constructed through different
clause construction functions mEnding on the
constituents of the clause. The most important
construction is from a noun phrasBlR) and a verb
phrase YP) through the following function:

fun PredvVP : NP>VP->Cl;
I"# $% &# ()* j! In ! Th millu!d, John walks

And its linearizatiorrule for Persian is:
lin PredVP np vp = mkClaus® vp ;
Where

oper mkClause : NP> VPH-> Clause 3anp,vp-> {
s =\\vt,pol,ord =>

let
subj = np.s ! NPC bEzafe;
agr =np.a;

vps = case <pol,vt> of {
<Pos,VPres> =>
vp.s !VPTense Pos (VPPres Simul) agr ;
<Neg,VPres> =>
vp.s VPTenseNeg (VPPres Simul) agr ;
<Pos,VPerfPres>=>
vp.s ! VPTense Pos (VPPres Antedr;
<Neg,VPerfPres> =>
vp.s !VPTense Neg (VPPres Anter) agr;
<Pos,VPast> =>
vp.s ! VPTense Pos (VPPast Simul) agr ;
<Neg,VPast> =>
vp.s! VPTense Neg (VPPast Simul) agr ;
<Pos,VPerfPast=
vp.s ! VPTense Pos (VPPast Anter) agr;
<Neg,VPerfPast>=>
vp.s MVPTense Neg (VPPast Anter) agr;
<Pos,VFut> => case vp.wish of {
True => vp.s ! VPTense Pos (VPPres Simul) agr ;
False => vp.s ! VPTense Pos (VPFutr Simul) agr};
<Neg,VRt> => case vp.wish of {
True =>vp.s ! VPTense Neg (VPPres Simul) agr;
False => vp.s I VPTense Neg (VPFutrSimul) agr};
<Pos,VPerfFut> => case vp.wish of {
True =>vp.s!VPTense Pos (VPPres Anter) agr ;
False => vp.s | VPTense Pos (VPFutr Anter) agr};

vp.obj.s ++ vps.inf ++ vp.vComp !
vp.embComp

k

This operation takes a noun phra@¢) and a verb
phrase(VP) and constructs a clause with variable tense,
polarity andorder Note how agreement information of
the noun phrase (i.€hp.&0n the above codeyiused to
select the appropriate form of the verb phrase. This is
done to ensure the subjearb agreement. Thele®
statement stes different constituents ofverb phrasen
different variables. Once we have all these constituents,
they can be combimkewith the subject noun phrase
order to make a clausésee boldfaced code segment)
Also note that inthe declarative clauses th@Ezaf&
(before Ezafe) form of the subject nopirase(i.e. Gubd

in the above code) is used\s an example if the noun
phrase (John) ahthe verb phrase (wallkyereinputs to

the above functionthe output would be the following
clause(only a portion of the full clause is shown)

np.a ++

s . VPres => Pos => ODir =5# $% &'# ()*
--j'In ' th mi!luld , John walks
s . VPres => Pos => OQuest ¥ $% &'# ()*)+,
-- Attt In f th milluld, Does John walk?
s . VPres => Neg => ODir =¥ "#$ %&! '()
--j'In ' th nmi!luld, John does not walk.
s . VPres => Neg => OQuest ¥% $%& '(#)*+ *,-
- Al In th nmilluld, DoesJohn not walk?
s . VPast => Pos => ODir =B*# $%# &'(
--jlnr!th rft, John walked.
s . VPast => Pos => OQuest ¥'# $%# &'(')*
- Al In d th rft, Did John walk?
s . VPast => Neg => ODir =F#3$ %&' ()*
-- ! In ' Ih nrft, John dichot walk.
s . VPast => Neg => OQuest =>1"#$ %&' ()F'#
- A:ill1jn i 1h nrft, Did John not walk?
s . VFut => Pos => ODir =¥'# $%&'()&# *+,
-- ! In rolh Xu!! hd rft , John will walk.
s . VFut => Pos =©Quest £'# $%&'()&# *¥'#
Al In d th Xull thd rft , Will John walk?
s . VFut => Neg => ODir =3"# $%&'() *&# +,-
--joln 1 1h nXu! thd rft , John will walk.
s . VFut => Neg => OQuest =#'# $%&'() *&# &+
A In A h nXu:! Thd rft,Will John not walk?
s . VPefPres => Pos => ODir =l I"# $%# &'(
--jl:nr!th rft!Ist, John has walked.
s . VPerfPres => Pos => OQuest E# 1$% &#% '(J'#

- Al jlInrthrft!Ist, Has John walked?

s . VPerfPres => Neg => ODir 35# 1$%& '#()*+
-- jo!nr!lh nrft! Ist , John has not walked.

s . VPerfPres => Neg => OQuest!®# 1$%& #()*H"#
-- Al j In fd Ih nrft! Ist , Has John walked?

s . VPerfPast => Pos => ODir ¥#!"# $%# &'(
--j!'In r 1h rft buld , John had walked.

s . VPerfPast> Pos => OQuest 3% $%& '(&)*W#
-= Al In i Ih rft buld , Had John walked?

s . VPerfPast => Neg => ODir Z3#!"#3$ %&' ()*
--j!'In r 1h nrft buld , John had not walked.

s . VPerfPast => Neg => OQuest £# $%&' ()* +,-
-- Aiill 'jl In ¢! Ih nrft bud , Had John not walked?

s . VPerfFut => Pos => ODir 3% 1"# $%# &'(
--jl'In i :hrft ! Ist, Johrwill has walked.

s . VPerfFut => Pos => OQuest B# !"# $%# &('#
- Al In A Ih rft ! Ist Will John has walked?

This covers only one waof making clauseshere exist
othersas well for example:

fun PredSCVP : S& VP-> Cl;
I"# $%& '() *+ (# ,- .J#, !liln kh mi! ru!d xulb
I'lst,it is good that she goes.

3.6 Sentences

As mentioned and shown previousla clause has
variable tense, polarity and order. Fixing these
parameters results in declarative sentences. This is don
through differentfunctions, wherethe most important
one isasfollows:

fun UseCl :Temp> Pol->Cl ->S;
Where

The parameter@empd is a combination of two
parameters: an for tenseand the other for ateriority.

Thus the function @seCD takes tense, anteriority
polarity and aclause asits input andproduces sentence
as outputThereforejf we fix the varable features of the

example tause given in the OClauseO section, we will ge

the following sentence - wheretense is fixedo simple
present, anteriorityo Smul, andpolarity topositive.

s I"# $% &# ()Fj! 'n ! th milluld , John walks

This shows howwe can make declarative sentences.
Other types of sentengd. interrogativesentences and
relative sentences are built through tliellowing
functionsrespectively

UseQCI : Temp> Pol-> QCI-> QS ;
UseRCl : Temp> Pol-> RCI-> RS ;

4. An Example

t

parse tree of the abogentence.

PredVP : Cl

AN

UsePron : NP AdvVP: VP
| |
he_Pron : Pron UseV : VP PrepNP : Adv
| S
live_V : V in_Prep : Prep DetCN : NP
/ \
DetQuant : Det UseN : CN
- |
PossPron : Qu(NumSg : Num house_N: N
i_Pron : Pron

Figurel: Parse Tree

At the lowest level we have the lexical entries. These
lexical entries are used to construct different syntactic
categories. These constructions are made according to
the grammatical rules, which are declared at the
abstracievel. For example the category nouhrgse
(NP) can be built from a Det (determiner) andCH
(common nouj In the abstract syntax we have the
following rule for this construction:

fun DetCN : Det>CN->NP;

Our goal asaresource grammar developér to provide
the correct lineazation rule for this absract
treebuilding function in Persian. This is achieved
through implementation of the concrete syntax
(described in the syntax sectiofpr Persian. The
morphological part ensures that the corréatms of
words are created, whithe syntactical part handles
other grammatical features such as agreement, word
order, etc.

The following diagram shows the automatically
generated word alignments for the example sentedice
lives in my houseOThe language pair is (English,
Persian).

he — gl
lives o
imn s wala
my -
— e
house - -
QS s eSS

Figure2: Word Alignments

5. Coverage and Evaluation
Our Persian resourcegrammar has 44 different

Here we give an example to demonstrate how our cateqories and 190 syntax functions to coveredifit

Persian resurce grammar works amorphology and

syntactic constructiong his covers a fair enougiortion

syntaxlevels. Consider the translation of the following ¢ tne language but naverything The reason for not

sentence from English to Persian.
OHe lives in my houseO
Figure 1 (below) shows the automatittp generated

being able to covethe whole language is thehosen
approachof a common abstract syntaxfor a set of

languagesn the resource grammar libraryn principle 7. References
this approals makes it impossible to cover every aspect
of every languageAn examplemissing constructiofior
Persian is the casaive construction Such missing
constructions are supposed to be implemented in an extraB
language specific module, which is eordirection for
future work.

Alshwai H., 1992.The Core Language Engine. A set of
parallel grammars written in Prolog and used as
library. MIT Press, Cambridge

ahrani M., Hossein Sameti, Mehdi Hafezi Manshadi,
computational grammar for Persian based on GPSG
: . . Lang Resources & Evaluation DOI
Testing a resource grammia different from testing NLP 10.1007/s1057911-91441

:cp)r?r:::a;g?(?scc;? Ssen_?_rezlt’m\’vhgsoﬁzgngr;;:g: iggr?:SiLCurry H.B., 1963 Some logical aspects of grammatical
pus. 9 g structure In R. Jakobson (Dd.), structuof Language

like tespng soft_/vare Ilprarw(Ranta2009b). Ir_1th|s type and its Mathmatical Aspects: Proceedings of the
of testing a library is testedby developing some S ; .
S Twelfth Symposium in Applied Mathmatis, pp.-68.
application grammars on top olfi¢ resource grammars . : :
: . o American Mathmatical Society, 1961.
Phrasebook is a multilingual application grammar that . .
. . Mahootiyan S., 199Rersian Routledge.
was developed as part of the MOLF®oject. This : . .
application grammar has support for 15 languages InMegerdoomlan K., 200@ersian computational
P 9 PP guages. morphology: A unificaon-based approach

order to evaluate our resource grammar we lelaed . . :)
support forPersiano it. We acleved satisfactory results Memoranda in Computer and Cognitive Science:
' MCCS00-320. pp.1

when a test case of 250 examples was generated. The ;v z00rna.orgipapers/MCCS320 pdf(Last
application is pen to test the accuracy and quality of
translaions,and is availablenthe MOLTO homepage accessed February 2012

' | Meurers W. D., G. Penn, and F. Richtérwebbased

Another possible way of testing to generate a set of ; :)
: .) . instructional platform for constraiAbased grammar
trees, linearize thenand observetheir correctness. This . o .
formalisms and parsing,in Proceedings of the

222&?{2& hﬁ;ic?]eggn; ?r?ge: sge(tanoefr?rtaen;:;ejygsgisIes Effective Tools and Methodologies for Teaching NLP
’ PI€S- and ct, 2002, pp. 1805.

The grammar was released when weacheda 1o ' Ghayoomi M., 2010PerGram A TRALE
satisfactory performance level, with some known issues : .
Implementation of an HPSG Fragment of Persian,

reported in the library documentation. Proceedings of the International Multiconference on
Computer Science and Information Technology pp.
_6' Relatec_i and Future Work _ 461467 ISBN 97883-6081022-4,ISSN 18967094
A Persian computational grammar was reported in Ranta A. 2004.Grammatical FrameworkA Type
Phrase Structure Grammar (§88) model. Conslering Functional Programming 14(2) (2004) BAB9.
nouns, verbs, adjectives, etc. laasic structures, -¥ar Ranta A.,2009a LiLT Volume 2, Issue 2The GF
theory is used to define nourhnases, verb phrases, Resource Grammar LibranCopyright © 2009, CSLI

adjectivalphrases, etc. Thisgrammar is monolingual and Publications.

can be usedn applications, which need ayntactic Ranta A., 2009bGrammars as Software Libraries. From
we developed is multilingual and can be used to develop pregs, Cambridge, pp. 2808.

different kinds of application grammars, ranging from Ranta A., 2011Grammatical Framework: Programming
tgxt—translators to language generation applications, with Multilingual Grammars CSLI Publications,
dialogue systems, etc. Stanford, 2011, 340 pp., ISBND: 1575866269

(MYller, 2010) reported &®ersian grammar implemented (Paper), 157586627-7 (Cloth).

in TRALE system (Meurers2002). The grammar is Rayner M. D., 2000Carter P. BouillonDigalakis V.,

(HPSG) and is still under ostruction. Its coverage is Cambridge University Press.
numerals, clitic foms ofacopula etc.) Persian EzafeJournal of Linguistics, vol. 43, pp.

As mentioned abay the reported grammar does not gogps45.

cover all aspects c_)f Persia@ne c_iirection f_o future Shafgat M. Virk, M. Humayoun A. Ranta 2010.An
work_ls to exploremlssmgconstruc_t_lons and implement Open Source Urdu Resource Grammroceedings of
themin asepar_ate Iangqage specific module . the 8th Workshop on Asian Language Resources.
Another possible déction for future work isthe conjunction withColing 2010

development of more applicatigmammars on top of the Shafqat M. Virk,M.gg;Humayour,\A. Ranta 20114» Open
reportedresource grammar. Source Punjabi Resource Grammar.Proceedings of
Recent Advances in Natural Language Processing
(RANLP), pages 7076, Hissar, Bulgaria, 124
"MOLTO home page http://www.moHproject.eu/ September 2011.
Bhttp:/Avww.grammaticalframework.org/lib/doc/synopsis.html

