
Web Services and Processing Pipelines in HLT:
Tool Evaluation, LR Production and Validation

WORKSHOP PROGRAMME

Monday May 17, 2010

14:30 – 14:45 Introduction

14:45 – 15:30 Invited talk: Graham Wilcock
Linguistic Processing Pipelines: Problems and Solutions

15:30 – 16:00 Linguistic Processing Chains as Web Services: Initial Linguistic Considerations
Maciej Ogrodniczuk and Adam Przepiórkowski

16:00 – 16:30 Coffee break

16:30 – 17:00 An Infrastructure for More Reliable Corpus Analysis
Kerstin Eckart, Kurt Eberle and Ulrich Heid

17:00 – 17:30 The TANL Pipeline
Giuseppe Attardi, Stefano Dei Rossi and Maria Simi

Tuesday May 18, 2010

09:30 – 10:00 Text Handling as a Web Service for the IULA Processing Pipeline
Hector Martinez, Jorge Vivaldi and Marta Villegas

10:00 – 10:30 A Generic Chaining Algorithm for NLP Webservices
Volker Boehlke

10:30 – 11:00 Coffee break

11:00 – 11:30 A Graphical Interface for Computing and Distributing NLP Flows
Ionut Cristian Pistol, Andrei Arusoaie, Andrei Vasiliu and Adrian Iftene

11:30 – 12:00 Corpora by Web Services
Adam Kilgarriff

12:00 – 12:30 An Open Service Framework for Next Generation Localisation
David Lewis, Stephen Curran, Dominic Jones, John Moran, Kevin Feeney

12:30 – 13:00 Discussion

13:00 – 14:30 Lunch break

14:30 – 15:00 Invited talk: Nancy Ide
A Web Service for Customized Corpus Delivery

15:00 – 15:30 Web Communication Protocols for Coordinating the Modules of AnHitz, a Basque-Speaking
Virtual 3D Expert on Science and Technology
Igor Leturia, Arantza del Pozo, David Oyarzun, Urtza Iturraspe, Xabier Arregi, Kepa Sarasola,
Arantza Diaz de Ilarraza, Eva Navas, Igor Odriozola and Iñaki Sainz

15:30 – 16:00 Utilizing Web Service Technology to Create Danish Arabic Language Resources
Mossab Al-Hunaity

16:00 – 16:30 Coffee break

16:30 – 17:00 Technology-Neutral Machine Translation with an Abstracted Technology Stack
Joachim Van den Bogaert

17:00 – 17:30 Wrap-up & discussion

I

Chairing Committee / Editors
Núria Bel Institut Universitari de Lingüística Aplicada, Universitat Pompeu Fabra, Spain

Olivier Hamon Evaluations and Language resources Distribution Agency (ELDA), France

Elke Teich Universität des Saarlandes, Saarbrücken, Germany

Organising Committee
Peter Fankhauser L3S Hannover, Germany

Maria Gavrilidou Institute for Language and Speech Processing, Greece

Gerhard Heyer Department of Natural Language Processing, University of Leipzig, Germany

Zdravko Kacic University of Maribor, Faculty of Electrical Engineering and Computer Science, Slovenia

Mark Kemps-Snijders MPI, the Netherlands

Andreas Witt IDS Mannheim, Germany

Programme Committee
Sophia Ananiadou School of Computer Science, University of Manchester, United Kingdom

Victoria Arranz ELDA, France

Volker Boehlke University of Leipzig, Germany

Gaël de Chalendar CEA, France

Key-Sun Choi KAIST, Korea

Dan Cristea University of Iasis, Romania

Thierry Declerck DFKI, Germany

Christoph Draxler LMU München, Germany

Nicola Ferro University of Padua, Italy

Riccardo del Grata ILC, Italy

Iryna Gurevych Technische Universität Darmstadt, Germany

Yoshihiko Hayashi Osaka University, Japan

Nicolas Hernandez Université de Nantes, France

Radu Ion Research Institute for Artificial Intelligence, Romanian Academy, Romania

Yoshinobu Kano University of Tokyo, Japan

Yohei Murakami NICT, Japan

Jan Odijk University of Utrecht, the Netherlands

Patrick Paroubek LIMSI, France

Kay Peterson NIST, U.S.A.

Maciej Piasecki Instytut Informatyki Stosowanej, Poland

Mark Przybocki NIST, U.S.A.

Matej Rojc University of Maribor, Slovenia

Felix Sasaki W3C / FH Potsdam, Germany

Junichi Tsujii University of Tokyo, Japan

Dan Tufis RACAI, Romania

Karin Verspoor University of Colorado, U.S.A.

Graham Wilcock University of Helsinki, Finland

II

Table of Contents

Linguistic Processing Chains as Web Services: Initial Linguistic Considerations

Maciej Ogrodniczuk and Adam Przepiórkowski

1

An Infrastructure for More Reliable Corpus Analysis

Kerstin Eckart, Kurt Eberle and Ulrich Heid

8

The TANL Pipeline

Giuseppe Attardi, Stefano Dei Rossi and Maria Simi

15

Text Handling as a Web Service for the IULA Processing Pipeline

Hector Martinez, Jorge Vivaldi and Marta Villegas

22

A Generic Chaining Algorithm for NLP Web Services

Volker Boehlke

30

A Graphical Interface for Computing and Distributing NLP Flows

Ionut Cristian Pistol, Andrei Arusoaie, Andrei Vasiliu and Adrian Iftene

37

Corpora by Web Services

Adam Kilgarriff

45

An Open Service Framework for Next Generation Localisation

David Lewis, Stephen Curran, Dominic Jones, John Moran, Kevin Feeney

52

Web Communication Protocols for Coordinating the Modules of AnHitz, a Basque-Speaking
Virtual 3D Expert on Science and Technology

Igor Leturia, Arantza del Pozo, David Oyarzun, Urtza Iturraspe, Xabier Arregi, Kepa Sarasola, Arantza
Diaz de Ilarraza, Eva Navas, Igor Odriozola and Iñaki Sainz

60

Utilizing Web Service Technology to Create Danish Arabic Language Resources

Mossab Al-Hunaity

68

Technology-Neutral Machine Translation with an Abstracted Technology Stack

Joachim Van den Bogaert

75

III

Author Index

Al-Hunaity, Mossab 68

Arregi, Xabier 60

Arusoaie, Andrei 37

Attardi, Giuseppe 15

Boehlke, Volker 30

Curran, Stephen 52

Dei Rossi, Stefano 15

del Pozo, Arantza 60

Diaz de Ilarraza, Arantza 60

Eberle, Kurt 8

Eckart, Kerstin 8

Feeney, Kevin 52

Heid, Ulrich 8

Iftene, Adrian 37

Iturraspe, Urtza 60

Jones, Dominic 52

Kilgarriff, Adam 45

Leturia, Igor 60

Lewis, David 52

Martinez, Hector 22

Moran, John 52

Navas, Eva 60

Odriozola, Igor 60

Ogrodniczuk, Maciej 1

Oyarzun, David 60

Pistol, Ionut Cristian 37

Przepiórkowski, Adam 1

Sarasola, Kepa 60

Sainz, Iñaki 60

Simi, Maria 15

Van den Bogaert, Joachim 75

Vasiliu, Andrei 37

Villegas, Marta 22

Vivaldi, Jorge 22

IV

PREFACE

With the emergence of large e-infrastructures and the widespread adoption of the Service Oriented
Architecture (SOA) paradigm, more and more language technology is being made available through
web services. Extending such services to linguistic processing pipelines, tool evaluation or LR
production and validation involves considering both the methodologies and technical aspects
specific to the application domains.

Distributed architectures such as web services allow communication and data exchange between
applications. They are a suitable instrument for automatic, less often semi-automatic, tool
evaluation as well as resource production processes both for practical and conceptual reasons. At a
practical level, web services support quick results, centralised data storage, remote access etc.; at a
conceptual level, they allow for the combination of more than one processing components that may
be located on different sites. Such processing pipelines are set up to tackle a particular analysis task.
To support these, new techniques have to be developed that organise well-established practices into
workflows and support the exchange of data by standards and open tool architectures.

The workshop focuses on current uses and best practices for the deployment of web services and
web interfaces in the HLT domain, including processing pipelines, LR production and validation,
and evaluation of tools. It highlights relevant aspects for the integration of linguistic or evaluation
web services within infrastructures (e.g. authorisation and authentication, service registries) and
infrastructural requirements (e.g. interface harmonisation, metadata generation). The workshop also
aims at demonstrating different approaches on how to combine linguistic web services into a
composite web service.

The expected outcome of the workshop is a comparison of the practices in architectures and
processing pipelines that people build and discussion of the issues involved. Topics of interest
include, but are not limited to:

− Technical aspects: approaches, protocols, management of huge amounts of data, data structures
and formats, performance, manual components (e.g. annotation or evaluation), composition and
configuration, interoperability, security, monitoring and recovery strategies, standardisation of
APIs, tools and frameworks supporting HLT services deployment, architectures.

− Scientific aspects: influence of web services on evaluation or resource production, meta-
evaluation / validation of architectures, annotation agreements, needs for tools evaluation and
resource production, status of the data produced.

− Commercial aspects: licensing, privacy, advertising, brokering, business possibilities,
challenges, exploitation of the resulting data.

The papers presented at the workshop range from the basic principles of linguistic processing
pipelines to implementations of web services for building such pipelines as well as language
resources.

V

Linguistic Processing Chains as Web Services:
Initial Linguistic Considerations

Maciej Ogrodniczuk, Adam Przepiórkowski

Institute of Computer Science
Polish Academy of Sciences

ul. Ordona 21, Warsaw, Poland
maciej.ogrodniczuk@ipipan.waw.pl, adamp@ipipan.waw.pl

Abstract
At the end of 2009 the review of a number of available Web services implementing linguistic processing chains (CLARIN deliverable
D5R-3a, 2009) was prepared as part of Common Language Resources and Technology Infrastructure (CLARIN) Working Group 5.6
(LRT integration) activities. Basing on the showcases contributed by WG members, the summary of features of both chained and
individual Web Services was compiled, preparing the ground for comparisons between selected linguistic properties of registered frame-
works. The article aims at presenting preliminary generalizations regarding functionalities, communication standards and representation
of linguistic resources being adopted as web services, which were initially put forward in the CLARIN paper. The major features of the
tools are summarized to provide starting point for discussion over interchange formats and tagsets, standards of encoding of linguistic re-
sources and linguistic data categories. Apart from concentrating on representation of linguistic annotation, very preliminary conclusions
concern technical, formal and semantic interoperability of language resources.

1. Introduction
Working Group 5.6 fulfils CLARIN mission of creating,
coordinating and making language resources and technol-
ogy available and readily useable for scholars in the hu-
manities and social sciences1 by concentrating on interop-
erability issues, mainly at the linguistic level (e.g., the prob-
lem of mapping between tagsets).
Within the Work Package 5 (Language Resources and
Technologies Exploration) the group intended to provide
the consortium with a broad overview of the LRTs avail-
able as web service chains and get an understanding of their
status. This has been achieved by studying examples of
the LRTs obtained as showcases from contributing partners
(CLARIN consortium members) and compiled into initial
summary of their status, properties, adopted standards and
individual qualities.

2. Web service showcases
The call for contribution resulted in gathering descriptions
of 8 frameworks, summarized according to the template de-
livered in the beginning of the process. On account of po-
tential grave differences among submissions, the questions
asked allowed some latitude in providing the general infor-
mation on described solutions while remaining strict about
their linguistic properties (languages covered, implemented
NLP services, web service protocols, language resource
standards and linguistic data encoding). The obtained ma-
terials were characterized by good quality and all partners
showed advanced responsiveness while presenting and clar-
ifying their solutions.
The next subsections attempt to summarize the showcases
in a concise form, providing brief information on linguistic
properties, performed functions, available web services (in

1See the CLARIN Web page, http://www.clarin.eu/.

form of WSDL2 references, wherever available) and orga-
nizations involved in their preparation.

2.1. WebLicht

WebLicht (Web Based Linguistic Chaining Tool) is a
SOA3 framework of 25 web services performing special-
ized NLP4 tasks for German, English, Italian, French and
Finnish, such as sentence border detection, tokenization,
POS5 tagging, named entity recognition, lemmatization,
constituent parsing, co-ocurrence annotation and semantic
annotation. The open architecture allows for stacking exist-
ing services into processing chains as well as incorporating
external tools and web services into existing solution.
The common representation of texts and annotations within
the WebLicht processing chain is TCF (Text Corpus For-
mat), an XML-based format supporting stand-off annota-
tion and compatible with ISO LAF6. Converters for Ne-
gra7, Paula (Dipper, 2005), MAF8 and TüBa-D/Z9 are
available; the constituent parser output is TIGER-XML10

(Mengel and Lezius, 2000), also TCF-encoded. Linguistic
data is represented by means of language-dependent tagsets

2Web Service Definition Language
3Service-Oriented Architecture
4Natural Language Processing
5Part-of-Speech
6Linguistic Annotation Framework, ISO/DIS 24612, see

http://www.tc37sc4.org/.
7See http://www.coli.uni-saarland.de/

projects/sfb378/negra-corpus/negra-corpus.
html.

8Morpho-Syntactic Annotation Framework
9Tübinger Baumbank des Deutschen / Zeitungskorpus

(Tübingen Treebank of Written German), see http://www.
sfs.uni-tuebingen.de/tuebadz.shtml.

10See http://www.ims.uni-stuttgart.de/
projekte/TIGER/TIGERCorpus/.

1

such as STTS11 for German or the Penn Treebank tagset
(UPenn)12 for English.
WebLicht results from cooperation of linguistic depart-
ments of major German research institutions (Berlin Bran-
denburgische Akademie der Wissenschaften, University
of Leipzig, University of Stuttgart and University of
Tübingen).

2.2. GATE Web Services

GATE (General Architecture for Text Engineering) is open
source software offering a wide range of language process-
ing functionalities to be organized in maintainable work-
flows. Initially offered as plugins for the downloadable
architecture, GATE subsystems are being gradually trans-
formed into web services with information extraction (to-
kenizer, sentence splitter, POS tagger, named entity recog-
niser and classifier), phrase chunking, lemmatization and
POS tagging tools leading the way.
Input data for the services may be encoded in a variety
of text formats (plain text, HTML, SGML/XML, RTF/MS
Word, PDF). The output is SynAF13 (for noun/verb phrase
chunker) and MAF-compliant XML (for lemmatizer and
English/Bulgarian/Dutch POS taggers). Linguistic data are
categorized by means of Penn Treebank tags.
GATE Web Services have been developed by the GATE
group14 at the University of Sheffield, UK.

2.3. IULA Web Services

The IULA Web Services family (Vivaldi Palatresi, 2009;
Bel et al., 2006; Atserias et al., 2006; Villegas et al., 2009)
allows for uploading and indexing text corpora to perform
statistical queries (such as calculation of several lexicomet-
ric measures, word co-occurrences, relevance, distribution,
extract and group concordances etc.) and various NLP tasks
(e.g., tokenization, sentence splitting, morphological anal-
ysis, named entity detection and classification, POS tag-
ging, chart-based shallow parsing, rule-based dependency
parsing, nominal correference resolution or WordNet-based
sense annotation and disambiguation), also in a chained
manner. All services are available for English and Span-
ish, some of them (Freeling16) also for Catalan, Galician,
Italian, Welsh, Portuguese and Asturian.
Input format for statistical processing is plain text
while corpus analysis of annotated text requires EA-
GLES17/PAROLE18 compliance. AAILE web service (Au-
tomatic Acquisition of Lexical Information by extracting

11Stuttgart-Tübingen Tagset, see http://www.ims.
uni-stuttgart.de/projekte/corplex/TagSets/
stts-table.html.

12See http://www.cis.upenn.edu/˜treebank/.
13Syntactic Annotation Framework, see http://www.

tc37sc4.org/new_doc/ISO_TC37_4_N244_SynAF_
WD_draft.pdf.

14See http://www.gate.ac.uk/.
16See http://www.lsi.upc.edu/˜nlp/freeling/.
17Expert Advisory Group on Language Engineering Standards,

see http://www.ilc.cnr.it/EAGLES96/home.html.
18See http://www.elda.org/catalogue/en/

text/doc/parole.html.

syntactic patterns and contexts of concordances in a cor-
pus) employs IULA tagsets for Spanish19 and English20.
The Web Services are maintained by Institut Universitari de
Lingüı́stica Aplicada at University Pompeu Fabra (IULA-
UPF) in Barcelona, Spain.

2.4. ILSP Text Processing Chain

The main tools integrated by ILSP TPC are tokenizer and
sentence splitter, POS tagger, lemmatizer, chunker and de-
pendency parser.
All processing tools from the chain generate annotations
compatible with UIMA annotation type system, an exten-
sion of JULIE Lab annotation scheme21. The services can
also export results to other structured formats, e.g., GATE
XML or XCES22 (Ide et al., 2000). POS information is
represented using PAROLE-compatible tagset, while de-
pendency relations are described using Prague Dependency
Treebank syntax.
The tools are provided by Institute for Language and
Speech Processing (ILSP) from Athens, Greece. For more
information see (Papageorgiou et al., 2002; Prokopidis and
Georgantopoulos, 2010).

2.5. RACAI Services

The RACAI framework offers multiple linguistic tools for
language identification (all EU languages), tokenization,
tagging and lemmatization (TTL service, also containing
remote procedures for sentence splitting and chunking), de-
pendency parsing or wordnet browsing (remaining tools for
Romanian and English).
Along with several proprietary formats, the tools encode re-
sults in XCES format. Lexical tagsets used is MULTEXT-
EAST23-compliant (Erjavec, 2004; Tufiş, 2000).
The services are maintained by Research Institute for
Artificial Intelligence, Romanian Academy of Sciences
(RACAI), Bucharest, Romania.

2.6. WS-LexicalPlatform

The platform provides web service interface to the Italian
SIMPLE lexicon, assisting in retrieving information con-
cerning phonology, morphology, syntax and semantics.
The interchange data format is LMF24 with ISO DCR25-
mappable data categories basing on EAGLES-ISLE26 (to
be promoted to the future ISO standardization of data cate-
gories and, therefore, ISOCat).

19See http://www.iula.upf.edu/corpus/
etqfrmes.htm.

20See http://www.iula.upf.edu/corpus/etquk.
htm.

21See http://www.julielab.de/JULIE_Lab.html.
22XML Corpus Encoding Standard
23Multilingual Text Tools and Corpora for Central and Eastern

European Languages, see http://nl.ijs.si/ME/.
24Lexical Markup Framework
25ISO 12620, Data Category Registry, see http://www.

isocat.org/.
26International Standard for Language Engineering, see http:

//www.mpi.nl/ISLE/.

2

L
an

gu
ag

e
id

en
tifi

ca
tio

n

Se
nt

en
ce

bo
rd

er
de

te
ct

io
n

To
ke

ni
za

tio
n

PO
S

ta
gg

in
g

/M
SD

15

N
am

ed
E

nt
ity

re
co

gn
iti

on

L
em

m
at

iz
at

io
n

Pa
rs

in
g

Tr
ee

B
an

k
br

ow
si

ng

C
o-

oc
ur

re
nc

e
an

no
ta

tio
n

C
ol

lo
ca

tio
n

ex
tr

ac
tio

n

Fr
eq

ue
nc

y
an

al
ys

is

A
ss

oc
ia

tio
n

m
ea

su
re

s

Se
m

an
tic

an
no

ta
tio

n

W
or

dN
et

–r
el

at
ed

fu
nc

tio
na

lit
y

T
he

sa
ur

us
-r

el
at

ed
fu

nc
tio

na
lit

y

L
ex

ic
on

ac
ce

ss

M
ac

hi
ne

tr
an

sl
at

io
n

WebLicht • • • • • • • • • • • • • •
GATE • • • • • •
IULA • • • • • • • • • • • •
ILSP • • • • •
RACAI • • • • • • • •
WS-LexPl •
LXService • • •
WROCUT/ICS PAS • • • • • • • • • •

Table 1: LRT functionality available in reviewed frameworks

The services are provided by Consiglio Nazionale delle
Ricerche, Istituto di Linguistica Computazionale (CNR-
ILC), Pisa, Italy.

2.7. LXService
The web service offers chunking, tokenization (Branco and
Silva, 2003) and tagging (Branco and Silva, 2004; Silva,
2007) functionality for Portuguese. More tools, such as
morphological analyser (Branco and Silva, 2006; Nunes,
2007; Martins, 2008) or parser (Silva et al., 2010) are being
currently integrated. Proprietary formats are used both for
encoding resources and linguistic data categories.
The body responsible for the services is University of Lis-
bon, Department of Informatics, Natural Language and
Speech Group (NLX), Lisbon, Portugal. For more infor-
mation see (Branco et al., 2008).

2.8. WROCUT/ICS PAS services
The tool set (language independent, although currently
used with a grammar and tagset for Polish) comprise
a tagger (Piasecki and Godlewski, 2006), a lemmatizer,
tokenizer and morphologic analyser (Woliński, 2006), a
shallow parser and disambiguation tool (Buczyński and
Przepiórkowski, 2009), as well as an automatic harvester
of lexical semantic relations from corpora for Polish and
English (Broda and Piasecki, 2008; Piasecki et al., 2009).
Resources are represented is XCES and Wordnet-LMF
(Aliprandi et al., 2009), while linguistic data is encoded
using proprietary (currently de facto standard for Polish)
ICS PAS tagset (Przepiórkowski and Woliński, 2003)27 and
CLAWS5 (British National Corpus tagset).

27A slightly modified version of the tagset (Przepiórkowski,
2009) is used in the National Corpus of Polish (http://nkjp.
pl/) and defined in ISOcat as a public data category set “NKJP”

The services are the result of co-operation between Institute
of Informatics, Wrocław University of Technology (WRO-
CUT) and Institute of Computer Science, Polish Academy
of Sciences (ICS PAS), Warsaw, Poland.

3. Summary of linguistic properties
3.1. NLP-specific functions
Table 1 presents the scope of LRT functionalities offered by
the reviewed frameworks. The most complex web service-
enabled processing chains seem to provide the widest lin-
guistic coverage which obviously results from their back-
ground — due to increasing popularity of the remote ser-
vice approach, existing tools are often being converted into
web services. This tendency should be considered a good
sign for small-size providers of linguistic material and ser-
vices since their individual tools may effectively compete
in the global network with their large-scale equivalents.

3.2. Encoding of linguistic resources
Table 2 presents the encoding formats of reviewed services.
The first observation is that no common input/output format
can be distinguished, neither any format is clearly standing
out. The lowest common denominator for all reviewed for-
mats seems to be XML — even the tools using text pro-
prietary formats are, to some extent, XML-compatible or
use XML as a variant representation (e.g., RACAI Ser-
vices use internal Tab-separated SGML format along with
XCES-encoded output).
Another dimension while evaluating formats is ,,standard
or proprietary”, with similar findings: proprietary formats
tend to exist along with established standards or even grad-
ually become standards, on local or multinational level.

(cf. http://www.isocat.org/interface/).

3

Acknowledged Proprietary
standards formats
XML-based formats

L
M

F-
X

M
L

L
M

F-
W

or
dN

et

M
A

F

Sy
nA

F

T
IG

E
R

-X
M

L

X
C

E
S

X
C

E
S

pr
op

ri
et

ar
y

ex
te

ns
io

n

X
M

L
pr

op
ri

et
ar

y
fo

rm
at

Pl
ai

n
te

xt
pr

op
ri

et
ar

y
fo

rm
at

WebLicht • • •
GATE • • •
IULA •
ILSP • •
RACAI • • • •
WS-LexPl •
LXService • •
WROCUT/ICS PAS • •

Table 2: Output formats of reviewed services

Standard tagsets Proprietary tagsets

C
L

AW
S5

E
A

G
L

E
S/

PA
R

O
L

E

M
U

LT
E

X
T-

E
A

ST

Pr
ag

ue
D

ep
en

de
nc

y
Tr

ee
ba

nk

U
Pe

nn

IC
S

PA
S

(P
L

)

L
X

ta
gs

et
(P

T
)

R
A

C
A

It
ag

se
t(

E
N

,R
O

)

SI
M

PL
E

-b
as

ed
ta

gs
et

(I
T

)

ST
T

S
(D

E
)

WebLicht • •
GATE •
IULA •
ILSP • •
RACAI •
WS-LexPl •
LXService •
WROCUT/ICS PAS • •

Table 3: Tagsets used to encode linguistic annotation

WebLicht TCF is a good example here: being proprietary, it
retains compatibility with ISO LAF/LMF/MAF standards.
In many cases proprietary extensions of recognized for-
mats can supplement them with project-specific proper-
ties which makes the border between standard and non-
standard even more vague. The need for compatibility is

(and should be) in such cases satisfied by providing con-
verters between internal and widely accepted formats (such
as TCF-to-PAULA and MAF formats for WebLicht).

4

3.3. Linguistic data categories

Table 3 presents tagsets used by reviewed services for rep-
resenting linguistic data categories. Similarly to the pre-
vious section, the border between standard and proprietary
seems flexible. Some tagsets (such as STTS for German or
ICS PAS tagset for Polish), while being non-standard, i.e.,
not recognized worldwide or approved by official standards
development organization, are universally used for cer-
tain languages or constitute regional norms. Regardless of
the process of emerging new standards-to-be, the tendency
to normalize is noticeable since most frameworks tend to
adopt well-known tagsets, either exclusively or along with
their private formats.

4. Preliminary findings
Before making any generalizations it is worth to point out
that neither the overview of text processing chains and
web services in the LRT area, nor the initial findings were
planned as an exhaustive summary, rather a study of usage
scenarios including chains of operation.
Firstly, the presence of such a broad spectrum of differ-
ent standards, both for encoding of linguistic resources and
annotation categories, shows that the unification process is
still in its beginnings. The reasons behind such condition do
not seem to be the underestimation of the necessity of using
widely-accepted standards by NLP community, but rather
high costs of conversion of proprietary formats and prepara-
tion of mapping tools or, probably, the lack of linguistically
mature interchange models. The role of such projects as
CLARIN and FLaReNet28 to create and endorse standards
is therefore highly significant. In the long run, the concept
of data conversion to impose formats and data categories
loses the contest with a vision of ensuring compliance of
current representation with some, preferably ISO-related,
encoding standard. This scenario is universally adopted by
most reviewed environments and remains compatible with
CLARIN goals.

4.1. Interoperability issues

In general, interoperability of language resources can be
discussed on three major levels: technical, syntactic and se-
mantic. Technical interoperability, regarding e.g., web ser-
vice protocols, is hardly of any concern here and has been
adressed in (CLARIN deliverable D2R-6b, 2009). Formal
interoperability, obtained by standardizing data exchange
format and common language resource data model is al-
ready attainable with XML-based interchange formats fol-
lowing official representation standards. Semantic interop-
erability issue is still open, but appears to be solvable by
providing formal mapping of proprietary categories to stan-
dard classes (such as those of ISOCat).

4.2. Linguistic standards

As stated above, the use of different representation stan-
dards is not discouraged and therefore the adoption of gen-
eral metamodels seems the most appropriate solution for

28Fostering Language Resources Network; see http://www.
flarenet.eu/.

accommodating many encoding conventions. However, un-
ambiguous unifying procedures (such as examples and best
practices of how to convert, for instance, Penn Treebank-
style representation into LAF) are necessary to ensure real
interoperability between standards.

Practical assessment of methods and formats seems also
necessary to strike a balance between permissiveness and
constriction to enable accurate, yet flexible representation.
Until then, a wider range of standards may be used to
achieve better precision of linguistic description.

5. Closing notes
More and more linguistic processing chains are being avail-
able as web services and, however it will still be a long time
before the new interfaces reach the quality of separate tools,
the need of making their advanced functionalities available
according to popular web service protocols is clearly visi-
ble and several renowned frameworks (such as the one of
DFKI) are currently being amended with or ported to web
service frameworks (as for DFKI, it is planned to be com-
pleted before the end of 2010).

The investigation of a growing network of linguistic tools
available as services is therefore being continually under-
way, along with research and development in the closely
related area of linguistic data interchange. As a result,
the initial CLARIN document will be followed by an ex-
tended version containing final conclusions on the subject
of harmonized access to resources via published interfaces
to enable the interoperable domain. This deliverable will
be available in the beginning of 2011.

6. References
Carlo Aliprandi, Federico Neri, Andrea Marchetti,

Francesco Ronzano, Maurizio Tesconi, Claudia
Soria, Monica Monachini, Piek Vossen, Wauter
Bosma, Eneko Agirre, Xabier Artola, Arantza Diaz
de Ilarraza, German Rigau, and Aitor Soroa. 2009.
Database models and data formats. KYOTO De-
liverable NR 1/WP NR 2, Version 3.1, 2009-01-
31. http://www2.let.vu.nl/twiki/pub/
Kyoto/WP02:SystemDesignD2.1Database_
Models_and_Data_Formats_v3.1.pdf.

Jordi Atserias, Bernardino Casas, Elisabet Comelles, Mer-
itxell González, Lluı́s Padró, and Muntsa Padró. 2006.
FreeLing 1.3: Syntactic and semantic services in an
open-source NLP library. In Proceedings of the 5th
International Conference on Language Resources and
Evaluation (LREC 2006), Genoa, Italy. European Lan-
guage Resources Association (ELRA).

Núria Bel, Sergio Espeja, and Montserrat Marimon. 2006.
New tools for the encoding of lexical data extracted from
corpus. In Proceedings of the 5th International Con-
ference on Language Resources and Evaluation (LREC
2006), pages 1362–1367, Genoa, Italy. European Lan-
guage Resources Association (ELRA).

António Branco and Joao Silva. 2003. Contractions:
breaking the tokenization-tagging circularity. Lecture
Notes in Artificial Intelligence 2721, pages 167–170.

5

António Branco and Joao Silva. 2004. Evaluating Solu-
tions for the Rapid Development of State-of-the-Art POS
Taggers for Portuguese. In Proceedings of the 4th Inter-
national Conference on Language Resources and Eval-
uation (LREC 2004), Lisbon, Portugal. European Lan-
guage Resources Association (ELRA).

António Branco and Joao Silva. 2006. Dedicated Nominal
Featurization of Portuguese. Lecture Notes in Artificial
Intelligence 3960.

António Branco, Francisco Costa, Pedro Martins, Filipe
Nunes, Joao Silva, and Sara Silveira. 2008. LXSer-
vice: Web Services of Language Technology for Por-
tuguese. In Nicoletta Calzolari, Khalid Choukri, Bente
Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis,
and Daniel Tapias, editors, Proceedings of the 6th Inter-
national Conference on Language Resources and Eval-
uation (LREC 2008), Paris. European Language Re-
sources Association (ELRA).

Bartosz Broda and Maciej Piasecki. 2008. SuperMatrix: a
General Tool for Lexical Semantic Knowledge Acquisi-
tion. Speech and Language Technology. Vol. 11, pages
239–254.

Aleksander Buczyński and Adam Przepiórkowski. 2009.
Spejd: A Shallow Processing and Morphological Dis-
ambiguation Tool. Human Language Technology: Chal-
lenges of the Information Society. Vol. 5603, pages 131–
141.

CLARIN deliverable D2R-6b. 2009. Requirement Speci-
fication Web Services and Workflow Systems. http:
//www-sk.let.uu.nl/u/D2R-6b.pdf.

CLARIN deliverable D5R-3a. 2009. Linguistic processing
chains as Web Services: Initial linguistic considerations.
http://www-sk.let.uu.nl/u/D5R-3a.pdf.

Stefanie Dipper. 2005. Stand-off representation and ex-
ploitation of multi-level linguistic annotation. In Pro-
ceedings of Berliner XML Tage 2005 (BXML 2005),
Berlin.

Tomaz Erjavec. 2004. MULTEXT-East Version 3: Mul-
tilingual Morphosyntactic Specifications, Lexicons and
Corpora. In Proceedings of the 4th International Con-
ference on Language Resources and Evaluation (LREC
2004), Lisbon, Portugal. European Language Resources
Association (ELRA).

Gil Francopoulo, Monte George, Nicoletta Calzolari, Mon-
ica Monachini, Nuria Bel, Mandy Pet, and Claudia Soria.
2006. Lexical Markup Framework (LMF). In Proceed-
ings of the 5th International Conference on Language
Resources and Evaluation (LREC 2006), pages 233–236,
Genoa, Italy. European Language Resources Association
(ELRA).

Gil Francopoulo, Nuria Bel, Monte George, Nicoletta Cal-
zolari, Monica Monachini, Mandy Pet, and Claudia So-
ria. 2009. Multilingual Resources for NLP in the Lex-
ical Markup Framework (LMF). Language Resources
and Evaluation Journal. Vol. 43:1, pages 57–70.

Karypis George. 2002. CLUTO — a clustering toolkit.
Technical Report Technical Report 02-017, Department
of Computer Science, University of Minnesota.

Nancy Ide, Patrice Bonhomme, and Laurent Romary. 2000.

XCES: An XML-based standard for linguistic corpora.
In Proceedings of the 2nd International Conference
on Language Resources and Evaluation (LREC 2000),
pages 825—-830, Athens, Greece. European Language
Resources Association (ELRA).

Violetta Koseska-Toszewa, Ludmila Dimitrova, and Roman
Roszko, editors. 2009. Representing Semantics in Dig-
ital Lexicography: Proceedings of MONDILEX Fourth
Open Workshop, Warsaw.

Mieczysław A. Kłopotek, Sławomir T. Wierzchoń, and
Krzysztof Trojanowski, editors. 2006. Intelligent Infor-
mation Processing and Web Mining. Advances in Soft
Computing. Springer-Verlag, Berlin.

Alessandro Lenci, Nuria Bel, Federica Busa, Nicoletta
Calzolari, Elisabetta Gola, Monica Monachini, Antoine
Ogonowski, Ivonne Peters, Wim Peters, Nilda Ruimy,
Marta Villegas, and Antonio Zampolli. 2000. SIMPLE:
A General Framework for the Development of Multilin-
gual Lexicons. International Journal of Lexicography
XIII (4), pages 249–263.

Dekang Lin. 1993. Principle-based parsing without over-
generation. In Proceedings of the 31st Meeting of the
ACL, pages 112–120.

Pedro Martins. 2008. Desambiguaçao Automática da
Flexao Verbal em Contexto. Master’s thesis, University
of Lisbon.

Andreas Mengel and Wolfgang Lezius. 2000. An XML-
based encoding format for syntactically annotated cor-
pora. In Proceedings of the 2nd International Confer-
ence on Language Resources and Evaluation (LREC
2000), pages 121–126, Athens, Greece. European Lan-
guage Resources Association (ELRA).

Filipe Nunes. 2007. Verbal Lemmatization and Featuriza-
tion of Portuguese with Ambiguity Resolution in Con-
text. Master’s thesis, University of Lisbon.

Harris Papageorgiou, Prokopis Prokopidis, Iason Demiros,
Voula Giouli, Alexis Konstantinidis, and Stelios
Piperidis. 2002. Multi-level XML-based Corpus An-
notation. In Proceedings of the 3rd International Con-
ference on Language Resources and Evaluation (LREC
2002), Las Palmas, Canary Islands, Spain. European
Language Resources Association (ELRA).

Maciej Piasecki and Grzegorz Godlewski. 2006. Re-
ductionistic, tree and rule based tagger for Polish. In
Kłopotek et al. (Kłopotek et al., 2006), pages 531–540.

Maciej Piasecki and Adam Radziszewski. 2009. Mor-
phosyntactic Constraints in Acquisition of Linguistic
Knowledge for Polish. Aspects of Natural Language Pro-
cessing (a festschrift for Professor Leonard Bolc). Lec-
ture Notes in Computer Science, 5070, pages 163–190.

Maciej Piasecki, Stanisław Szpakowicz, and Bartosz
Broda. 2009. A Wordnet from the Ground Up. Oficyna
Wydawnicza Politechniki Wrocławskiej.

Prokopis Prokopidis and Byron Georgantopoulos. 2010.
Extending a Text Processing Pipeline for Greek. Sub-
mitted in LREC 2010.

Adam Przepiórkowski and Marcin Woliński. 2003. The
unbearable lightness of tagging: A case study in mor-
phosyntactic tagging of Polish. In Proceedings of the

6

4th International Workshop on Linguistically Interpreted
Corpora (LINC-03), EACL 2003, pages 109–116.

Adam Przepiórkowski. 2004. The IPI PAN Corpus: Pre-
liminary version. Institute of Computer Science, Polish
Academy of Sciences, Warsaw.

Adam Przepiórkowski. 2009. A comparison of two mor-
phosyntactic tagsets of Polish. In Koseska-Toszewa et al.
(Koseska-Toszewa et al., 2009), pages 138–144.

Nilda Ruimy, Monica Monachini, Raffaella Distante, Elis-
abetta Guazzini, Stefano Molino, Marisa Ulivieri, Nico-
letta Calzolari, and Antonio Zampolli. 2002. Clips,
a multi-level Italian computational lexicon: A glimpse to
data. In Proceedings of the 3rd International Conference
on Language Resources and Evaluation (LREC 2002),
Las Palmas, Canary Islands, Spain. European Language
Resources Association (ELRA).

Joao Silva, António Branco, Sérgio Castro, and Ruben
Reis. 2010. Out-of-the-box Robust Parsing for Por-
tuguese. In Proceedings of the 9th International Con-
ference on the Computational Processing of Portuguese
(PROPOR 2010), Porto Alegre. Pontifı́cia Universidade
do Rio Grande do Sul.

Joao Silva. 2007. Shallow Processing of Portuguese: From
Sentence Chunking to Nominal Lemmatization. Mas-
ter’s thesis, University of Lisbon.

Antonio Toral and Monica Monachini. 2007. SIMPLE-
OWL: a Generative Lexicon Ontology for NLP and the
Semantic Web. In Workshop on Cooperative Construc-
tion of Linguistic Knowledge Bases (AIIA 2007).

Dan Tufiş. 2000. Using a Large Set of EAGLES-compliant
Morpho-Syntactic Descriptors as a Tagset for Proba-
bilistic Tagging. In Proceedings of the 2nd Interna-
tional Conference on Language Resources and Evalua-
tion (LREC 2000), pages 1105–1112, Athens, Greece.
European Language Resources Association (ELRA).

Marta Villegas, Núria Bel, Santiago Bel, Francesca Ale-
many, and Hector Martı́nez. 2009. Lexicography in the
grid environment. In Proceedings of e-lex 2009, Lou-
vain: Cahiers du Cental.

Jorge Vivaldi Palatresi. 2009. Corpus and exploitation
tool: IULACT and bwanaNet. A survey on corpus-based
research = Panorama de investigaciones basadas en cor-
pus. In Pascual Cantos Gómez and Aquilino Sánchez
Pérez, editors, Actas del I Congreso Internacional de
Lingüı́stica de Corpus (CICL-09), pages 224–239. Uni-
versidad de Murcia, Asociación Espanola de Lingüı́stica
del Corpus.

Marcin Woliński. 2006. Morfeusz — a practical tool for
the morphological analysis of Polish. In Mieczysław A.
Kłopotek, Sławomir T. Wierzchoń, and Krzysztof Tro-
janowski, editors, Proceedings of the International IIS:
IIPWM’06 Conference, pages 511–520, Wisła, Poland.

Sue Ellen Wright. 2004. A global data category registry
for interoperable language resources. In Proceedings of
the 4th International Conference on Language Resources
and Evaluation (LREC 2004), Lisbon, Portugal. Euro-
pean Language Resources Association (ELRA).

7

An Infrastructure for More Reliable Corpus Analysis

Kerstin Eckart, Kurt Eberle, Ulrich Heid

Universität Stuttgart, Institut für Maschinelle Sprachverarbeitung
Azenbergstr. 12, 70174 Stuttgart

{eckartkn,eberle,heid}@ims.uni-stuttgart.de

Abstract
We present an infrastructure supporting different pipelines in an approach for more reliable corpus analysis. Two interrelated pipelines
build a bootstrapping approach for task specific disambiguation. The first one extracts potentially ambiguous items and proposes a
reading, if enough information is available. The second one extracts potential reading indicators, which denote relevant context factors
for disambiguation. These indicators are manually classified and then inserted into the lexicon of the disambiguation tool, which is in
turn utilized in the next iteration step of the first pipeline. A third pipeline includes a comparison of analyses e.g. from different tools. As
each tool has its own focus, adding information from one tool to the analysis of another one improves the analysis. Furthermore, where
independent tools produce the same analysis, it may more likely be correct. We designed a database which supports the development of
the disambiguation tool and the versions of its knowledge sources. As the analyses change along with the tool, the database provides for
representation of this temporal aspect.

1. Introduction and context
This contribution deals with elements of a corpus process-
ing infrastructure targeted at improving the reliability of
corpus analyses. The context of our work1 are two inter-
related pipelines of corpus processing. We conceive the re-
liability tools as a third one.
The first one is aimed at the extraction of readings of po-
tentially ambiguous items from text: it comprises tokeniz-
ing, pos-tagging and parsing, as well as an interpretation
step which performs task-specific disambiguation. In our
application, the targeted items are sortally ambiguous nom-
inalizations of German verbs, such as Abdeckung, which
can have an event reading (’the act of covering sth.’), a
state reading (’being covered’) and an object reading (’the
cover’). Disambiguation is carried out on parsed text:
the potentially ambiguous nominalizations can be disam-
biguated, if they appear with modifiers or selectors that
have specific sortal selection restrictions (called ’indica-
tors’ in our approach). Examples are gestrige Absperrung
(’yesterday’s blocking of...’, event) vs. hölzerne Absper-
rung (’wooden barrier’, object) vs. die Absperrung dauerte
3 Tage (’the road block lasted for 3 days’, state), where
the adjectives gestrig and hölzern or the verb dauern select
events, objects or states, respectively.
The second pipeline is intended to support data provision
for the first one. The disambiguation tool must be provided
with data about the sortal selection properties of modifiers
and/or selectors of nominalizations. To this end, we can use
our tool to extract example sentences from corpora which
illustrate a particular syntactic construction (e.g. Absper-
rung as a direct object of verbs) or which may even receive
an underspecified representation. Queries of this kind pro-
duce indicator candidates, which are then (manually) clas-
sified and inserted into the lexicon of the disambiguation
tool. Thus, this second pipeline consists of parsing, data
extraction, sorting and automatic pre-classification, as well

1Project B3, SFB 732,
http://www.uni-stuttgart.de/linguistik/
sfb732/

as of manual classification and storage in the dictionary of
the disambiguator.
The two pipelines together instantiate the typical bootstrap-
ping spiral of corpus linguistics: we start from an initial
hypothesis (in our case about sortal restrictions support-
ing disambiguation), extract data from the corpus, inspect
these, improve the tool (’s lexicon) and reiterate data ex-
traction, with an enhanced tool, on the basis of a refined
hypothesis.
The infrastructure we discuss in this paper is meant to sup-
port reliability in this bootstrapping process. We designed
a database which stores the different versions of our dis-
ambiguator and of its linguistic knowledge sources, as well
as the analyses produced by these: within a homogeneous
framework, we can relate individual (sets of) sentences and
(sets of) analyses with the tool (stage)s by which the sen-
tences were processed. This is crucial for efficient iterative
lexicon improvement.
As a third pipeline, we extend the functionality to a com-
parison of analyses, possibly from different tools, on the
following assumption: if we find two (or more) analyses
produced independently by different tools which show the
same structure, these analyses may more likely be cor-
rect than if different tools produce (significantly) diverg-
ing analyses. Therefore in the third pipeline, analyses from
different tools should be merged according to rules depend-
ing on the reliability of the different analyses. The merged
analysis is assumed to be more reliable than the best single
analysis.
The remainder of this paper is structured as follows: In sec-
tion two we give an overview of related work. In sections
three and four we describe the database as a basis for our
pipelines in detail. In section five, we give examples for the
bootstrapping pipeline and the reliability approach, and in
section six, we conclude with an outlook to future work.

2. Related Work
On the topic of disambiguation with bootstrapping ap-
proaches there is a certain similarity to approaches in word
sense disambiguation, e.g. (Yarowsky, 1995). However in-

8

stead of purely statistical methods applied to syntactically
unanalyzed texts we use a combination of symbolic sen-
tence representations and frequency information, where the
focus is on flat complete analyses of the context (sentence)
and the comparison, and if applicable the combination, of
those analyses.
Computational linguistic work on the combination of anal-
ysis results from different tools in turn is mostly aimed at
robust semantic processing. A prominent example is the
WHITEBOARD architecture and the pertaining middleware
’Heart of Gold’ (HoG, cf. Schäfer (2007)). It combines
deep semantic processing components, based on Minimal
Recursion Semantics, with more surface-oriented compo-
nents. The mapping is based on stand-off XML representa-
tions.
HoG has so far mainly been used for the integration of flat
and deep analyses, and for multilingual comparisons; con-
trary to our ongoing work, HoG has however not been used
for comparing several deep analyses, and in particular not
for underspecified ones.
Another strand of work relevant for our objectives is the
evaluation of parsers and the related comparison of their
output. Mostly such evaluation work is based on a given
gold standard, as e.g. in the CoNLL-X Shared Task on
Multi-Lingual Dependency Parsing2. Our database ap-
proach is closer, however, to that of the French PASSAGE
project3: different analysis results are compared among
each other, and improvements of the analyses are achieved
by means of a feedback loop; thereby, a treebank is boot-
strapped, by combination of the best results (cf. the prede-
cessor project EASy4). As they aim at a treebank, PAS-
SAGE and EASy don’t take underspecification into ac-
count.

3. Requirements
The database should manage different types of data which
may be needed at a given point in time for the analysis of
linguistic phenomena. The following are examples of such
data (cf. Eckart (2009)):

• Primary data: (partial) corpora, texts or single sen-
tences used for analyses;

• Analysis results produced by the tools, when applied
to the primary data;

• The findings of the inspection of analysis results, pos-
sibly produced semi-automatically;

• Graph-based representations of individual analyses or
inspections;

• Tools (or: tool versions) which produce analyses of
the primary data and which may be further developed
in the course of the use of the database;

2In conjunction with Tenth Conference on
Computational Natural Language Learning,
http://nextens.uvt.nl/˜conll/

3http://atoll.inria.fr/passage/
4EASy French parsing evaluation campaign,

http://www.technolangue.net/article198.html

• Metadata:

– Contents-related metadata, such as indications of
the author, the language, and the source of pri-
mary data;

– Technical metadata, such as character encoding,
the size of individual portions of data, etc.;

– Metadata indicating, for a given analysis, which
version of a given tool, which parameters and
knowledge sources have been used in its creation.

Contrary to most database systems which are created for
completely fixed processes, our database, B3DB, has been
designed explicitly with a view to its infrastructural func-
tion in linguistic research. Not only has the database to
manage a steady flow of new data, but also the tools used
to analyse textual data, their combination, their knowledge
sources, etc. are in constant evolution. This implies that
the database has to cater to the temporal aspect of tools,
analyses, and knowledge sources; moreover, it has to be
extensible, theory-independent, and it has to support the re-
producibility of analyses and inspections.
The requirement of extensibility should make it possible
to introduce types of data objects which are new to the
database, without need for massive changes of the database
schema. The requirement of theory-independence concerns
the intended use of the database as an infrastructure for
comparing data from different tools and theories. Thus, the
design of the database should not be inspired by one partic-
ular tool, but rather be generic.
The requirement of reproducibility implies that the
database should allow us to reproduce analyses with the
same tools and knowledge sources as before. This is im-
portant when tools evolve, as intermediate stages of the de-
velopment need to be represented in the database.
The overall objective of the database development is to rep-
resent analyses in such a way that they can be queried,
compared, and possibly integrated into more reliable ana-
lyses. In particular, different stages of the development of
a single tool or a tool suite should be documentable and
reproducible. This is very important for a bootstrapping
approach to the development of knowledge sources for lin-
guistic analyses.

4. Design of the database
4.1. Basic approach
It would in principle be possible to define a new database
table for every type of object described by the database
and for every type of relation between such objects. In our
database, we use, however, another approach: B3DB fore-
sees only few tables and expresses the properties of objects
and relations in the form of different values of a specific
attribute which is used for characterizing groups of objects
or relations (cf. Eberle and Eckart (2009)).
This approach supports extensibility, as adding new types
of data objects only requires the definition of a new attribute
value (a new group), without modification of the existing
schema. In our view, this approach is most economical
for the specific objective of representing a changing tool

9

Figure 1: The database as an infrastructure to support research workflow

and knowledge source environment, both conceptually and
technically.
The results of analyses or inspections can lead to rather
complex representations which are not easy to search, if
represented as texts. As we do not want to implement
specific functions, such as those provided, for example,
by tgrep, for tree structures, we opted for another rep-
resentation of linguistic analyses. To provide for detailed
queries, we therefore convert the analysis results into graph
structures in the front end. These graphs (nodes and edges)
are not meant to be linguistic representations, but only a
general representation which can be queried more easily
within the database. The individual analyses are not reinter-
preted, when mapped onto the graphs, but just reformatted
for internal processing purposes.

4.2. Layers of the database
The database is conceptually divided into two layers, a
macroscopic one and a microscopic one. A given analysis
may be an atomic object at the macro-level, and its graph-
based representation is a structured object of the micro-
level. Consequently, primary data and tools are always and
only objects of the macro-level, whereas analyses and in-
spections are represented on both levels. On both layers we
consistently separate objects (and their descriptions) from
the relations between these objects (separate database ta-
bles).
The distinction between macro- and micro-level is im-
plemented via a type system utilizing atomic types and
Boolean combinations of types. The details of the type sys-
tem are represented by a type lattice (cf. Eberle and Eckart
(2009)).

4.3. Front-end routines and versioning
Above, we mentioned the overall objective (and require-
ment) of the database: to support the comparison between
different analyses and inspections and their integration. To
support such processes, front end routines can be used to
abstract, modify, or translate graph representations of anal-
yses or inspections and to reinsert the results of these oper-

ations back into the database. Such conversions may lead
to the re-representation of a given analysis in a more ab-
stract format, in an exchange format or simply in a format
which is close to that of another tool, for ease of com-
parison. In cooperation with the Potsdam-based research
group SFB 632/D15, we have experimented with a trans-
lation of the output of our linguistic analysis tools into the
PAULA format (cf. Dipper (2005)). Ongoing work aims
at the translation towards the generic format GrAF, a part
of the upcoming ISO Standard LAF, the Linguistic Anno-
tation Framework, ISO/DIS 24612 (2009).
As mentioned above, the database should support the man-
agement of different versions of tools evolving over time.
To achieve this, the respective data has version labels, and a
given item can become invalid, when, for example, a newer
version of the same item is available in the database. The
newer version may be differently classified, or corrected be-
cause errors may have been removed. It may however be
necessary to keep ’outdated’ data in the database as long
as there exist other data related with the erroneous ones by
means of explicit relations.

4.4. Implementation
The schema was implemented as a PostgreSQL6 relational
database system. It was also enhanced with a schema part
based on the GrAF-Serialisation of the Linguistic Annota-
tion Framework (LAF, ISO/DIS 24612 (2009)) and the con-
straint based model for representing ambiguities by Kountz
et al. (2008). In this enhanced schema part, analyses can be
stored according to the LAF-format which presents the ba-
sis for the merging of different analysis, because different
types of analysis can be equally represented.

5. Examples: analysis reliability and
bootstrapping

In the following, we give two examples of workflows which
can be supported by the B3DB database, one for reliability-

5http://www.sfb632.uni-potsdam.de/˜d1/
6http://www.postgresql.org/

10

oriented comparison of analyses, and a second one for re-
source bootstrapping.
Figure 1 depicts the database, as well as a text stored in it,
and two parsers, BitPar (cf. Schmid (2004)) and Lingenio
(cf. McCord (1991) and Eberle (2002)). BitPar’s output
are constituent structures, whereas the Lingenio research
prototype7 produces dependency structures. In figure 1, the
analyses are called “analysis T1”, produced by Lingenio
and “analysis T2”, produced by BitPar. For each analysis,
there is a graph representation (graph T1, graph T2) at the
micro-level.

5.1. Comparing and merging analyses for improving
reliability

When it comes to comparing the two analyses, we use rules
that insert nodes and projections into the dependency struc-
ture, to convert it into a BitPar-like format (cf. Eberle
(2002)). For the following discussion, we use an example
from our corpus: Auch bei den CO-Werten liegen die Mes-
sungen weit unter dem zulässigen Grenzwert von 250ppm
(parts [per million, Bestandteile in einer Million Teile)] . . .
(Also when it comes to the values for carbon monoxide,
the measured data are much below the allowed threshold of
250 ppm.)
Figure 2 shows an example of a conversion rule which in-
serts constituency structure for the preposition unter (be-
low) in the prepositional phrase unter dem Grenzwert (be-
low the threshold).
One could think of the object named “converted graph T1”
(in figure 1) as a result of such a conversion from Lingenio’s
dependency structure to BitPar format (cf. figure 3).

TOP

subj(n)

die Messung

mtv(, ,)

s(lieg,886450)
obj(p([unter|dat]))

dem . . .Grenzwert . . .

⇒ TOP

subj(n)

die Messung

v

mtv(, ,)

s(lieg,886450)

obj(p([unter|dat]))

p

prep

unter

objprep(dat)

dem . . . Grenzwert . . .

1

Figure 2: Example for inserting constituency structure
nodes

As a result, both “graph T2” (e.g. the constituency tree in
figure 4) and “converted graph T1” are now represented in
a constituent-structure-like format and thus comparable.

Comparison: Similarities and differences between Lin-
genio and BitPar The above example shows a few dif-
ferences between the two types of analyses, which can be
classified as follows, according to their frequency and rele-
vance8:

• Interpretation of the item ppm: contained in the Lin-
genio dictionary, but not in BitPar.
If a tool has lexical information about a given item,
we assume this tool is more reliable (on that particular
item) than others which don’t; cf. the correction rule

7http://www.lingenio.de/English/Research/
Cooperations/unis-ims-sfb732-b3.htm

8In this case, relevance refers to the impact a differing detail
has on the global analysis structure.

in figure 7 which adjusts in this case a major structural
difference;

• Interpretation of the item weit (’much’): difference in
attachment: adverbial in the Lingenio analysis, prepo-
sition modifier in BitPar;
This difference shows up frequently, but is of rela-
tively little importance for the comparison, as in both
analyses there is the comparable verbal phrase, which
includes the prepositional phrase; cf. the mapping rule
in figure 6;

• Interpretation of the von-PP: underspecified attach-
ment in Lingenio; modifier of Grenzwert (’threshold’)
in BitPar;
Structural difference without impact on the analysis of
the substructure, which stays the same in both cases
(ppm itself is treated with a separate rule, see above
and figure 7);

• Interpretation of the item CO-Wert (’values for carbon
monoxide’): decomposed compound in Lingenio, un-
analyzed in BitPar;
Difference without impact on the analysis;

• Representation of the structure of PPs: flat in BitPar
(e.g. p det adj n), structured in Lingenio (e.g. p
objprep (det adj n));
Relatable by means of a rule (see figure 5, below).

After the identification and classification of the differences,
merging rules can be applied. We will give some exam-
ples of rules that are relevant for the differences mentioned
above.
(Graph-)equivalence rules match representation conven-
tions like for the structure of PP-attachments (cf. figure 5).

xprep

p

prep

unter

objprep(C)

ndet

det(. . .)

s(dem,d)

nadj

adj(. . .)

s(zulässig,817163)

n

noun(. . .)

s(grenzwert,304915)

⇔ PP-MO/V

APPR-AC/unter

unter

ART-NK-Dat.Sg

dem

ADJA-NK-Pos.Dat.Sg

zulässigen

NN-NK-Dat.Sg

Grenzwert

1

Figure 5: Graph equivalence rule for PP-representation-
conventions

Another type of rules are rules for local interpretation dif-
ferences to cope with frequent but minor differences like the
representation of an adverb as adverbial-modifier versus as
scalar-modifier.
The most relevant class of rules are rules for (resource-
based) correction, that enhance the reliability of the over-
all analysis result, by compensation of erroneous structures.
An example is the correction of a (e.g. lexically) unin-
formed interpretation according to the more informed rep-
resentation (cf. figure 7).
Figure 8 displays the common subgraph after the merging
process; it abstracts away from equivalent representations
(cf. the case covered by the rule in figure 5) and from local
interpretation differences.

11

TOP

u

vprep

Auch bei den CO-Werten

v

mtv(. . .)

s(lieg,886450)

subj(n)

die Messungen

obj(p([unter|dat]))

unter dem zulässigen Grenzwert

xprep

p

prep(. . .)

s(von,766150)

objprep(dat)

ndet

noun(num,. . .)

250

n

noun(. . .)

s(ppm,3158379)

u

punc

special

punc(()

u

n

n

noun(. . .)

s(part,2195824)

. . .vadv

adv(. . .)

s(weit,782898)

1

Figure 3: Constituency graph of the dependency analysis (= converted graph T1)

TOP

CS-TOP

S-CJ

PP-MO/V

Auch bei den CO-Werten

VVFIN-HD

liegen

NP-SB

die Messungen

PP-MO/V

weit unter dem zulässigen Grenzwert
PP-MNR/N

von 250

VVFIN-HD

ppm

\$Par

\()

S-CJ

VVFIN-HD

parts

. . .

1

Figure 4: BitPar constituency graph (= T2)

Top

xadv

adv(. . .)

weit

xprep

p

prep(. . .)

unter

objprep(dat)

dem Grenzwert

⇔ TOP

xprep

p

padv

adv(. . .)

weit

p

prep(. . .)

unter

objprep(dat)

dem Grenzwert

1

Figure 6: Rule for local interpretation differences

In figure 1, the object named “integrated graph” can be seen
as the result of the merging of two different analyses. As we
intend to combine merging procedures with procedures for
identifying the reliability of analyses (and the confidence
of a given tool with respect to a given analysis), a voting
approach will be helpful. The rules allow to integrate those
parts of the individual analyses which are individually seen
as reliable, or which are equivalent. The result of the merg-
ing is a new analysis graph which is typically expected to
be more reliable than the individual analyses.

Top

. . . XP

. . . PP-MNR/N

APPR-AC/von

von

CARD-NK

250

VVFIN-HD

ppm

⇔ Top

. . . XP

. . . PP-MNR/N

APPR-AC/von

von

CARD-NK

250

NN-NK-Dat.Pl

ppm

1

Figure 7: Correction according to informed representation

5.2. Bootstrapping of resources
Another application of the database is the realization of
a bootstrapping approach in tool development. Here, we
make use of the temporal aspect of the database and of ver-
sioning of tools and resources. For example, the Lingenio-
based disambiguator is a research prototype which is in
constant evolution, and its knowledge source is constantly
updated, e.g. with new indicator candidates for sortal read-
ings of -ung-nouns.
Whenever such indicators are classified manually and rein-
serted into Lingenio’s dictionary, the respective new ver-
sion of the tool will be held in the database. This new tool

12

TOP

u

vprep

Auch bei den CO-Werten

v

mtv(. . .)

s(lieg,886450)

subj(n)

die Messungen

obj(p([unter|dat]))

unter dem zulässigen Grenzwert

xprep

von 250 ppm

. . .

xadv

adv(. . .)

s(weit,782898)

1

Figure 8: Merged analysis modulo equivalence and local differences in interpretation

version can then be applied on a test suite or on corpus data,
to determine the improvement gained by the update. In this
sense, the database supports a bootstrapping approach to
tool development.

6. Future Work
Obviously, there can be many more differences between an-
alyzers or between analysis results than shown in our ex-
ample above; thus the comparison has to take into account
further aspects; among these are the formalism used, its ex-
pressivity, and the levels of linguistic description covered.
Thus the “meaning-preserving translation” shown in the
above example is rather a special case; in a more general
fashion, a reinterpretation of the output produced by dif-
ferent tools is needed before a mapping can be attempted
(semantic interoperability).
In future work, we intend to address this issue by analyzing
in more detail the following two aspects of such a compar-
ison, as well as their interaction:

• comparing syntactic representations with flat seman-
tic representations: for this comparison, a mapping
has to be defined which uses information about the
syntax/semantics interface, similar to (flat) semantics
construction tools;

• comparing fully specified and underspecified repre-
sentations from a given level of description: a starting
point for this task are the specific readings subsumed
by the underspecified representation.

To integrate several analyses into a common, maximally
reliable analysis (possibly an underspecified one), quality
criteria for the individual analyses have to be defined. As
we do not intend to evaluate against a gold standard, but
to compare different tool outputs among each other, these
need to be weighted beforehand. For example, a tool which
has lexical information for a given text portion under anal-
ysis will receive more weight than an uninformed one. We
will use a voting approach to combine those partial analyses
on which most tools agree. We will also need to include ef-
fectual methods for comparing the analyses as such and so
be eventually able to evaluate the quality of the combined
analyses.

7. Summary
In a research project where different types of data are ac-
quired and tools are developed by means of bootstrapping,
an infrastructure must provide for a representation of this
temporal aspect. The B3DB explicitly supports the boot-
strapping approach in tool development regarding the tool
modules, knowledge bases and analysis results. Moreover
the database also supports a voting-like approach to relia-
bility where analyses from different NLP tools can be com-
bined.

8. References
Stefanie Dipper. 2005. XML-based Stand-off Representa-

tion and Exploitation of Multi-Level Linguistic Annota-
tion. In Berliner XML Tage, pages 39–50.

Kurt Eberle and Kerstin Eckart, 2009. Eine Datenbank
für Textanalysen - Design und Beispiele. Institut für
maschinelle Sprachverarbeitung, Universität Stuttgart.
Unpublished manual.

Kurt Eberle. 2002. Tense and aspect information in a
FUDR-based German French Machine Translation Sys-
tem. In Hans Kamp and Uwe Reyle, editors, How we
say WHEN it happens. Contributions to the theory of
temporal reference in natural language, pages 97–148.
Niemeyer, Tübingen. Ling. Arbeiten, Band 455.

Kerstin Eckart. 2009. Repräsentation von Unterspezifika-
tion in relationalen Datenbanksystemen. Diploma thesis,
Universität Stuttgart.

ISO/DIS 24612. 2009. Language resource management -
Linguistic annotation framework (LAF).

Manuel Kountz, Ulrich Heid, and Kerstin Eckart. 2008.
A LAF/GrAF-based encoding scheme for underspecified
representations of dependency structures. In Proceed-
ings of the 6th Conference on Language Resources and
Evaluation (LREC 2008), Marrakech, Morocco, May.
[CD-ROM].

Michael McCord. 1991. The slot grammar system. In
Jürgen Wedekind and Christian Rohrer, editors, Unifica-
tion in Grammar. MIT-Press.

Ulrich Schäfer. 2007. Integrating Deep and Shallow Natu-
ral Language Processing Components - Representations

13

and Hybrid Architectures. Ph.D. thesis, Saarland Uni-
versity.

Helmut Schmid. 2004. Efficient Parsing of Highly Am-
biguous Context-Free Grammars with Bit Vectors. In
Proceedings of the 20th International Conference on
Computational Linguistics, Coling’04, volume 1, pages
162–168, Geneva, Switzerland.

David Yarowsky. 1995. Unsupervised Word Sense Disam-
biguation Rivaling Supervised Methods. In Proceedings
of the 33rd Annual Meeting of the Association for Com-
putational Linguistics, pages 189–196, Cambridge, MA.

14

The Tanl Pipeline

Giuseppe Attardi, Stefano Dei Rossi, Maria Simi
Dipartimento di Informatica, Università di Pisa

Largo B. Pontecorvo 3, I-56127 Pisa, Italy

E-mail: attardi@di.unipi.it, deirossi@di.unipi.it, simi@di.unipi.it

Abstract

Tanl (Natural Language Text Analytics) is a suite of tools for text analytics based on the software architecture paradigm
of data pipelines. Tanl pipelines are data driven, i.e. each stage pulls data from the preceding stage and transforms them
for use by the next stage. Since data is processed as soon as it becomes available, processing delay is minimized
improving data throughput. The processing modules can be written in C++ or in Python and can be combined using few
lines of Python scripts to produce full NLP applications. Tanl provides a set of modules, ranging from tokenization to
POS tagging, from parsing to NE recognition. A Tanl pipeline can be processed in parallel on a cluster of computers by
means of a modified version of Hadoop streaming. As a case study for the Tanl suite we annotated the English and Italian
subsets of Wikipedia. We present the architecture, its modules and some sample applications.

Introduction

Text analytics involves many tasks ranging from simple

text collection, extraction, and preparation to linguistic

syntactic and semantic analysis, cross reference analysis,

intent mining and finally indexing and search. A complete

system must be able to process textual data of any size and

structure, to extract words, to classify documents into

categories (taxonomies or ontologies), and to identify

semantic relationships.

A full analytics application requires coordinating and

combining several tools designed to handle specific

subtasks. This may be challenging since many of the

existing tools have been developed independently with

different requirements and assumptions on how to process

the data.

Several suites for NLP (Natural Language Processing) are

available for performing syntactic and semantic data

analysis, some as open source and other as commercial

products. These toolsets can be grouped into two broad

software architecture categories:

 Integrated Toolkits: these provide a set of classes and

methods for each task, and are typically bound to a

programming language. Applications are

programmed using compilers and standard

programming environments. Examples in this

category are: LingPipe (LingPipe), OpenNlp

(OpenNLP), NLTK (NLTK).

 Component Frameworks: these use generic data

structures, described in a language independent

formalism, and each tool consumes/produces such

data; a special compiler transforms the data

descriptions into types for the target programming

language. Applications are built using specific

framework tools. Examples in this category are:

GATE (GATE), UIMA (UIMA).

Both GATE and UIMA are based on a workflow software

architecture, where the framework handles the workflow

among the processing stages of the application, by means

of a controller that passes data among the components

invoking their methods. Each tool accepts and returns the

same type of data and extends the data it receives by

adding its own information, as shown using different

colors in Figure 1: the Tokenizer adds annotations to

represent the start and end of each token, the PosTagger

adds annotations representing the POS for each token.

Since the controller handles the whole processing in a

single flow, each processing component receives the

whole collection and returns the whole collection. If the

collection is big, this might require large amounts of

memory.

Figure 1: Workflow Software Architecture.

In this paper we present an alternative architecture based

on the notion of data pipeline. The Tanl pipeline (Natural

Language Text Analytics) uses both generic and specific

data structures, and components communicate directly

exchanging data through pipes, as shown in Figure 2.

Since each tool pulls the data it needs from the previous

stage of the pipeline, only the minimum amount of data

passes through the pipeline, therefore reducing the

memory footprint and improving the throughput. The

figure shows single documents being passed along, but

the granularity can be even smaller: for instance a module

might just require single tokens or single sentences. This

would be hard to handle with a workflow architecture,

since the controller does not know which amount of data

each tool requires.

Controller

PosTagger Tokenizer

15

Related work

We present an overview of some representative NLP

toolsets and highlight the differences with the approach

adopted for the Tanl pipeline.

Integrated Toolkits

NLTK (Natural Language Toolkit) is a suite of libraries

and programs written in Python for symbolic and

statistical natural language processing (Steven et al.,

2009). For each task NLTK provides a specific API,

implemented by several alternative modules. For example

there are several chunker modules providing the

ChunkParserI interface, classifier modules providing the

ClassifierI interface, etc. Each interface specifies

different data types, for instance the ChunkParserI

interface operates on tokens represented as tuples (word,

tag), the ParserI interface accepts a string and returns a

Tree. Since many modules were developed independently,

sometimes they provide their own API that extends the

generic one. For instance one implementation of a

dependency parser requires as input two lists, a list of

tokens and a list of tags, another implementation operates

on files, hence it creates an intermediate temporary file.

Workflow Frameworks

GATE (General Architecture for Text Engineering) is a

Java framework organized according to three concepts:

language resources, processing resources and the

controller. A GATE application handles the following

types of data:

 Features: a set of name/values pairs;

 Annotation: consists of a tuple (start, end, type,

features), the start and end character positions in the

text, the type of the annotation and the features

associated to the annotation;

 Document: consists of a triple (content, annotations,

features), where the content is the text of the

document, annotations are the annotations in the

document and features are those associated to the

document.

 Corpus: a list of Documents.

In the following example, two processing resources are

created (a Tokenizer and a PosTagger), a language

resource is opened (a Corpus) and a controller is created

of type SerialAnalyserController. The language and

processing resources are supplied to the controller which

supervises and coordinates the overall workflow: at each

analysis step it passes data to a processing resource, gets

back the enriched results and passes them along to the

next step.

SerialAnalyserController sac =

 Factory.createResource(

 "SerialAnalyserController", …);

FeatureMap params = Factory.newFeatureMap();

sac.add(Factory.createResource(“Tokeniser”,

 params));

sac.add(Factory.createResource(“PosTagger”,

 params));

Corpus corpus = …;

sac.setCorpus(corpus);

sac.execute();

UIMA (Unstructured Information Management

Architecture) is a general framework for the analysis of

text and other media. The fundamental UIMA data model

is called Common Analysis Structure (CAS): it provides

data modeling, definition and retrieval facilities for the

annotations stored in it. Annotations are defined in a

hierarchically organized type system rooted in a basic

type that contains the start and end position in the

document as well as a set of features. Processing is

performed by Analysis Engines (AE) according to a

simple I/O logical interface model: each AE gets a CAS as

input and produces a CAS as output. Typically each AE

analyzes a CAS containing a document and adds more

metadata to the CAS structure.

Each UIMA component, written in Java or C++,

implements interfaces defined by the framework and

provides self-describing metadata via XML descriptor

files. An application can be created by joining together

various components as shown in the following example.

AnalysisEngine tokAnnotator =

 produceAnalysisEngine(…);

AnalysisEngine posAnnotator =

 produceAnalysisEngine(…);

ArrayList<AnalysisEngineMetaData> mdl =

 new ArrayList<…>();

mdl.add(tokAnnot.getAnalysisEngineMetaData());

mdl.add(posAnnot.getAnalysisEngineMetaData());

CAS aCAS = createCAS(mdl);

aCAS.setDocumentText(getTextFromFile(…));

tokenAnnotator.process(aCAS);

posAnnotator.process(aCAS);

Two AEs are created, a tokenizer and a POS tagger. Then

a CAS is created that contains both metadata from the

tokenizer and the POS tagger. The CAS is given to both

the AEs in sequence and each adds its own annotations.

The framework manages the AEs and the data flow

between them.
A CAS Consumer processes the CAS produced by an AE.

Tokenizer

PosTagger

Figure 2: Tanl data pipeline.

16

http://nltk.googlecode.com/svn/trunk/doc/api/nltk.chunk.api.ChunkParserI-class.html
http://nltk.googlecode.com/svn/trunk/doc/api/nltk.classify.api.ClassifierI-class.html
http://nltk.googlecode.com/svn/trunk/doc/api/nltk.chunk.api.ChunkParserI-class.html

For example one can collect all annotations of type
Entity with the following code:

ArrayList<String> entities = new …;

JFSIndexRepository idx =

 CAS…getJFIndexRepository();

Iterator<Entity> it =

idx.getAnnotationIndex(Entity.type).iterator()

;

while (it.hasNext()) {

 Entity en = it.next();

 entities.add(en.getCoveredText());

}

UIMA additionally provides capabilities to wrap

components as network services.
The JULIES NLP Toolsuite consists in a collection of
UIMA components (JULIES NLP).

Tanl design

The Tanl architecture is based on a data pipeline paradigm

(Figure 2) and allows integrating modules written in

different languages.

The approach has the advantage that each component is

directly connected to the other ones through pipes, so it is

not necessary to wait until the end of one processing phase

before starting the next one. As a tool produces the first

result it is immediately passed to the next one through the

pipeline without producing intermediate data structures.

Another advantage of this approach is that it is possible to

compose a Tanl pipeline using a general scripting

language, for example Python or Perl, instead of

introducing ad-hoc tools.

Most of the Tanl tools exploit quantitative and statistical

machine learning methods and they require an annotated

training corpus for creating statistical models of the data.

Software architecture

In this section we describe the basic components of the
Tanl pipeline.

Pipeline

The pipeline components can be distinguished into three
basic types:

 Source: creates an initial pipe (e.g. a document reader,

reading from a text file and creating a stream of tokens

to be sent through the pipeline);

 Transform: receives data from one pipe and produces

output on another pipe;

 Sink: consumes the output of a pipe.

For example a source can be created as an instance of

SentenceSplitter and connected in pipe to an input

stream:

ss = SentenceSplitter('ita.punkt').pipe(stdin)

The pipe can then be connected to other tools performing

various tasks such as tokenization, POS tagging and

parsing as follows:

wt = Tokenizer().pipe(ss)

pt = PosTagger('italian.pos').pipe(wt)

pa = Parser.create('italian.MLP').pipe(pt)

Each line in the above example represents a

transformation stage in the pipeline. No processing of

data happens while the pipeline is being built.

Processing in the assembled pipeline only starts when a

sink is connected to the pipeline and starts drawing items

from it, in a fully data-driven process. Each stage in the

pipeline, when requested for the next item, requests items

from its preceding stage in order to produce the next

output.

A sink can just be defined through a standard Python

iterator pulling data from the last stage of the pipeline:

ret = ""

for s in pa:

 ret += string(s) + "\n"

return ret

Using a general purpose scripting language for

composing the pipeline avoids the need for compilers and

other development tools. Special processing can be added

at any stage of the pipeline for whatever need with a few

lines of code and exploiting the facilities of Python.

For example, if one needs to monitor what is happening at

a certain stage in the pipeline, a tee component can be

added for analyzing the items passing through that stage.

Here is an example of a tee used for printing all items after

the POS tagging stage:

pt = PosTagger('italian.pos').pipe(wt)

tee = Tee(printSink, pt)

pa = Parser.create('italian.MLP').pipe(tee)

The first argument to the Tee constructor is a sink through
which items have to be pushed. However, since sinks
behave in a pull mode, the Tee has to create an inversion
of control, turning a sink into a pipe, by exploiting the
functional mechanisms of Python.

class Tee:

 def __init__(self, func, arg):

 self.func = func

 self.arg = arg

 def next(self):

 aux = self.arg.next()

 func(aux)

 return aux

The next method of the Tee applies the function to the
item (in this case the printing function) before passing the
item itself to the next module in the pipeline.
An alternative solution would be to run sinks within
separate threads and adopting an asynchronous streaming
model, where each consumer processes data at its own
pace. This however involves providing buffering in the
components, partly defeating the purpose of a data driven
pipeline, where data is produced only when requested and
processed immediately.
A disadvantage of an integrated multi-language pipeline
is dealing with debugging: since at the scripting language
level the pipeline components are only visible as black
boxes, it is hard to step into their execution for debugging
code. An instrumented version of the Python runtime is
required in order to start a process in debugging mode.

17

Metadata handling

As data passes through a pipeline, global or specific

metadata might need to be collected. For example,

Wikipedia articles contain metadata information such as

hypertext links, internal references as well as internal

document structure such as titles and sections. These data

are useful for certain modules of the pipeline, but

unnecessary or unmanageable for others.

Workflow systems like GATE or UIMA store these as

annotations in a global structure like the CAS. Since in

Tanl items are passed along the pipe, there is no place to

store global data.

Our solution consists in storing metadata in the tokens,

using a field called context. A context contains a set of

key/value pairs representing metadata. Contexts can be

nested, referring to a parent context, for representing

nested structures such as sections within documents or

XML trees. Tokens that belong to the same context share

the same context object, so that memory overhead is

reduced, even using a distributed representation rather

than a global structure.

Implementation

Enumerators and Tokens

Each module of the Tanl pipeline consumes a stream

produced by a previous module and produces a stream.

Streams consist of tokens or combinations of tokens, e.g.

sentences which are sequence of tokens.

Tokens are the basic data structure type that all

components manipulate. The token data structure was

designed to be extensible, so that each tool can add to it its

own annotations, which are passed along to later stages.

A token contains a string that represents its form and an

arbitrary number of attributes and links. Attributes are

simple key/value pairs, while links are labeled arcs

referring to other tokens through their id:

struct Token {

 string form; ///< word form

 Attributes attributes;

 Links links;

 Context* context; ///< context

};

struct Link {

 int target; ///< the ID of the target

 string label; ///< the label for the link

};

In the implementation of attributes though, we avoid the

naive solution of using a hash table, since this would

entail a significant cost for each token: instead the token

only contains the attribute values and an index of attribute

names is used to retrieve an attribute by name. The index

is shared among all the tokens in a Corpus.

A Corpus represents the common aspects of a collection

of documents, including the tongue, the list of token

attributes, the attribute name index, the file format and it

also provides methods for writing and reading sentences

from corpus documents.

A stream is defined through a generic class Enumerator

that provides methods to advance to the next item and to

access it:

template <class T>

class Enumerator {

public:

 virtual bool MoveNext() = 0;

 virtual T Current() = 0;

 virtual void Reset() {}

};

Listing 1: Generic Enumerator interface

Each module provides an interface for connecting to a

pipeline:

template <class Tin, Tout>

struct IPipe {

 Enumerator<Tout>* pipe(Enumerator<Tin>&);

};

Listing 2: Pipeline interface

Language Integration

C++ modules can be invoked from scripting languages by
means of wrappers created with SWIG (SWIG), an
automated tool for generating wrappers directly from
code. In particular Tanl provides predefined wrappers for
Python.

C++ Enumerators as Python iterators

SWIG allows exposing C++ objects and methods to

Python, but an even tighter integration is provided that

allows operating on C++ objects in a more convenient

way. In particular the standard Python iterator constructs,

for instance for x in pipe: …x…, can be used to process

pipeline streams. Since the Python iterator protocol

consists of a single method next() and termination is

obtained by raising an exception, a magic trick is required

in the SWIG code in order to conform to this protocol:

%exception Tanl::Enumerator<Item>::next() {

 $action

 if (!result) {

 PyErr_SetObject(PyExc_StopIteration,

 Py_None);

 return NULL;

 }

};

This SWIG notation is used to add a few lines to the
wrapper for method next() that will raise the required
exception.

Memory management

Since objects are passed between C++ and Python, stored

within wrappers, memory must be managed properly so

that objects are released when no longer in use. This is

normally handled by telling to SWIG which objects must

remain under control by Python. Python uses reference

counting, and when an object is no longer accessible, it

automatically calls its C++ destructor.

However there are cases where this mechanism is not

sufficient, for example when a pipe is created like this:

18

pp = Parser.create("model").pipe(sr)

both a parser object and a parser proxy that wraps it are

created. Then a pipe is created which refers to the parser

object and assigned to the variable pp. The parser should

survive as long as pp exists. However Python destroys the

parser proxy, since it has no references to it, and calls the

parser C++ destructor. In order to avoid this, a reference

count is added to the C++ parser object, reflecting the

number of Python objects referring to it. The C++

destructor is only invoked when this count goes to 0. In

order to maintain this counter, it must be incremented

when the pipe is created from Python. This can be done in

SWIG with the following rule:

%exception Parser::pipe {

 $action

 arg1->incRef(); // arg1 is the parser object

}

When the count of the pipe proxy reaches zero, Python

calls the pipe destructor.

Similarly, the parser counter must be decremented when

the pipe proxy that embeds the parser gets destroyed. This

is done with:

%feature("unRef")

Tanl::Enumerator<Tanl::Sentence*>

"$this->Dispose();"

which will call the following method on the pipe:

void ParserPipe::Dispose() { parser.decRef();

 delete this; }

that will decrement/release the parser before deleting the

pipe. Finally, in order to keep in synch the reference count

of the parser proxy, it must be updated whenever Python

creates a reference to it, by using these SWIG rules:

%feature("ref") Parse "$this->incRef();"

%feature("unref") Parse "$this->decRef();"

A reference count mechanism is also required to manage

Context objects used in tokens, since their lifetime

duration is independent from that of the token where they

appear.

Map Reduce

A Tanl pipeline can be processed in parallel using the

Map/Reduce pattern, for instance using Apache Hadoop

(Hadoop). The data to be processed is partitioned into

subsets, each of which is assigned for processing to a node

in the cluster.

The mapper and reducer functions are normally written in

Java, but the framework also provides a facility called

Hadoop streaming that allows running any executable as a

mapper or reducer.

Unfortunately the standard implementation of Hadoop

streaming does not ensure that the outputs of each mapper

are combined by the reducer preserving the original order.

To overcome this problem we modified the

implementation (Tanl Hadoop Streaming) by adding a

sequence number to each document passed to the mapper

and introducing a reducer that uses these numbers for

recombining the documents in the original order.

Pipeline Modules

The following modules are currently available as part of

the Tanl pipeline:

 Sentence Splitter: splits the text into sentences,

producing an enumerator of strings, each representing

a sentence. The module is written in Python and is

based on the Punkt Tokenizer from the NLTK suite,

which implements the technique by Kiss and Strunk

(Kiss & Strunk, 2006).

 Word Tokenizer: deals with the segmentation of a

sentence into tokens, producing a stream of vector of

tokens. The module consists of C++ code produced

using Quex (Quex), a generator of lexical analyzers,

capable of handling Unicode characters.

 Word Aggregator: combines polyrematic expressions

of common use into a single token (e.g. “a meno che”

becomes “a_meno_che”).

 POS Tagger: enriches the structure Token representing

a token within a sentence with attributes representing

the PoS and lemma. Two alternative taggers are

available: one based on TreeTagger (Schmid, 1994)

and one based on Hunpos (Halácsy et al., 2007), an

open source reimplementation of TnT (Brants, 2000).

 Morph Splitter: splits the POS of each token into

separate POS and morphology attributes and also

splits clitic forms into two or more tokens (e.g. the

verb “avercelo” becomes “aver- ce- lo”).

 Parser: parses sentences producing dependency parse

trees. The module takes as input a stream of vectors of

tokens, and produces a stream of sentences. It uses

DeSR, a state-of-the-art multilingual dependency

parser based on the Shift/Reduce paradigm (Attardi,

2006; Attardi et al., 2007; Attardi et al., 2009).

A few semantic analysis modules are also available; as the

previous modules, they consume and produce a stream of

vectors of tokens, adding specific semantic attributes to

the structure Token:

 Named Entity Tagger: identifies and classifies atomic

elements such as person names, organizations,

locations, temporal expressions, quantities,

percentages etc.

 SuperSense Tagger: assigns a semantic category to

nouns, adjectives and verbs, corresponding to the

WordNet lexicographer class labels (Fellbaum, 1998).

Both tools use a Maximum Entropy classifier provided in

the Tanl library.

The Tanl Indexer produces a special full-text search index

enriched with syntactic and semantic information. The

index is organized in multiple layers, so that at each

document position a stack of values is present. Each layer

represents a different token attribute, e.g. form, lemma,

POS, NE, SuperSense and dependency relations. The

index also maintains information on sentence boundaries

so that the search can return sentences matching queries

rather than documents. An additional inverted index is

also present that allows searching for pairs of word in a

given syntactic relation. A special query language allows

expressing queries involving not just words, but any

attributes of tokens and in particular dependency paths in

19

the parse trees. Typical boolean, proximity and phrase

operators allow forming even more complex queries.

Figure 3: Sample Tanl pipeline.

Figure 3 shows an example of a full Tanl pipeline built

with some of the available modules.

Applications

As a case study for the Tanl suite we annotated two
significant subset of Wikipedia: the English Wikipedia,
consisting in over 3 million articles for a total of
29.320.747 sentences and the Italian Wikipedia,
consisting of over 660.000 articles for a total of 5.507.225
sentences. The Wikipedia is challenging both in terms of
size and in terms of the variety of material and topics
covered. DeepSearch and Yahoo! Correlator are two
applications that use the annotated Wikipedia.

DeepSearch

DeepSearch (DeepSearch) is a Wikipedia search engine
that exploits syntactic and semantic annotations extracted
from Wikipedia articles. The extended query language
allows expressing queries that involve various attributes
in the annotation.
For example “Who killed Caesar?”, can be answered by
sentences where Caesar is the object of the verb „to kill‟:
this can be expressed in our special query language as a
query for the word „Cesar‟ occurring as the dependent of a
dependency labeled as „OBJ‟ and whose head is a word
with lemma „kill‟.
Similarly “What Edison did not invent?” can be answered
retrieving sentences where „Edison‟ is the subject of a
verb of category „Creation‟ (one of the Super Senses),
with a negation as a modifier of the verb.

Yahoo! Correlator

Yahoo! Correlator (Yahoo! Correlator) is a search engine
and content aggregator that extracts and organizes
information from text, collects and displays related names,
concepts, places, and events correlated to user queries.
The online demo is based on an annotated version of the
English Wikipedia processed with earlier versions of the
Tanl pipeline tools.
The main result page shows a synthetic page assembled
from several Wikipedia entries matching the search,

grouped using the Wikipedia category structure.
Additional pages display names of people, places on a
map, concepts or events in a timeline related to those
found in answers to the query.

Dependency Parser

A dependency parser can be built with a few lines of
scripting similar to those presented in Section 0. This can
be turned into a Web service for processing multiple
requests by creating the transforms just once:

ss = SentenceSplitter('italian.punkt')

tk = Tokenizer()

pt = PosTagger('italian.ttagger')

ms = MorphSplitter()

pa = Parser.create('italian.MLP')

A pipe is created connecting these modules each time a
request is received to parse a string text:

p1 = [text]

p2 = ss.pipe(p1)

p3 = tk.pipe(p2)

p4 = pt.pipe(p3)

p5 = ms.pipe(p4)

p6 = pa.pipe(p5)

ret = ""

for s in p6:

 ret += c.toString(s) + "\n"

return ret

A Web service actually running this code is available at
http://paleo.di.unipi.it/parse (Tanl Parser). The parser
used is the DeSR dependency parser, which uses a
MultiLayer Perceptron model and produces parse trees
annotated using the Tanl Dependency Notation (Tanl
Dependency Notation). The output parse trees are
displayed graphically in HTML or can be obtained in the
CoNLL X format (CoNLL X Format).
TornadoWeb (TornadoWeb) is used as an application
server for Python.

Performance

The parse service described above is capable of parsing
sentences of a dozen tokens in 10-20 milliseconds.
A batch pipeline from pure text to parse trees can process
typically four Wikipedia articles per second. As a
consequence, by parallelizing the process on a dozen of
nodes, the whole Italian Wikipedia can be processed in
about 4 hours.

Conclusions

We presented the software architecture underlying the

Tanl suite. The benefits of the pipeline can be summarized

as follows:

 Data pipeline: modules share a common data model

based on a flexible and extensible representation of

tokens which are passed along the pipe;

 Processing on demand: processing is data-driven and

each stage pulls data as needed from the previous

stages;

 Data granularity: the blocks of data traversing the

pipeline are smaller than in the other toolsets. This

reduces memory requirements and improves latency.

 Efficiency: core algorithms are written in C++;

 Flexibility: Python wrappers allow configuring

Enumerator<line>

Sentence Splitter

Enumerator<Vector<Token>>

Tokenizer

Enumerator<Vector<Token>>

Word Aggregator

Enumerator<Vector<Token>>

Pos Tagger

Enumerator<Vector<Token>>

Morph Splitter

Enumerator<Vector<Token>>

SuperSense Tagger

Enumerator<Vector<Token>>

Parser

Anaphora Tagger Named Entity Tagger

PlainText

20

http://paleo.di.unipi.it/parse

pipelines using simple scripts and activating or

monitoring the pipelines by inserting intermediate

stages;

 Parallelism: collections can be partitioned and several

pipes can be run in parallel on a cluster using a

modified version of Hadoop Streaming (Tanl

Hadoop).

Acknowledgments

Francesco Tamberi and Antonio Fuschetto participated in
the development of the Tanl pipeline; Felice Dell‟Orletta
contributed to the DeSR parser.
Partial support was provided by Yahoo! Research and by
Fondazione Cassa di Risparmio di Pisa.

References

G. Attardi. Experiments with a Multilanguage
non-projective dependency parser. In Proc. of the Tenth
CoNLL. 2006.

G. Attardi, A. Chanev, M. Ciaramita, F. Dell'Orletta and
M. Simi. Multilingual Dependency Parsing and
Domain Adaptation using DeSR. Proc. the CoNLL
Shared Task Session of EMNLP-CoNLL 2007. Prague,
CZ. 2007.

G. Attardi, F. Dell‟Orletta, M. Simi, J. Turian. Accurate
Dependency Parsing with a Stacked Multilayer
Perceptron. Proc. of Workshop Evalita 2009. 2009.

T. Brants. TnT–A Statistical Part-of-Speech Tagger, Proc.
of ANLP-NAACL Conf. 2000.

C. Fellbaum, WordNet An Electronic Lexical Database.
MIT Press, 1998.

P. Halácsy, A. Kornai, C. Oravecz. HunPos – an open

source trigram tagger, In Proc. of the Demo and Poster
Sessions of the 45th Annual Meeting of the ACL, Prague,
Czech Republic 209–212 (2007)

T. Kiss and J. Strunk. Unsupervised multilingual sentence
boundary detection, Computational Linguistics.
Cambridge, USA: MIT Press, 2006, vol. 3-(4).

H. Schmid. Probabilistic Part-of-Speech Tagging Using
Decision Trees. In Proc. of the International
Conference on New Methods in Language Processing,
44-49 (1994)

B. Steven, E. Klein and E. Loper. Natural Language
Processing with Python. O'Reilly Media Inc. 2009.

CoNLL X Format:
http://depparse.uvt.nl/depparse-wiki/DataFormat

DeepSearch: http://semawiki.di.unipi.it/demo.html
GATE: http://gate.ac.uk/
Hadoop: http://hadoop.apache.org/
JULIE NLP:

http://www.julielab.de/Resources/Software/NLP_Tool
s.html

LingPipe: http://alias-i.com/lingpipe/
NLTK: http://www.nltk.org/
OpenNLP: http://opennlp.sourceforge.net/
Quex: http://quex.sourceforge.net/
SWIG: http://www.swig.org/
Tanl Dependency Notation:

http://medialab.di.unipi.it/wiki/Tanl_Tagsets
Tanl Hadoop Streaming:

http://medialab.di.unipi.it/wiki/Hadoop
Tanl Parser: http://paleo.di.unipi.it/parse
TornadoWeb: http://www.tornadoweb.org/
UIMA: http://incubator.apache.org/uima/
Yahoo! Correlator: http://sandbox.yahoo.com/Correlator

21

http://depparse.uvt.nl/depparse-wiki/DataFormat
http://semawiki.di.unipi.it/demo.html
http://gate.ac.uk/
http://hadoop.apache.org/
http://www.julielab.de/Resources/Software/NLP_Tools.html
http://www.julielab.de/Resources/Software/NLP_Tools.html
http://alias-i.com/lingpipe/
http://www.nltk.org/
http://opennlp.sourceforge.net/
http://quex.sourceforge.net/
http://www.swig.org/
http://medialab.di.unipi.it/wiki/Tanl_Tagsets
http://medialab.di.unipi.it/wiki/Hadoop
http://paleo.di.unipi.it/parse
http://www.tornadoweb.org/
http://incubator.apache.org/uima/
http://sandbox.yahoo.com/Correlator

Text handling as a Web Service for the IULA processing pipeline

Héctor Martínez, Jorge Vivaldi, Marta Villegas
Institut Universitari de Lingüística Aplicada (IULA)

Universitat Pompeu Fabra, Barcelona, Spain
E-mail: hector.martinez@upf.edu, jorge.vivaldi@upf.edu

Abstract

A text handler that analyzes free text and outputs sentence boundaries, among other basic text patterns, is a necessary tool
for most NLP tasks. This basic tool is not equally covered for every language. Therefore the IULA has decided to develop
its own text handling system focused on Catalan and Spanish, but also expanded for English. The universal need of a tool
like this has led us to publish the text handling tool as a Web Service, so that users that want to include this type of process
in their HLT processing pipelines can do so with minimal effort. This paper describes the design decisions and
functionalities of the tool, and offers a first proposal for a common WSDL interface for text handling tools. The system
presents a general set of language-independent rules, but makes use of lexicon-based heuristics to determine its tagging
decisions.

1. Introduction
Text handling or preprocessing is a basic need for any
Natural Language Processing (NLP) system. As it is well
known, text processing implies coping with a number of
practical issues, which not only derive from the inherent
difficulties of NLP, but also include: misspelling or
unknown words, a myriad of punctuation signs, numbers,
labels, dates in various formats, multi-word units, proper
nouns, foreign words, etc. Some of these items have
specific conventions for every language (decimal signs,
dates or proper nouns, among others), but all of them have
to be taken into account to produce material that is good
enough to be useful for linguistic research.

The preprocessing stage is very often overlooked or
grossly approximated. Sentence boundaries, for instance,
are often established by hand or placed after every period
followed by a whitespace character and a capital letter,
without further context evaluation, even though the role
of punctuation signs is often ambiguous. This ambiguity
may give bizarre results, if not carefully treated. For
instance, preprocessing might fail in strings as simple as
“Dr. Smith”, where no sentence boundary is expected but
could be falsely assigned.

Manual tagging has the downside of being very slow (and,
like any manual task, not error-free), when compared to
an automatic process, which becomes necessary for the
quick loading of large amounts of data (dozens of
documents, each with several thousand words) into a
corpus.

The text handler is a crucial part of the process of loading
a text from its original file into the IULACT1 corpus. The
IULACT is a corpus compiled at IULA 2 to support

1 IULA Corpus Tècnic
(http://www.iula.upf.edu/corpus/corpus.htm)
2 Institut Universitari de Lingüística Aplicada
(http://www.iula.upf.edu/)

research and teaching activities. This corpus and its
corresponding tools provide the computational basis for a
number of tasks in both monolingual and multi-lingual
frameworks, such as concordances based on
morphosyntactic information, term detection and
extraction, text alignment, automatic summarization,
syntactic analysis, etc. (Vivaldi, 2009)

In corpus compilation, as in most NLP tasks, the text
undergoes a series of steps referred to as processing chain
(at least normalization, verticalization and pos-tagging)..
The first step in our case is the handling, where a text is
analyzed and tagged to make subsequent NLP tasks easier
and less error-prone.

Given the importance of this basic tool for all NLP
applications and the lack of resources for the Catalan
language at the time of the initial compilation of the
IULACT (early nineties), the IULA (Institut Universitari
de Lingüística Aplicada) developed its own text-handling
system. At that time, the corpus was built in compliance
with the Corpus Encoding Standard, mixing manual and
automatic procedures. After gaining some experience in
compiling/using the corpus, it became clear that some of
the implemented features increased the processing
difficulty and also the necessary resources (manual
intervention was higher than desirable or expected) in
order to compile the corpus, without any major benefit for
corpus users.

Consequently, it was decided to develop a new text
handling software, with the main objective of minimizing
human intervention in corpus compiling, keeping the key
characteristics of CES standard. This new tool has been
deployed as a Web Service for internal and external usage.
If a tool is made available for usage on the Web, the
interface has to be streamlined to make sure that it can be
interoperable and easy to include into other process
pipelines. The decision to deploy the handler as a web
service has also been fostered by the CLARIN initiative,
which aims to facilitate access to NLP resources for

22

professionals in the fields of humanities and social
sciences3.

The paper offers an overview of the state of the art of
current text handling applications (2) and describes some
significant implementation details (3 and 4). After
covering language-specific aspects of the implementation
(5), evaluation (6) and benchmarking (7), the deployed
Web Service for the text handler is presented (8). The WS
data interface is explained, followed by the rationale for
the parameters (8.1, 8.2 and 8.3) and a proposal for an
interoperability-oriented common interface for general
text handlers (8.4). Lastly, the conclusions for both the
Web Service and the tool itself are exposed (9) along with
the further work (10).

2. State of the art of text handling
Simple solutions are proposed through Perl modules or
gawk scripts, usually focused on English requirements (cf.
the Lingua-EN modules available at CPAN, among
others). A fully trainable, stochastic system for text
segmentation is presented in Reynar et al. (1997).
Although the authors claim that it may be trained for any
Roman-alphabet language, it has apparently only been
tested for English. The only resource used for training is a
corpus of about 40 thousand sentences from the Wall
Street Journal manually corrected for punctuation and
sentence boundaries. It claims an accuracy of about 98%.
General purpose packages provide some modules for text
handling. Freeling, a well known tool for multilingual
text processing, provides rule-based tokenizer and splitter
modules. Capitalization is the basic clue for NE detection,
although, recently, a machine learning algorithm has been
added; it requires training. Other known packages like
JULIE NLP Toolsuite or NLTK also include modules for
these kinds of tasks. In the first case, there is an intensive
use of machine learning techniques, while, in the second
one, more linguistics-based techniques are used.
Also GATE, a well known architecture for text processing
based on language processing modules, includes
resources for creating most of the functionalities
described in this paper, mostly for English but adaptable
to other languages. The focus –or restriction– on English
is a major issue for most text handlers, like, for instance,
the commercial software NLProcessor.

3. Project overview
 The two main concerns of the project are:
- Providing reliable text handling for Catalan, English

and Spanish, paying special attention to the fact that
Catalan is an under-resourced language and tools
that are specialized or general enough are not
available.

- Reducing the tagging errors of the subsequent
POS-tagger by recognizing multiword Named
Entities, non-analyzable items like URLs, etc.

3 CLARIN (Common Language Resources and
Technologies) : http://www.clarin.eu/external/

Conceptually, the text-handling system is rule-based, i.e.,
it neither takes any decisions based on stochastic methods
nor depends on a previous machine-learning process,
which would be cumbersome to implement, given the
lack of pre-existing, structurally tagged text. The
program is organized in fully independent modules that
allow interchangeability when necessary.

In order to improve the results and increase
configurability, the system depends on a series of
resources for any of the analysis languages:
- A grammatical phrase list (vid. 4.4)
- A foreign expression list (vid. 4.4)
- A follow-up abbreviation list (vid 4.1)
- A word-form lexical database, which is the same

lexicon employed by the POS-tagger (vid. 4.1)
- A stoplist, which is used to increase efficiency by

significantly reducing the required time to indicate
whether a given token is a word in the analysis
language or not (vid. 4.1).

The rule of thumb of the developing process has primed
the generality of rules, trying to leave the solution to
language-dependent phenomena to lexicon checking.
This has not always been possible (vid. 5.2), but none of
the aforementioned resources is a necessary requisite for
the system, although each of them contributes to the
quality of the results. A processing system for Italian, for
instance, could be started by merely providing a stoplist,
which is the most useful resource, as well as the easiest to
obtain.

4. Functionalities
As seen in the introduction, the text handler is a
rule-based system that uses a lexicon to complement its
set of rules to get around the general and
language-specific problems that a system like this can
attempt to solve without using deeper linguistic analysis.

Figure 1: IULA processing pipeline.

The figure above shows the IULA processing pipeline, in

Text handling

TreeTagger

IulaCT formatter

Lexicon

Config
files

Input text

Output for IulaCT

TT output

Handler output

Text handling

TreeTagger

IulaCT formatter

Lexicon

Config
files

Input text

Output for IulaCT

TT output

Handler output

23

which the text handler is inserted. InputText is the text to
be processed, which can have been manually revised. The
other rounded boxes describe the provided output formats
for the text handler, TreeTagger and format adapter for the
IULACT, although this paper only covers the details of
the first stage of the process, namely the text handler.

4.1 Sentence-boundary detection
Sentence-boundary detection is arguably the most
important task for any text handler that processes free text.
When sentences are detected, they are marked as
<s>…</s>. Periods are the most ambiguous typographic
element, since they can be indicators of abbreviations,
sentence boundaries, ordinal numbers, etc. A canonical
sentence boundary is a period, followed by blank space
(or a newline) plus a capitalized word. For instance, “...by
Europe. After...” must be tagged as “...by
Europe.</s><s>After...”. Although a sequence like “...Dr.
Smith...” looks superficially the same, it does not have a
sentence boundary within.

To address this problem and others of similar nature, a
number of strategies have been implemented. A follow-up
abbreviation list is used to avoid false positives in
sentence splitting. After a token like “Dr.” or “Mrs.”, the
system will accumulate the next capitalized word, instead
of generating a new sentence tag.

A similar problem appears with abbreviated names like
“Francis S. Fitzgerald”, which have no surface difference
from “Vitamin A. However...”. The word after the period
(“Fitzgerald” or “However”) is searched in the word-form
database. If the word appears on the list, it is not
considered a possible part of a name, and the previous
period is treated as a sentence boundary. The system
would detect the following sentence boundary: “Vitamin
A.</s><s> However...” but would maintain “Francis S.
Fitzgerald” as a full proper name. This heuristics fails for
last names that are actual words of the analysis language
(e.g. “J. R. Black”), but has nonetheless given good
results.

Since this text handling is conceived as a general tool and
not as corpus-specific, certain heuristics like
average-sentence length are not used.

4.2 General structure-marking
Paragraphs are tagged as <p>…</p> and formed by
groups of sentences, each group ending with at least one
blank line. Lists are marked as <list> and are groups of
items (<item>), each item beginning with a label like “-”
or “a)” or “1.2.3.b”, which appears as an attribute of the
<item> tag. Items share the hierarchy of a paragraph and
contain sentences.

Titles are marked as <head> and cannot contain more than
one sentence. They never end in a period, but might end in
punctuation marks like “?” or “!”.

4.3 Non-analyzable element recognition
Strings that match the regular expressions for URLs,
email addresses and IP addresses are tagged as
non-analyzable elements (<na>…</na>).

4.4 Phrase and loanword recognition
Given a list of grammaticalized expressions such as
adverbial phrases or complex prepositions of the chosen
language, strings that match them are tagged as <loc
pos=”X”>...</loc>. This way, a segment like “I found
them in front of the house” would be marked as “I found
them <loc pos=”P”>in front of </loc> the house”.

Assigning a single POS to a multiword expression spares
us from a more complex analysis in the following NLP
steps and significantly reduces the noise of our
POS-tagger in the following linguistic analysis stages.

Using a different phrase list as input for the same
algorithm allows the system to tag foreign expressions
with a <foreign lang=”XX”>...</foreign> tag. The most
extensive foreign expression list is for Latin idioms found
in technical literature such as “ad libitum” or “ex nihilo”,
or abbreviated Latin expressions like “vid.” or “ibid.”,
although other language lists are also available.

4.5 Date recognition
Full or partial dates are tagged and translated into their
ISO8601 representation. A date like “May 2nd, 1872” is
tagged as “<date ISO8601='1872-05-02'> May 2nd, de
1872</date>”. Several formats have been foreseen, from
strictly numerical to partial dates like “second of June”.

4.6 Number recognition
Both Arabic and Roman numerals are recognized. An
Arabic representation for each Roman numeral is
provided as a tag attribute. To minimize overlapping with
Named Entities, one-digit Roman numerals are not
marked to avoid overtagging structures like “X rays”.
Numbers expressed as words (or expected combinations
of numbers and words) are also tagged, like “one hundred
twenty-two” or “78 millions”.

4.7 Named Entity (NE) recognition
Capitalization is the basic clue for NE detection, as a
named entity is generally defined as a chain of one or
more capitalized tokens, possibly connected by a small set
of joining elements such as ampersands or prepositions,
like “Piero della Francesca” or “Jameson & Johnson”.
The major issue in this module is the tagging of a possible
NE at the beginning of a sentence, which will always be
capitalized, and is therefore ambiguous. In order not to
overtag, a series of heuristics deal with this phenomenon.

NE type recognition
Any multiword NE can be headed or tailed by a
type-defining word, like “Anson County Hospital” or
“Ministry of Foreign Affairs”, which are tagged as <name

24

type=“organization”>…</name>. Abbreviations can also
precede named entities and pinpoint their type, like “Dr.
Smith” (<name type=“person”>…</name>). The system
uses a list of those elements that are considered
unmistakable triggers for these types of named entities,
particularly persons (generally triggered by abbreviated
titles of address), organizations and locations.

Named Entity Type
Saint Matthew person
<abbr>St.</abbr> Matthew person
Saint Matthew’s Hospital organization
Ministry of Agriculture organization
Sunset Boulevard location

Table 1: Cases of NE type detection

Acronym expansion
A technical text very often presents segments of text
which contain definitions for acronyms, “Computed
tomography (CT) is a medical imaging method...”. When
a parenthetical acronym is found right after its full name,
its value is stored and added as an attribute to all the
<name> tags containing the acronym. A segment like “CT
was useful” would be tagged as “<name
expansion=”computed tomography”>CT</name> was
useful”, provided that a definition context like the
previously mentioned one is found within the input text.

This is used to provide finer information to the automated
summary or terminology extraction software, enabling the
relation of occurrences of a term in both complete and
abbreviated form.

4.8 Pre-tagged input
The text handler has been conceived to minimize or avoid
end-user annotation or segmentation, but sometimes it
may happen that the text obtained is already segmented or
that the user wishes to segment the text by himself to take
care of text peculiarities. Moreover, a user can also tag the
input texts to indicate some information that the system
would not be able to provide, e.g. tagging a large citation
in a foreign language with a <foreing
lang=XX>...</foreign> to make sure that it does not
interfere with the handler. The input parameters
SegmentedInput and Keeptags, respectively, allow the
system to process the input in the desired manner, and are
further explained in 8.2.

5. Language-specific issues
Each language of analysis presents a series of
typographical phenomena that can be problematic and
had to be addressed. The main problem that any
typographical phenomenon poses for our system is the
risk that, by not recognizing a token as a word (or
combination thereof) of the language, a false sentence
boundary or named entity might be set.

5.1 Catalan
The particular phenomena for Catalan are:
- Hyphenated verbal clitics: Verb forms in Catalan can

appear with a large list of pronominal clitics, which
means that verbal forms are very numerous. These
clitics, however, are written hyphenated, as in
“Trobant-la” (En. “Finding her”), which means that
they can be easily decomposed and analyzed to
determine whether their root (in our case “Trobant”)
appears in the lexicon or not.

- Apostrophes: Catalan also shows grammatical word
contraction, like preposition contraction in “D’avui”
(En. “of today”), which is the contraction of “De
avui”. The strategy to separate clitics from the verbal
root is also employed to determine whether the
analyzed token is a word of the language, since
“d’avui” should be considered as such and, therefore,
separated, but “D’Alembert” should not, and must
be kept together as a single token.

5.2 English
The particular phenomena for English are:
- Saxon genitive: Without any particular treatment for

Saxon genitives, a string like “Karl Marx’s birthday”
would be tagged as “<name>Karl Marx’s</name>
birthday”, which is not a desired output. Saxon
genitives (and contracted forms of the verb forms
“is” or “has”, as well) are separated from the names
they are attached to, for results like“<name>Karl
Marx</name>’s birthday”.

- Hyphenated nouns: Most hyphenated words will not
be present in the lexicon and can be partially
mistagged as <name>. Hyphenated words are split
or kept together depending on the capitalization of
their second element.

- Capitalized denonyms: In English, denonyms,
language names and some denominal adjectives are
written capitalized (“Englishman, Spanish,
Shakespearian”), although they are not named
entities. To solve that, an exclusion list is kept to
avoid mistagging tokens like “Texan” or “Oxonians”
with a <name> tag. The list currently ranks 12,000
entries, both singular and plural. The system only
excludes perfect matches on the lists, which means
that multiword named entities that include a token
from the exclusion list will still be tagged, like
“Spanish Foreign Office”.

5.3 Spanish
The particular phenomenon for Spanish is the problem
posed by non-hyphenated verbal clitics. For an infinitive
verb like “dar” (En. “to give”), there are 32 forms with
pronominal clitics (“darme”, “dármelo”, “dármela”,
“dármelas”, etc.), but none of them are hyphenated and
they cannot be separated without making mistakes. The
appearance of an acute accent in some forms makes a
brute-force stemming difficult and, as per now, Spanish
verbal forms with clitics must be kept in the lexicon to
determine if they belong to the language.

25

6. Evaluation
The output results of the current text handler have been
tested against a previous hand-tagged collection of texts
used as a gold standard. The DTDs of the gold standard
and the handling output are slightly different, and the
comparisons are an estimate — e.g. in the gold standard,
the text inside <item></item> does not need to be
enclosed between <s></s> sentence markers, whereas
they are mandatory in the handling output, although both
DTDs are CES-compatible. The first set of texts is a
60,000-word press corpus, and the second one is a
collection of eleven specialized articles on genomics,
ranking 38,000 words.

Tag Press Genomics
Sentence 99.39% 91.55%
Head 82.00% 92.20%
Paragraph 97.60% 97.11%
Name 95.43% 99.76%
Name0 76.85% 85.00%

Table 2: Accuracy rates

The Sentence, Head, Paragraph and Name rows show the
accuracy for the corresponding <s>, <head>, <p> and
<name> tags, whereas Name0 shows the performance of
the system when tagging a possible NE that appears in the
first-token position of a sentence, thus showing
ambiguous capitalization.

The sentence boundary detection performs significantly
better for the press corpus, which is understandable
because scientific literature shows formulae and other
non-expected elements that the system does not cope with.
The downside of press text is its name richness, which
becomes apparent on the lower accuracy for Name0 in the
press corpus. The variety of proper names is much larger
in press than in natural sciences.

7. Benchmarking
A representative value of number of words for the three
most common document types of corpus input – press
note, article, and full newspaper – has been used to
benchmark the throughput of the handler.

As seen in the Table 3, the duration of execution for the
three longest files is very different depending on the
language. The main cause is that the phrase and loanword
list for Spanish (vid. 4.4) is the most complete of the three,
whereas the list for English is the shortest one. The phrase
recognition module has an execution time which is
proportional to the length of its phrase list times the size
of the input file.

Language Words Time in seconds
300 4

3,000 36
Catalan

30,000 181
300 1

3,000 4
English

30,000 76
300 2

3,000 14
Spanish

3,0000 291
Table 3: Execution times

8. Web Service
The need to publish the text handler as a Web Service
arises when the following issues are considered:
- The deploying of the tool on a computer may be not

trivial for some users, as certain versions of Perl or
DB clients will not work.

- Keeping a single deployed Web Service up-to-date
guarantees the users that the code being executed
will always be the last available version.

- Access control to the DBs can be regulated in an
easier manner, since local users will not have to store
any configuration files with users and passwords.

Once the handler has been published for internal network
access, allowing external access seems the best idea,
given the current emphasis on common language
resources and distributed processing.

The most common pipelines in our system are:
- Handling + POS-Tagging + Loading into the IULA

Corpus
- Handling + POS-Tagging + Loading into

SketchEngine
- Handling + Terminology extraction (Cabré et al.,

2001)
- Handling + Automatic Summarization (Da Cunha et

al., 2009)

When deploying the Text Handler as a web service, there
are a number of decisions that will affect its potential
interoperability. Typically, a text handler is a link in a
longer chain or pipeline. Most input or output values can
be represented as strings, but a string is a basic type
without any service semantics to it. Therefore, we need to
specify our WSDL with a higher-level typing than simply
a string, to enhance interoperability and make integration
easier.

A common interface approach has been designed to
guarantee interoperability and service usability. Inputs
and outputs have to be typed so that they can be
understood by potential users. Whenever possible, ISOcat
standards have been used for parameter naming and
typing.

26

The parameters that have been deemed
implementation-specific have been made optional in the
WSDL, which leaves the small set of Language and
InputText as shared, general parameters that must be
provided for a WS invocation to work.

Parameter Name Description

Language Input language. Currently supports
text in Catalan, English or Spanish.

InputText The text to be processed.

[AnnotationFormat]
Sets output format. Can be
“Verticalized”, “TreeTagger”,
“IULACT” or “XmlTag” (default).

[InputMIMEType] Input text encoding, defaults to
UTF-8.

[OutputMIMEType] Input text encoding, defaults to
UTF-8.

[Keeptags] Keeps tags in previously tagged
input text. Defaults to “false”.

[Tagset] Chooses tagset from the available
list. Defaults to the IULA tagset.

[HtmlEntities] Encodes entities into characters.
Defaults to “false”.

[Filename] Filename for output header. Defaults
to a Timestamp.

[SegmentedInput]
Indicates the system that the input is
already segmented with a sentence in
each line.

Table 4: Web Service input. Bracketed parameters are
optional.

8.1 Mandatory parameters
The only mandatory parameters are Language, which can
be Catalan (“ca”), English (“en”) or Spanish (“es”), and
InputText, which contains the text that must be processed.

8.2 Optional parameters
Optional parameters allow more precise use of the system,
which is not assumed in the core functionalities.
- The InputMIMEType and OutputMIMEType

parameters are fairly straightforward and allow the
user to determine the encoding that the InputText or
OutputText have.

- AnnotationFormat determines the type of output
provided and is further explained in the next section.

- Keeptags is a boolean flag that allows the system to
keep any Xml tag that the input might contain, or to
remove them if set to “false”. It can be used to clean
Html text or, on the contrary, to preserve any other
annotation that the text previously had.

- HtmlEntities set to “true” takes Html character
entities like “à” and converts them to their
corresponding character value (“à”, in this case).
This parameter is useful to automatically clean Html
files, along with Keeptags set to “false”.

- SegmentedInput prevents the system from running
the sentence boundary detector and respects the
sentence-per-line input indicated by the user.

8.3 Output
For interoperability reasons, we have devoted special
efforts to accommodate the Text Handler to the
requirements of current and potential providers. All of the
used formats or the processing stages in studied pipelines
have been listed and grouped as possible values for the
optional parameter AnnotationFormat.

Again, our approach has tried to abide by standards as
much as possible, and the CES-compliant format has been
considered the default output option. Current practices,
however, require that we include additional output
formats such as the de facto standard verticalized format,
in order to cover a wider array links between our handler
and other text-consuming applications.

AnnotationFormat Description

XmlTag SGML CES-compliant Xml
Tagging.

SentencePerLine
No Xml Tagging, every sentence
or head takes one line in the
output format.

Verticalized Xml tagging, one token per line.

TreeTagger As above, with specific format
for TreeTagger input.

Table 5: Values for the AnnotationFormat parameter.

XmlTag:
This value for AnnotationFormat generates an Xml string
which is SGML CES-compliant.

OneSentencePerLine:
This value for AnnotationFormat outputs plain texts
without tags, each line of the text being what the system
considers a sentence or head.

Verticalized
This value for AnnotationFormat is the general,
all-purpose format for tokenized –also known as
verticalized– text, in which each token or tag takes a
single line in the text. This is the typical input for most
POS-Taggers.

TreeTagger
This value for AnnotationFormat provides as output the
results of the POS-tagger TreeTagger. POS-tagging is the
next step after tokenization, and this output value includes
the previous step (Verticalized).The results are tokenized,
with each token or tag taking one single line in the output
text.

27

IULACT
This value for AnnotationFormat gives the POS-Tagged
input text (see previous step) that has been transformed
into the input format of the IULACT.

8.4 WSDL
Interoperability and reusability best practices require that
we define services in a modular fashion. Thus, we
distinguish between type definitions, message definitions
and binding, as set by the WSDL consensus. Type
definitions are designed to enable type sharing and service
level semantics above basic types. Separating Messages
from Binding will allow multiple service bindings to the
same message.

Table 6 shows the operation in the WSDL, in which input
and output messages are assigned the corresponding type.

Operation

<operation name="TextHandler">
<input message="typens:InputHandler"/>
<output message=" typens:OutputHandler "/>
</operation>

Table 6: WSDL excerpt

The InputHandler type defined in Table 7 distinguishes
between base input parameters and optional parameters.
The first ones are grouped into the BaseHandlerIO type
and are compulsory. The second ones are collapsed into
the OptionalHandlerIO.

Input

<complexType name=" InputHandler ">
<all>
<element name=”base” type=”xsd:BaseHandlerIO”>
<element name=”optional” type=”xsd:OptionalHandlerIO”>
</all>
</complexType>

xsd: BaseHandlerIO

<element name="Language" type="xsd:Language-ISO639-1"/>
<element name="TextFile" type="xsi:TextFile" />

xsd: OptionalHandlerIO

<element name="OutMode" type="string" minOccurs="0" />
<element name="InputEncoding" type="string" minOccurs="0"/>
<element name="OutputEncoding" type="string" minOccurs="0"/>
<element name="Filename" type="string" minOccurs="0"/>
<element name="Keeptags" type="boolean" minOccurs="0"/>
<element name="HtmlEntities" type="boolean" minOccurs="0"/>

Table 7: WSDL excerpt

The shown typing reflects the attempt to provide
comprehensive, standardised and interoperable
descriptions for text handler-like service. This first
approach proposes a simple way of encapsulating
implementation-dependent parameters and separating
them from base and (hopefully) uncontroversial input
parameters.

Higher service-semantic typing for base parameters will
allow common type descriptors and type sharing between
services. It is reasonable to expect that these parameters
will be assigned some type from a central Namespace
registry.

The type for Language is also a general trait that can be
standardized. The system uses the two-letter standard ISO
639-1 (“ca”, “en” and “es”), but it could be modified to
accept the three-letter versions after ISO 639-3. Language
format specification is also a significant aspect for the
setting of a common interface.

The type for language is xsi:TextFile, which can either
contain its data in a string value or point to an URI. This
enables the system to process an input string or read the
text from a source in the Web.

Output

<complexType name="OutputHandler ">
<all>
<element name=”base” type=”xsd: BaseHandlerIO”>
<element name=”optional” type=”xsd: OptionalHandlerIO”>
</all>
</complexType>
xsd: BaseHandlerIO

<element name="Lang" type="xsd:Language-ISO639-1"/>
<element name="Text" type=" xsi:TextFile " />

xsd: OptionalHandlerIO

<element name="OutMode" type="string" minOccurs="0" />
<element name="InputEncoding" type="string" minOccurs="0"/>
<element name="OutputEncoding" type="string" minOccurs="0"/>
<element name="Filename" type="string" minOccurs="0"/>
<element name="Keeptags" type="boolean" minOccurs="0"/>
<element name="HtmlEntities" type="boolean" minOccurs="0"/>

Table 8: WSDL excerpt for output parameters

Optional parameters are no further typed, but rather they
are collected under a ‘local’ type (very often, a string) and
can be assigned a default value.

Note that this strategy allows decoupling complex
command line parameters from WSDL interfaces. We
can change or add new parameters and never impact the
full WSDL description.

The type defined in the tables above as BaseHandlerIO is
a straightforward tuple of language and text, which can be
either input or output (ideally both, when seen as a part of
a process pipeline).

Any Web Service that does any form of text handling or
preprocessing will have this tuple as input. This minimal
data structure can be proposed as the base Input/Output
unit for any application of this kind.

28

The basic data types are shared between input and output
operations, which allow us to have a single type
(BaseHandlerIO) for both. This is desirable, due to the
fact that an HTL process pipeline chains its outputs as
inputs for the subsequent modules.

9. Conclusions

Text Handler
We consider that the basic aim has been fully reached, as
any text in the target languages may be successfully
processed with a minimal effort. Also some additional
information may be manually added if the users consider
it is necessary.

The benefit of each of the lexical resources is not the same,
the stoplist being both the most useful (as it avoids the
largest amount of false positives on Name0 recognition)
and the easiest to obtain. Phrase and loanword recognition
can become a processing bottleneck. Therefore, an
optional parameter could be added to switch this module
off, if only sentence boundaries are desired.

The system has been developed with a general-purpose
scope in mind, but the nature of the input texts naturally
biases the quality of the possible output. More canonical
(e.g. press) texts will provide cleaner segmentations than
texts with more typographical variety, like scientific
writing.

Web Service
The importance and usefulness of minimal, common
interfaces has been assessed. Providing Web Service data
interfaces that separate their general, domain-specific
input/output values from those that are set by the
implementation allows us to build processing pipelines in
an easier manner.

10. Further work
The further work consists in the subsequent deployment
of the other stages of the IULA’s processing pipeline as
Web Services, as well as expanding the number of
languages that the text handler can accept.
The work on separable clitics and the like has already
been implemented, which means that including new
languages in the processing system would require the
addition of the lexical resources described in 3 and little or
no coding for languages like Italian, French or Dutch.
German, however, would require a completely different
Named Entity recognition strategy, since all nouns are
capitalized.

11. Acknowledgements
This project has been made possible by the funding of the
CLARIN project. The CLARIN project in Spain is
co-funded by the 7FP of the EU
(FP7-INFRASTRUCTURES-2007-1-212230) and the

Spanish Ministerio de Educación y Ciencia
(CAC-2007-23) and Ministerio de Ciencia e Innovación
(ICTS-2008-11). Furthermore, the Departament
d'Innovació, Universitats i Empresa of the Generalitat de
Catalunya has funded the development of a demonstrator
that guarantees the integration of the Catalan language in
CLARIN.

12. References

Cabré, M.T.; Estopà, R.; Vivaldi, J. (2001) Automatic

term detection: A review of current systems. In Recent
Advances in Computational Terminology, John
Benjamins, Amsterdam :

Carreras X, Màrquez L. and Padró L. (2002). Named
Entity Extraction Using AdaBoost. In Proccedings of
CoNLL 2002. Shared Task Contribution. Taipei,
Taiwan

Clough, P. D. (2001). A Perl program for sentence
splitting using rules. University of Sheffield:

Corpus Encoding Standard :
http://www.cs.vassar.edu/CES/

DaCunha, Iria; Torres-Moreno, Juan-Manuel;
Velazquez-Morales, Patricia; Vivaldi, Jorge (2009).
"Un algoritmo lingüístico-estadístico para resumen
automático de textos especializados" en Linguamática
2. Pàg. 67-79. ISSN 1647-0818
http://www.linguamatica.com/index.php/linguamatica/
issue/view/2

Freeling: http://www.lsi.upc.edu/~nlp/freeling/
GATE: http://gate.ac.uk/
IULA - Institut de Lingüística Aplicada :

http://www.iula.upf.edu/
IULACT: http://www.iula.upf.edu/corpus/corpuses.htm
ISO-639-1 :

http://www.infoterm.info/standardization/iso_639_1_2
002.php

ISOcat : http://www.isocat.org/
JULIE NLP Toolsuite:

http://www.julielab.de/Resources/Software/NLP_Tools.
html

NLTK: http://www.nltk.org
Padró M. and Padró L. A Named Entity Recognition

system based on a finite Automata, Acquisition
Algorithm, Universidad Politécnica de Catalunya.

Reynar J. C. and Ratnaparkhi A.(1997). A Maximum
Entropy Approach to Identifying Sentence Boundaries.
In Proceedings of the fifth conference on Applied
natural language processing, NY. USA : 16–19

Sketch Engine: http://www.sketchengine.co.uk/
TreeTagger:

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeT
agger/

Vivaldi, J. (2009). “Corpus and exploitation tool:
IULACT and bwanaNet”, CILC-2009, Murcia, Spain.

29

A Generic Chaining Algorithm for NLP Webservices

Volker Boehlke
NLP Group – Department of Computer Science – University of Leipzig

Universität Leipzig, Institut für Informatik, PF 100920, 04009 Leipzig, Germany

E-mail: BoehlkeV@informatik.uni-leipzig.de

Abstract

This paper will point out why chaining of webservices can be compared to the type checking process used in most

compilers for common programming languages. Based on that point of view, it will be discussed, how the specification of

input parameters and output values of textual NLP webservices should look like, in order to allow the implementation of

a generic chaining algorithm. The concept and implementation of an automatic chain builder based on this algorithm is

discussed. Furtheron the general design of a simple infrastructure is described. This infrastructure allows users unaware

of the underlying specifications and algorithms to build custom process chains out of elements implemented as

webservices. The DSpin
1
 prototype, one of the german contributions to the Clarin

2
 initiative, is a basic proof of concept

implementation for the most important parts of this infrastructure. The paper will give a quick overview of the current

state of this prototype. Some of the available services, tools and applications will be described and additionally the limits

of the current implementation will be discussed.

1
Deutsche Sprachressourcen Infrastruktur; The German

complement to Clarin. See http://www.d-spin.org/
2
Common Language Resources and Technology

Infrastructure. See http://www.clarin.eu/

1. Introduction

1.1 Motivation

More than ever the scientific world today is a globalized
world. People not only travel into distant countries to give
lectures or to study, but they work together every day by
using the communication services provided by the world
wide web. Technology closes geographical gaps and
allows highly specialized scientists to work in teams
distributed all over the world. Communication technology
has become a driving force for collaboration and
competition not only in the scientific community.

But sharing information, thoughts and results is only the
first step towards a web based science community. Along
comes the need to share data and algorithms, resources
and tools. In a world where communication is cheap and
information is available on a world wide scale, the need to
reuse the work of others, to base work on resources
provided by an institution situated in a distant country, to
creatively combine tools implemented for a different
purpose in order to solve problems becomes more and
more important.

In the IT world, more exactly in software technology, this
problem is known since several decades. Reusing once
implemented code again and again was one of the first
challenges being tackled. Starting from small, module
based systems the development quickly went on to
libraries providing highly optimized functionality
accessible through easy to use API's and further on to

component based systems especially designed to support
the dynamic composition of complex applications out of
reusable, versioned and loosely coupled components.

When it comes to the construction of systems based on
access to distributed components, giving access to
resources and tools, SOA's, service oriented architectures,
are currently the common technology to use. The question
on how the different services and components available in
such an infrastructure can be orchestrated by
unexperienced users is a very difficult one. This is
because it involves the knowledge on how these single
services work, which data formats are used to represent
the data being computed and how the dependencies of
these different services to each other look like from a
semantical point of view. If it is intended to not concern
users with these topics, an automatic system assisting the
user while orchestrating available services in order to
solve the problem at hand is needed.

In this paper we will concentrate on a generic chaining
algorithm and its ramifications on a simple infrastructure
utilizing this algorithm in a basic workflow system. It is
not intended to build a fully fleshed SOA or to describe
the wiring of this algorithm to established, professional
workflow tools. But the experiences and facts described
in this paper will hopefully help in the implementation of
such an infrastructure and to evaluate possible candidate
components and solutions in the future.

1.2 Relation to previous work

When it comes to the creation of workflows and the

chaining of webservices the focus very often is put on

30

tools allowing to define business processes in a graphical

user interface and standards designed to describe those

workflows. But the problem not only is to define the order

and dependencies of services in a workflow, but to close

the structural and semantic gaps between those possibly

heterogeneous services forming the workflow. In [6]

Cardoso and Sheth point out, that not only the structure of

the data being computed by those services, but also the

understanding on what a certain piece of information

really means can differ. As a solution they propose a

system that uses ontology based schema integration in

order to discover services and to overcome the semantic

and syntactic differences when being integrated into a

workflow. The same issue is addressed by Shiyong,

Bernstein and Lewis in [7] from a more theoretical point

of view. Their approach on chaining and automatic

workflow generation is in several aspects, especially

concerning the concept of preconditions and

postconditions, similar to the one described here.

In this paper the generic chaining of NLP webservices

will be discussed from a practical point of view. A basic

chaining algorithm suitable for most of the tasks at hand is

introduced and its usage as part of an automatic chain

builder will be discussed. Additionally a limited

infrastructure supporting the functionality and making use

of both algorithms is described.

2. Chaining

2.1 Chaining of NLP webservices

Chaining of webservices can be compared to the nesting

of functions in programming languages. The result of

function af is used as a parameter of function bf , its

result is consumed by a function cf and so on: ()()abc fff .

If such a “workflow” is defined by code in a programming

language, a type checker is used to determine whether the

return type of af matches the input parameter definition

of bf . Note that this check usually is done during

compile-time, but is possible and sometimes also done on

run-time.

If we look at chaining of webservices from this point of

view, chains can be build based on formal specifications

of “input parameters” and “return types” of the

webservices intended to be chained. This has to be done

on build-time of the chain, because the amount of data

being computed and the amount of time and resources

needed to do that can be very high. In order to make sure a

specified chain is valid, we need to use a type checker on

the parameters and return types of those webservices

forming the chain. But what are these types?

In programming languages some basic predefined types

are usually present, while new types can be built out of

these basic building blocks. Common basic building

blocks are strings, representations of numbers and a set

type. In NLP possible candidates for these basic building

blocks are text, tokens or POS-tags. Just like a number

may be represented in different ways (low/big endian,

integer/floating point), this kind of data can be encoded

using different standards too. For text this may be

iso-latin1 or utf8 and for POS-tags these are many

different not necessarily comparable tag sets.

Another aspect that needs to be addressed is the format

issue. If we plan on interchanging and annotating text

using webservices, the data we send to these services and

the data that is produced should be based on established

standards, like those provided by the Text Encoding

Initiative, TEI
3
. On an abstract level this means an NLP

webservice for text produces and possibly consumes:

1) A document formatted according to a defined

standard, for example TEI P5 or

DSpin-TextCorpus
4

2) A document containing a certain set of types of

information, for example POS-tags,...

3) … which are either just present or also encoded

using a specified standard, for example STTS
5

for POS-tagging in german.

By definition this also means that our services are

working document based. The data send to a service

consists of only one document which holds all the

information this service will work on. Of course

additional data will sometimes be used in the background

in order to implement the functionality of the service.

Additionally we specify, that a service just adds, but does

not remove any information from the input document it is

invoked with.

Summing this up, a complete service description from the

point of view of a chaining algorithm consists of two

identically structured specifications. An input and an

output specification. These specifications consist of a

format that is used to represent the data and a set of pairs

of parameter-types and standards definitions for these

types. The input specification represents the information

that needs to be present in the input document, while the

output specifications defines which kind of information is

produced by the service and is additionally present in the

output document. Table 1 and 2 show examples for the

input- and output specification of a POS-tagger

webservice, that consumes documents according to the

TextCorpus-Format, which contains german text that was

split into tokens. It produces a TextCorpus document

additionally containing POS-tags based on the

STTS-tagset. A graphical representation of the invocation

3
An organization which maintains a format for digital text

representation. See http://www.tei-c.org/index.xml
4
A corpus representation format for linguistic webservices

used in DSpin. See [5] for details.
5
Stuttgart Tübingen Tagset. See http://www.sfb441.uni-

tuebingen.de/a5/codii/info-stts-en.xhtml

31

of this service is shown in Figure 1.

 Format TextCorpus

 Input

 text = utf8

 language = german

 tokens = present

Table 1: Example input specification for a POS-tagger

webservice.

 Format TextCorpus

 Output POS-tags = STTS

Table 2: Example output specification for a POS-tagger

webservice

Figure 1: invocation of a POS-tagger webservice

2.2 A generic chaining algorithm

If the input- and output specification of webservices is

structured as described above, a generic chaining

algorithm can be implemented. Based on the information

extracted from these specifications the chaining algorithm

is able to determine whether a service nWS can be

executed after a chain
6
 of other services { }11 ...

−nWS,,WS , by

checking the following constraints:

1) The format specified in the output specification

of the previously run service 1−nWS has to be

equal (which means the exactly same format is

used) to the format specified in the input

specification of service nWS .

2) All parameter-type/standard pairs out of the

input-specification of nWS need to be present in

the set of pairs produced by the previously

executed services in the chain { }11 ... −nWS,,WS .

If both checks come up with a positive result, nWS is

compatible and can be added to the end of the chain
{ }11 ...

−nWS,,WS . While the first constraint appears rather

simple, the second in detail proves to be the more

complex one. In simple cases the algorithm just has to

accumulate the parameter-type/standard pairs of all

services in the chain in order to match those against the set

of needed inputs. Figure 2 demonstrates the construction

of a simple chain based on this algorithm.

6
this also includes chains consisting of only one service,

for example a data service at the begin of a chain about to
be build

Figure 2: simple chain

But there is one exception to this simple process. If a

service converts from one format to another, it might not

be possible to represent a certain type of information in

the output format, that was present in the input. One cause

may be, that the output format simply does not support

this kind of information. Another possible cause is, that in

the input format the information is expressed in a more or

in a less detailed way, than it is possible in the output

format. Therefore we would need to remove some

parameter-type/standard pairs and add other ones to the

set of available pairs. This breaks the boundaries of what

can be expressed based on the currently simple input and

output specifications.

Therefore we may define that in case the input format of a

service differs from the format specified in the output, all

produced parameter-type/standard pairs have to be

specified. A better and more complex solution is, to allow

the definition of If-clauses like “If this set of

parameter-type/standard pairs is present in the input, the

following set of pairs will be present in the output” in the

output specification. All needed information is still

available during “build time” of a chain. If-clauses should

be allowed not only for converter services, but in all

service specifications because this drastically widens the

expressiveness of service specifications. In the prototype

implementation of the chaining algorithm we choose to go

for the first basic solution without If-clauses in order to

keep things simple.

The chaining algorithm is limited to the knowledge

available at “build time” of the chain and therefore to the

input-/output specifications of the services. There is no

way to foresee run time errors that might occur when

executing the chain. The algorithm as it is described

above works independent from the data that is computed.

It is also independent from the way formats and the

input-/output parameter-type/standard pairs are specified.

But there has to be an agreement on how to reference a

certain format, parameter-types and standards. Section 3.1

will give more information on how this may be done in

the NLP domain in a standardized way.

2.3 An automatic chain builder

The chaining algorithm discussed in the previous section

may be used as one of the core components of an

automatic chain builder. Given a repository of services we

want to build chains from a starting point to an end point.

The starting- and end-points are specified by services.

Given a list allL of services and a start-point service W start
and an end-point service endW , both contained in allL , a

basic automatic chain builder algorithm looks like this:

32

1) Create an empty list of service

chains cL

2) Create a one element chain

{ }startW=C

3) Copy all elements of allL
 to an

previously empty list of

services sL

4) Remove all services from sL that

are not compatible to the last

entry in C , according to the

chaining algorithm.

5) Remove all services from sL

that are already present in C

6) For each entry S in sL :

Create a copy 2C of
C and add

S to the end of 2C

if endW=S :

yes: add 2C to cL

no: recursively go back to 3)

and set 2C=C

Once this recursive algorithm stops, all possible chains

consisting of services from allL , from W start to endW will be

present in cL . If no such chain exists, the result list is

empty. Because of the constraint in step 5 circles are not

possible and therefore the recursive algorithm will

definitely stop. If we look closely on this basic

implementation of the algorithm, there are a few problems

we may have to solve.

A first problem is, that there will be many chains present

which are possible doublets. We define a chain C to be a

doublet of chain D , if its services { }nD,,D ...1 are just a

reordering of the services { }nC,,C ...1 in C . A simple check

for doublets ignores the order of the services in chains and

just evaluates, if the two sets of services being present in

the according chain, do consist out of the same members.

If this check is performed for the chain 2C , created in step

6) of the algorithm, against all already present chains in

the List of results cL , the performance of the algorithm

can be improved significantly, because many recursions

don't need to be executed. Please note that the way

doublets were defined is motivated only on a syntactical

but not on a semantical level. It is possible to define

doublet chains that, given the same input, will result in

different documents in the end. These documents might

even be equally structured, which means they do contain

the same type of content. But the information stored in

them can still be different.

Another problem is that, given even small numbers of

services, the amount of results can be very high. Even

though sorting out all doublets decreases this number

significantly, the number of results may be too big in

order for a human user to explore. Therefore a ranking

system for the chains should be introduced. A basic

implementation of a ranking system can be based on the

length of the chain. This simple solution proved to be

helpful in the prototype infrastructure. But a shorter chain

not necessarily needs to be “better” than a longer one.

Aggregator services, services aggregating the

functionality of several other services usually available

independently from each other, will in many cases be part

of shorter chains. Let's assume an aggregator service A

aggregates 5 services { }51 ... W,,W . A user may only need to

make use of 1W and 2W , but because A appears as a single

service to the ranking system, a chain containing A , that

is otherwise identical, will be higher ranked than the

longer alternative containing 1W and 2W . But A will

produce information the user does not need and will

potentially consume a high amount of resources while

doing so.

A better implementation of the ranking algorithm should

make use of user feedback or the fact that certain chains

are often built and executed, probably because the users

felt the given combination of services works well. This

data needs to be obtained by other components of the

infrastructure.

3. Infrastructure

3.1 Building a basic infrastructure that utilizes
the chaining algorithm

In the previous sections we described a chaining

algorithm that works on parameter-type/standard pairs,

but we didn't explain how these values are defined or

where they are stored and managed. We also described an

automatic chain builder algorithm that in one of its steps is

based on the knowledge of all available services. But it

wasn't defined where this knowledge should come from.

In order to clarify these questions, the basic building

blocks of an infrastructure that can be build around these

two algorithms and allows the maintenance of all

necessary data will now be sketched out.

In a SOA the exposed functionality of all infrastructure

elements is available through services. Complex

operations are orchestrated out of available, reusable

services. Therefore a findAllAvailableServices-function

that can be used in the automatic chain builder is one of

those basic services offered by at least one component of

the infrastructure. The chaining algorithm which

determines whether a certain services can be run after a

chain of other services is another basic service. These two

basic services are “orchestrated” in order to implement

the complex “automatic chain builder“-process. Figure 3

shows a sketch of this simplified infrastructure.

33

Figure 3: simplified infrastructure

All available services descriptions are stored in a service

repository. This repository offers methods, which allow to

add, update and remove services that may be used as part

of a chain. It also exposes a findAll-method which returns

the service description of all available services in the

repository. This method is used by the “automatic chain

builder”-component which itself is based on another

service implementing the chaining algorithm.

In this first sketch the infrastructure lacks an application

layer which allows human users to comfortably interact

with infrastructure services. One important application in

this respect is a basic workflow builder and handler, that is

used to build the process chains according to the needs

and specifications of an external user. In order to fulfill

this task, the workflow tool uses the repository, the

chaining algorithm and the automatic chain building

services and offers a graphical user interface that reflects

information obtained by these services. A user may search

for or browse through the available services. Depending

on the problem to be solved, the user is able to select a

service out of the available ones and, by using the

chaining algorithm, to manually build a chain step by step.

Additionally the automatic chain builder may be used

after each step in order to make proposals of possible

chains according to a user defined end point. The

workflow tool also has the responsibility of invoking

chains and handling runtime errors that might occur. The

result of a chain invocation can either be passed on to an

external tool or be presented directly to the user.

Another important application can be named “repository

manager”. A graphical user interface simplifies the

access to basic repository functions in order to allow

human users to add, update or remove services from the

service repository. The service descriptions stored in the

repository are structured according to section 2.1.

Therefore an additional infrastructure component which

allows to define, store and manage the basic building

blocks of these service descriptions is needed. These basic

building blocks are input- and output formats and

parameter-type/standard pairs. A specification on which

parameter-type/standard pairs are valid combinations and

which of these pairs are valid in which formats has to be

done in order to support the user when registering new or

managing the attributes of existing services.

Since the chaining algorithm and the whole infrastructure

is not based on deeper knowledge of the inner structure of

the data being computed, the same rule has to apply to this

component too. This new component allows the following

actions:

− creation of format-, parameter-type- and

standard identifiers, such as TextCorpus,

POS-tags and STTS

− definition of valid parameter-type/standard pairs:

for example POS-tags = STTS is valid, but

tokens = STTS is not

− description of a format by referencing valid

standard identifiers to it: POS-tags are a member

of TextCorpus, but it is not possible to add audio

data to a TextCorpus document, because the

format simply doesn't support it

The task of defining a correct set of formats and

parameter-type/standard pairs that holds no conceptual

doublettes and reflects the actual definition of the used

format as well as possible, is a very diffcult one.

Therefore the data stored in this component should be

based on profound work on this matter. In NLP the ISOcat

DR
7
 can be used in order to reference uniquely identified

concepts.

Figure 4 shows a sketch of this more complete

infrastructure. For simplification the task of storing

format definitions was added to the already existing

repository component. Additionally an application layer

consisting of a worklow builder tool and a repository

management tool was added. The repository management

tool links to the ISOcat DR in order to allow the usage of

concepts and unique identifiers when specifying a format

and its members consisting of parameter-type/standard

pairs.

Figure 4: advanced infrastructure

3.2 The DSpin prototype infrastructure

The DSpin prototype is a partial implementation of the

infrastructure that was just described. It consists of a

service repository which stores its data in a MySQL

7
ISOcat DR: ISOcat datacategory registry. A registry for

data categories, which stores a unique identifier along
with other metadata. See [3] and http://www.isocat.org/

34

database. The chaining algorithm and the automatic chain

builder webservices are currently running on the same

machine. This decision was made because of performance

issues due to the amount of requests the automatic chain

builder currently sends to the chaining algorithm.

Especially once the number of available services grows

significantly, this might otherwise result in the automatic

chain builder service running too slow. Although it is

possible to reduce the amount of calls to the chaining

algorithm service significantly by adding a cache, the

automatic chain builder needs further optimization if the

chaining algorithm service should run remotely in this

scenario.

All services intended for chaining currently need to be

implemented as REST webservices and rely on

HTTP-POST in order to receive the request/input

document. Infrastructure services, such as the

findAllAvailableServices-function of the repository or the

chaining algorithm, are implemented based on

HTTP-GET using Java Servlets and the Apache Tomcat

webserver. The responses of infrastructure services

consist of simple XML-files containing the requested

information, for example a list of services including

technical metadata like service-urls, input-/output

specifications and others.

On the application layer there are currently two

applications available. The first one is the repository

management tool which allows to manage the services

available in the repository. When the DSpin prototype

project started, it was unclear if the currently available

data categories in the ISOcat DR were sufficent in order to

describe all services intented to be added to the prototype

infrastructure. Instead a proprietary set of unique

identifiers, used for identification of formats, parameter

types and standards, was specified and hardwired into the

management application. There is no usage of the ISOcat

DR or some other registry up to now. The management

tool also includes a basic workflow system that makes use

of the chaining service and is designed to be used for

testing purposes.

The second application available is the WebLicht web

interface
8
, which is a web-based workflow tool. It allows

human users to easily build and invoke process chains by

making use of the chaining algorithm. The chaining

webservice is invoked based on the services already

present in the chain currently beeing specified. The results

of this webservice call are offered as compatible services

to the user. Step by step the user is able to build a valid

process chain according to the task at hand. Currently

there is a wide range of services available. These services

are offered by several partners from different countries.

Some of those provide resource access, such as

coccurrences, frequencies, example sentences and several

others provided by the corpus portal of the “Deutscher

8
See http://clarin.sfs.uni-tuebingen.de:8080/WebLicht1/

Wortschatz”-project
9
 or access to GermaNet, TüBa-D/Z

10

and others. Some other services provide access to tools.

Beside many other tool-services several tokenizers and

pos-taggers for different languages, a semantic annotator,

a constituent parser and a morphological analyzer for

german are available. The huge majority of these services

is currently based on the TextCorpus-format, which was

introduced at an early stage of the DSpin prototype

initiative.

Figures 5 and 6 show screenshots of the DSpin repository

management tool and weblicht.

Figure 5: DSpin repository management tool

Figure 6: WebLicht

4. Conclusion

The DSpin prototype proves the capabilities of the basic

implementation of the chaining algorithm that is currently

used. It allows experienced users to build custom process

chains out of services available in the prototype

infrastructure. A future implementation should set its

focus on the usage of existing and well established

standards and techniques. For example, it should be

checked whether SOAP-webservices and services

descriptions based on WSDL are compatible to the

currently used approach. Security aspects are also a big

concern. In the current infrastructure security

functionality can only be enforced on the application layer

but not on the level of services. The proposal of defining

valid combinations of parameter-type/standard pairs by

9
A webportal, which provides access to over 50 corpora

based monolingual dictionaries. See [2] and
http://corpora.informatik.uni-leipzig.de/ for details.
10

TüBa-D/Z: A german treebank. See [1] for details.

35

referencing to ISOcat data categories in order to describe

the content of documents and to define input-/output

specifications of webservices also needs further practical

evaluation. These and other aspects will be addressed by

the upcoming Clarin infrastructure in the future, which

may make use of a more advanced implementation of the

chaining algorithm and the experiences gathered on the

implementation and maintenance of the DSpin prototype.

Future experiments should focus on the performance and

scalability of the chaining- and the automatic process

chain builder algorithms. Especially the automatic chain

builder algorithm needs to be improved in order to work

over several thousand or even more services that will be

available in the upcoming infrastructures. The possibility

of using user generated feedback on process chains

invoked in the past, either directly entered by the users or

indirectly gained by the usage of services, in order to

improve the quality and ranking of results and the speed

of the automatic chain builder should be explored and

evaluated in a real application.

5. References

[1] Telljohann, H.; Hinrichs E.; Kübler, S. (2004). The

TüBa-D/Z tree-bank: Annotating German with a

context-free backbone. Proceedings of the Fourth

International Conference on Language Resources and

Evaluation (LREC 2004), Lisbon, Portugal, 2004.

[2] Quasthoff, U.; M. Richter; C. Biemann (2006). Corpus

Portal for Search in Monolingual Corpora.

Proceedings of the fifth international conference on

Language Resources and Evaluation, LREC 2006,

Genoa, pp. 1799-1802.

[3] Kemps-Snijders, M.; Windhouwer, M.A.; Wittenburg,

P.; Wright, S.E. (2008). ISOcat: Corralling Data

Categories in the Wild. European Language Resources

Association (ELRA) (ed), Proceedings of the Sixth

International Conference on Language Resources and

Evaluation (LREC 2008), Marrakech, Morocco, May

28-30, 2008.

[4] Hinrichs, E.; Hinrichs, M.; Zastrow, T.; Heyer G.;

Boehlke, V.; Quasthoff, U.; Schmid, H.; Heid, U.;

Fritzinger, F.; Siebert, A.; Didakowski, J. (2009).

Weblicht: Web-based LRT services for German.

Workshop on linguistic processing pipelines, Potsdam,

GSCL Jahrestagung 2009.

[5] Heid, U.; Schmid, H.; Eckart, K.; Hinrich E. (2010). A

corpus representation format for linguistic web

services: the D-SPIN Text Corpus Format and its

relationship with ISO standards. LREC 2010.

[6] Cardoso, J.; Sheth, A. P.; 2003. Semantic e-workflow

composition. Netherlands: Journal of Intelligent

Information Systems 21:3, pp. 191-224.

[7] Shiyong, L.; Bernstein A.; Lewis, P. (2006). Automatic

Workflow Verification and Generation. Theoretical

Computer Science (TCS), 353(1-3), pp. 71-92.

36

A Graphical Interface for Computing and Distributing NLP Flows

Ionuțțțț Cristian Pistol, Andrei Arusoaie, Andrei Vasiliu, Adrian Iftene

General Berthelot Street, 16, Iasi 700483, Romania

E-mail: {ipistol, andrei.arusoaie, andrei.vasiliu, adiftene}@infoiasi.ro

Abstract

Large scale linguistic processing flows are more common now than ever. Virtually all well-known NLP meta-systems (such as GATE

and UIMA) are developing functionalities to allow users to build and run processing flows using web-services as components or using

networked computers as a cluster or Grid in order to speed up the execution of complex applications on large corpora. ALPE

(Automated Linguistic Processing Environment) is a newly emerging NLP meta-system similar to GATE and UIMA but aiming at

improved usability by users less familiar with programming and NLP, such as humanities and social studies specialists. GECC

(General Environment for Cluster Computing) is also a newly developed distributed computing environment managing computer

clusters capable of running flows. This paper describes our proposed merging of ALPE and GECC to produce a system which has the

potential to solve many of modern day NLP challenges as defined in projects such as CLARIN and FLaReNet.

1. Introduction

Making sure that corpora, resources and tools are reusable

in different contexts than that of the originating project is

one of the recent main topics of interest in the Natural

Language Processing community. Re-using a resource

initially developed for a specific project usually fails for

one of two reasons: either the resource is not properly

documented (the requirements are not known to the

re-user), or the resource is not directly accessible (the

location or the availability are not known to the re-user).

Making sure a project’s results are well organized and

accessible ensures a better impact and a longer lasting

significance, as more people will be able to use the

developed resources and tools. Projects such as CLARIN
1

and FLaReNet
2

, among others, intend to offer both

developers and users of language resources and tools a

management solution for the growing set of resources

available. The primary objectives of these projects are to

provide reusability in new contexts for existing resources

and to guarantee maximum visibility and reusability for

newly developed resources. An easy widening of the

original setting of usage means a multiplication of the

visibility of a tool and, finally, of the productivity of the

research activity.

One of the latest developments in NLP, and one which

promises to have a significant impact for future linguistic

processing systems, is the emerging of linguistic

annotation meta-systems, which make use of existing

processing tools and implement some sort of processing

architecture, pipelined or otherwise. Systems such as

GATE – General Architecture for Text Engineering

(Cunningham et. al. 2002) and UIMA – Unstructured

Information Management Application (Ferrucci and

1 CLARIN: http://www.clarin.eu/
2 FLaReNet: http://www.flarenet.eu/

Lally, 2004) allow users to combine linguistic processing

modules (previously integrated in the system) in

processing flows, which can then be saved and executed

on any number of documents. Recently, both GATE and

UIMA allow the execution of modules and even flows on

computer clouds. GATE is developing GATE Cloud
3
,

promising to offer distributed computing of flows over a

cloud of dedicated computers. UIMA is offering a

user-developed tool called Simple Server
4
 which converts

UIMA flows to REST (Fielding and Taylor, 2002)

descriptions allowing online discovery, deployment and

execution of those flows.

ALPE (Automated Linguistic Processing Environment) is

a system offering a new perspective to the task of

exploiting NLP meta-systems by helping a community of

users to have an integrated look at a whole range of tools

that are able to communicate on the basis of common

formats. ALPE allows a user, even with very limited

programming capabilities, to automatically exploit

already walked-on processing paths or to configure new

ones on-the-spot, by exploiting the annotation schemas at

intermediate steps. The configuration of processing flows

is done simply by selecting an input and output format and

selecting one of the automatically computed flows, which

might differ by financial cost, estimated duration and

precision, or number of intermediate formats produced.

This is a process allowing non-specialists access to NLP

technologies, which is the main goal of projects such as

CLARIN and FlaReNET.

In the last years the computational Grids (Gannon and

Grimshaw, 1998, Gannon et. al. 2002) have become an

important research area in large-scale scientific and

engineering research. The computational Grids offer a set

of services that allow a widely distributed collection of

resources to be tied together into a relatively seamless

computing framework, teams of researchers can

3
 GATE Cloud: http://gatecloud.net/g8/contact/

4 UIMA Simple Server: http://incubator.apache.org/uima/

sandbox.html#simple-server

37

collaborate to solve problems that they could not have

attempted before. Unfortunately, after years of experience

in this area, the task of building Grid applications still

remains extremely difficult, mainly because there are few

tools available to support developers.

GECC (General Environment for Cluster Computing) is a

project aiming to implement distributed computing for

NLP tasks described as graphs, similar to those built by

ALPE. The model implemented offers similar capabilities

to a Grid network, but also brings new functionalities

making it more suitable to NLP tasks such as XML

configuration of files, modules and processing flows,

streamlined graphical description of flows and

compatibility with ALPE built flows and modules. GECC

adopts a cluster model (Baker et. Al. 1999) as opposed to

a strict Grid, which allows ease of deployment and

execution of applications on any available computers.

Section two of this paper briefly presents the theoretical

base and the general functionalities of ALPE. Section

three describes GECC and shows the potential benefits of

integrating the two systems. The conclusions, as well as

the further planned developments are described in section

four.

2. ALPE

The description of the ALPE system is beyond the scope

of this paper, however detailed descriptions can be found

in (Cristea et. al. 2008, Pistol and Cristea 2009). ALPE

builds and runs linguistic processing flows originating in

a hierarchy (directed acyclic graph) whose nodes identify

annotation formats and on whose edges processing

modules can be attached.

If a user wants to process an XML file from one input

format to some output format he uploads the file and a

correspondence will be made between the file and a node

in the graph. Then the user selects another node in the

hierarchy corresponding to the desired output format and

a processing flow (a sequence of one or more sequential

or parallel processing tasks) will be computed between

the two nodes. Generally, a processing task involves a

transformation by some module capable to receive the

input format and to output the required final format. The

ALPE philosophy details such a processing task in

relation with the pair of input-output schemas by

establishing the way these schemas interrelate from the

point of view of the subsumption relation. Two cases can

be evidenced: either the two schemas do observe a

subsumption relation or not. When they do, then the node

corresponding to the input file can be connected through a

direct descending or ascending edge to the one

corresponding to the output file. It will be descending if

the output schema results from the input schema through

some adds, and it will be ascending if in order to obtain

the output, simplifications applied to the input are

required. When the two schemas are not in a subsumption

relation, then there should be a node such that either both

are subsumed by it, or both subsume it.

ALPE comes with a core hierarchy whose nodes act as a

grid of fixed bench-marks with respect to which the

locations of the input and output schemas are set out.

When the pair of users’ schemas matches two nodes of the

core hierarchy, then processing can be drawn in terms of

known (built-in) interconnected modules. When a match

(modulo, as noticed above, the XML elements name

space and/or differences in configurations of attributes

still conveying the same information) of one or even both

of user’s schemas against nodes of the hierarchy is not

possible, then the non-matching schemas should be seen

as new nodes of the hierarchy.

ALPE offers the following functionalities:

• the user can generate a new hierarchy;

• the user can input an annotated file and ALPE will

classify it in the existing hierarchy;

• the user can input a linguistic processing tool and

some required data (see next section) and it will be

added to an existing hierarchy, and will be usable in

Input File

ALPE

Processing tool

Tool resources

Required output

ALPE

hierarchy

ALPE
Core Modules and

Resources

Additional modules

 and resources
Output File

Figure 1: The ALPE architecture and general functionalitiesFigure 1: The ALPE architecture and general functionalities

38

later computed flows;

• the user can input an annotated file and specify a

required format (either selecting from the existing

hierarchy, or inputting a new schema specification)

and ALPE will compute processing flows between

the two formats. The user then has the choice as to

which of the computed flows to be executed by

ALPE, which will output the file with the required

format.

In figure 1, the existence of a thick line between two

components denotes the obligatory presence of both

connected components. Basically, ALPE requires an

ALPE hierarchy, the core modules and resources and the

additional modules and resources. If the user inputs a file

to be processed, he has to specify the required output and

ALPE will possibly input some changes in the available

hierarchy, as well as produce the output file. If the user

inputs a new processing tool, ALPE will input the changes

implied in the hierarchy, will add the tool to the existing

additional modules, as well as add the tool’s resources to

those available.

ALPE includes 11 core modules, used in any ALPE

hierarchy (the hierarchy augmented with processing

power, as described) but not attached to any edge. The

core ALPE modules perform:

• language identification for input documents;

• format identification and classification for an

annotated document;

• simplification of an annotated document to a format

in the hierarchy;

• merging of multiple annotated versions of the same

text;

• creation/development of an ALPE hierarchy;

• integration of a new tool in the hierarchy.

These are the ALPE core modules required in the current

state of the system; further developments may add

additional modules. These core modules are used in any

ALPE hierarchy and are not replaceable by user tools.

They ensure that any ALPE hierarchy is able to perform

according to the specified features.

Since the flow computation process may produce two or

more flows for a single user task, a selection can be made.

Each computed flow is characterized by a set of features.

These features include properties such as flow length

(defined as number of processing steps involved) and

flow weight (number of intermediate formats produced if

computing the flow). Other features are the cost of the

flow (the actual financial cost, if one or more modules

involved require payment), the estimated precision of the

flow (computed using the performance measure specified

when adding a new tool to the hierarchy) and the

estimated time of computation. The user can then select

and run the flow most suitable to his or her needs. The

user will be able to specify some default value for the

selection, so flow computation, selection and execution

can be performed automatically.

ALPE has been extended recently allowing the inclusion

of non-XML annotation formats in ALPE hierarchies.

This is done by manually establishing a semantic identity

between a node in the hierarchy and a non-XML

annotation format. If the user also provides wrappers

between that format and one or more nodes in the

hierarchy then that format can serve as either input or

output node for future computed processing flows.

3. GECC

The need to develop distributed systems capable of

performing complex calculations is very common

nowadays. There are many distributed systems specially

built to perform calculations in different scientific fields.

Folding@Home5 (intensive simulations of protein folding)

or MilkyWay@Home6 (uses data from the Sloan Digital

Sky Survey to deduce the structure of the Milky Way

galaxy) are just two examples of the fastest distributed

systems. A more general approach for distributed

computations is BOINC – Berkeley Open Infrastructure

for Network Computing7 (Anderson, 2004). The intent of

BOINC is to make it possible for researchers to tap into

the enormous processing power of personal computers

around the world. It was originally developed to support

the SETI@home8 project before it became useful as a

platform for other distributed applications in areas as

diverse as mathematics, medicine, molecular biology,

climatology, and astrophysics. As we can observe, all

these projects are designed to solve a specific problem,

such as protein folding, analyzing Milky Way structure or

perform complex calculations. To create a project using

BOINC means to implement a specific API and create

some XML configuration files. These are used by the

BOINC platform to identify the regions that can be

separately executed and to distribute them to available

computers. BPEL – Business Process Execution

Language is an OASIS 9 standard executable language

intended to specify interactions with Web Services. It is

an orchestration language which can specify a process

that involves message exchanges with other systems, such

that the message exchange sequences are controlled by

the orchestration designer. Setting up a process with

BPEL involves describing automata, writing the XML

configuration files and finding and using available and

suitable web services.

The GECC intent is to offer a generalized and simple way

to run applications on a Cluster. It provides an easy to use

graphical interface which allows creating and controlling

an execution scheme. The execution scheme represents

the way the tasks will be assigned to computers from the

Cluster, thus achieving a separation between the way the

distributed system is executing an application and the

application’s purpose. GECC allows the execution of any

correctly configured scheme which can contain different

applications and files. The Cluster can execute any type of

5 Folding: http://folding.stanford.edu/
6 MilkWay: http://milkyway.cs.rpi.edu/milkyway/
7
 BOINC: http://boinc.berkeley.edu/

8 SETI: http://setiathome.berkeley.edu/
9 OASIS: http://www.oasis-open.org/home/index.php

39

application without being limited to a scientific field

performing special calculation. Our project offers the

possibility to manage and build an execution flow over a

distributed system in an interactive manner, without

asking the user for advanced knowledge to use the system.

The user is not supposed to write configuration files or to

monitor the execution over the cluster, but rather only to

specify the execution flow on a graph, using the graphical

interface.

One of the goals of this project is to use a graphical model

to organize the execution of a sequence of steps. For

example, consider the annotation of text or XML files.

These will be annotated using some executables, also

called annotators, receiving text files as arguments and

returning another annotated XML file. There are cases

where certain executables can annotate text only if it has

already been annotated by one or more annotators

previously. Our approach for modeling the sequence of

annotations is to use a directed graph with two types of

nodes: pack nodes and transformer nodes. An edge can

only connect nodes of different types: there may be a

connection from a pack to a transformer or from

transformer to a pack. A pack node represents a container

of files. In the annotation use case, these nodes will

contain text files or XML files. A transformer node

collects files from packs connected to its inputs and

produces a transformation, with the resulting files then

being distributed to its outputs. On a specific session, a

transformation is specified by a command, such as

running an executable over the input files.

GECC’s main objective is distributed execution of tasks

from the review of a graph. From the graph described

above for sequence annotation, GECC can cause a

splitting into smaller units of execution, which can be run

separately on different computers in the cluster. The

command associated to the transformer, the required

programs (such as the annotator) and the file to be

annotated, which are stored in the pack nodes, are sent to a

computer in the cluster. That computer executes the

command and sends the results to a central repository, an

approach that gives an advantage in terms of execution

time.

The user can control dependencies with the flow graph,

and can also directly specify if certain transformations can

be executed in parallel for each of its input files (for

example, the annotation of each file), or not (building an

archive with all results, a process that can only take place

if the other tasks were already finished). The way the

application manages tasks is closely related to the model

built, thus considering execution dependencies like tasks

that cannot be executed unless other tasks have been

executed.

3.1 GECC Architecture

In terms of implementation, the project can be divided

into four major components: a graphical user interface, a

web server, a main server and a cluster. There is an extra

component that ensures the detection of system

components by recording the IP addresses. Figure 2

shows the connections between the main components.

Some components, like MainServer, WebServer and

Cluster Computer, are using the “fire and forget” principle.

This means that components must self-configure

themselves, must find each other automatically (only

possible by using the IPTracker, with other discovery

methods currently in development), and must be remotely

controllable. One of our main ideas was to facilitate

access to the system; for this reason, the UI Component

will be accessible from any computer connected to the

Internet, directly from the browser. The WebServer must

serve the UI Component with all the information the user

needs to configure and use the system. The

communication between these components is done via

HTTP (the classical request-response scheme). The

WebServer must also offer a way to use the distributed

system composed by Main Server and Cluster

components. Once a workflow has been created it must be

executed by the cluster area of the system. The WebServer

sends the workflow to a manager capable to split it into

pieces(independent execution units), send them to

computers for execution and join the results. This

manager is the MainServer component, whose role is to

organize the execution by assigning tasks to available

computers from the cluster and handle the errors that

might appear during the execution. Combined, the

MainServer, WebServer and Cluster components form

GECC’s distributed system. IPTracker is the component

which facilitates the auto-configuration of components,

Figure 2: General architecture of GECC

40

by providing them IP addresses of other nearby

components; a component scans these addresses, and

establishes connections with the components it can reach.

Once an instance of MainSever, WebServer or Cluster

Computer is created it must announce its presence to

IPTracker so that any other instance can have knowledge

of the newly created component. Suppose that the

WebServer sent a workflow to a MainServer, which is

keeping it busy. In order to send another workflow, it must

wait the MainServer to finish. But, by requesting other IPs

from the IPTracker, the WebServer can find another

instance of a MainSever which is idle and can accept the

workflow; the same situation is met when a new computer

joins the Cluster and the MainServer can start sending any

pending tasks to it. Next we will describe the components

and interactions among them.

User Interface

The User Interface component represents the interaction

between system and user, by which he shall coordinate the

entire activity. Once it is started, the user has everything

he needs to easily configure an execution workflow, and

also has access to previously saved workflow models and

uploaded files. The main idea for the interface is to offer a

simple way to create and save the workflows. GECC

saves a workflow as a transformation model, which is

nothing less than a digraph describing a model in an XML

file. The user is allowed to create a new model from

scratch and save it for further use. Also, the user can

create new nodes over the created transformation model,

link them to each other, and set various properties. Before

it is saved, the transformation model must be validated

first. The validation means that model can be interpreted

by a MainServer so that it can organize the execution flow

as described in the model. It is also possible to import a

transformation model from an external XML file, both to

help with the sharing of models, and to ease integration

with other applications capable of generating models

usable by GECC (such as, for example, ALPE).

Having a workflow saved as a transformation model, a

user can create a work session based on it. A work session

is represented by a transformation model in which every

node has been configured. For a pack node, the user can

upload files or specify what kind of files it may contain (a

pack node may also contain output files generated by a

transformation, and may accept these files only if they

meet certain criterea, such as matching their file name

against a regular expression). For a transformer node a

command is set, which specifies exactly what the

transformation is; most often, a command will execute a

specific application, with specific arguments. The newly

created work session is executed by the cluster and the

user is able to check the execution progress. The results

are available in packs and can be downloaded easily.

WebServer

The WebServer component represents the link between

the User Interface and the MainServer components. Its

purpose is to mediate communication between them and

to provide support for file management involved in the

…

<packNode name="InputFiles" isSplitter="true"

id="4">

 <input node="3"/>

 <output node="5"/>

 <pattern regex=".*"/>

</packNode>

<packTransformerNode name="StepIn" id="5">

 <input node="4,7"/>

 <output node="6"/>

 <command exec="java -jar StepIn.jar

$InputFiles ./">

 <requires program="java" />

 <requires program="StepIn" url=""

lastUpdated=""/>

 </command>

 </packTransformerNode>

…

Figure 3: A processing flow in GECC

41

session. This component is a collection of Servlets and

JSP pages, each of them having a well defined scope. The

WebServer acts as a file and information repository, and

can offer lists of available transformation models,

uploaded files, etc. There are also a few specific tasks

which involve more that sending back a response; for

example, the validation process implies that the

WebServer needs to find an available MainServer, which

has already announced its presence to the IPTracker, and

send to it the XML representation. It receives the

MainServer’s response and encapsulates it in XML

format, which will be sent to the client. On success, the

WebServer saves or overwrites the transformation model

XML in a well-known location; on error, the XML

response will contain the reason for that error (the error

message, the node that caused the error, etc).

Another complex action is to handle the creation of a work

session. When the WebServer receives a request with the

name of the model, it must find an available MainServer

to assign the execution of the received model. If no

MainServer is explicitly specified, the WebServer will try

each one from its list (retrieved from IPTracker) until one

responds. If a suitable MainServer is found, the

WebServer will then act as a relay between the

browser-based client and the MainServer.

MainServer

The MainServer is the component responsible for

managing tasks, and the cluster computers that will run

those tasks. When it is asked to validate a model, the

server parses the model XML, attempts to construct a

representation, and return whether it succeeded.

Analyzing the graph, the MainServer builds a list of tasks

which will be assigned to cluster computers. This list is

dynamic, as some of its contents will depend on the

results of other tasks; as such, the list is incomplete at the

beginning. When a MainServer wants a cluster computer

to execute a task, it will send a call with details about the

task. These details will include at least a task ID, an IP to

send the result to, a list of files to be downloaded, an URL

to use for downloads, an URL to use for uploads, and a

command to execute. Once the execution of the task is

finished, the MainServer receives a notification, and mark

the task as finished from the tasks list.

The communication with computers from the cluster is

done via a communicator component; our implementation

is currently based on Java RMI calls, with plans to move

to a more general protocol, such as TCP or UDP.

One of the more common problems of processing flows is

that some tasks might fail. For this reason, the MainServer

must also include failover mechanisms: If a task fails due

to problems with the network connection, the MainServer

will send it to a different computer in the Cluster, or if it

fails due to an error reported by a specific tool, it will

notify the user, so that the problem can be diagnosed

properly.

Cluster

The Cluster component consists of a set of computers

connected to the Internet, each of them capable of

communicating, in one way or another, with the IPTracker,

the MainServer and the WebServer. Due to the

zero-configuration requirement, as soon as a Cluster

Computer process is started, it must retrieve a list of

MainServers from IPTracker and notify each one of its

presence. When notifying its presence to the MainServer,

some state information must also be sent, such as its IP

and its number of CPUs or CPU cores. The comunication

to WebServer is restricted to upload/download of files.

Because the MainServer knows only the locations of files

to avoid managing them (which is not the MainServer’s

purpose), the cluster computer must get the files from the

repository (the WebServer), a process which is done with

the standard HTTP operations. To add a new computer to

a GECC cluster is a simple task: just execute an automatic

configuration module on that computer and it would be

available to run future processing tasks.

The main concern of a Cluster computer is to execute a

task, which implies a download of necessary files,

execution of a command and an upload of the results. This

means that when downloading/uploading, CPU is not

used, and when executing a command, network

bandwidth is not used. To use both resources

simultaneously the Cluster computer uses blocking queue

structures to store the tasks in three different states: the

state before download, the state before execution and the

state before upload. Each operation is handled in a

separate thread to ensure a parallel execution of it; this

approach is also especially useful on multi-core (or

multi-processor) machine: if a machine has multiple cores,

it can execute tasks in parallel on each core, thus

achieving better time results even if GECC is used on a

single computer.

A cluster computer must also offer some useful

mechanisms. For example, to avoid the download of a file

already downloaded for a previous task, the cluster

computer uses a local cache with a specified maximum

local size. Another example is the possibility to upload zip

files. The cluster computer detects and unzips them in the

task’s folder.

Once the execution of a task is successfully finished, the

cluster computer uploads only the new or modified files to

the WebServer and notifies its corresponding MainServer

about it.

3.2 From ALPE flows to GECC

ALPE offers the user the possibility to save computed

flows for further reference or execution on corpora. This

is the step in which GECC fits in, thus the ALPE flows

can now be saved as GECC configuration files. A GECC

configuration file is an XML resource describing the

actual sequence of modules needed to be run according to

the ALPE flow. A GECC configuration file specifies only

the minimum required information required to run the

flow (module name and required software) and is

independent from the original graph the flow was

computed on. An ALPE flow actually links the sequence

to a graph of annotations, thus it is complementary to the

42

GECC format and cannot be replaced by it.

A simple flow, involving three sequential processing steps,

loaded in GECC and ready to process new input files, can

be seen in figure 3. In figure 3 are also included fragments

from the generated XML, produced by ALPE, describing

the flow.

The flow involves three modules (two implemented in

Java, one in Python), accepts as input raw text files and

produces annotated XML documents (tokenization,

POS-tagging, lemmatization and sentence-level

segmentation is performed). The GECC flow, as shown in

figure 3, includes also an unpacking step required as it

assumes inputted files as zip archives. After the files are

extracted automatically, the three linguistic processing

modules (StepIn, LinguisticAnnotator, StepOut) are

executed in sequence. The actual execution is done on the

distributed network available to GECC who serves as a

server for the processing network. All intermediate files

and processing modules are stored on the main server and

are made available to the processing units on the network

when needed.

3.3 Evaluation

Comparing GECC with similar systems is generally a

qualitative evaluation and has more to do with ease of

deployment and flexibility of the used clusters. A new

computer, regardless of general configuration, can be

easily included in an existing cluster.

Deployment of linguistic processing flows in a distributed

environment is still a new development; a direct

comparison is speed of execution and overhead for

execution in a cluster is not yet possible. In order to

provide a quantitative evaluation of the benefits of

running an ALPE flow in GECC, we used a set of 454 xml

files as input, each file having a size smaller or equal to

4Kb. We used the flow described above for all tests.

At first run, 454 XML input files are annotated by the

annotator running on a single computer, without using

GECC system. The measurement of time starts when the

annotator is started and stops in the same time with it,

when all files were successfully annotated. Each

computer CPU has 2 cores, meaning that each of them can

execute 2 tasks in the same time. Then, GECC is used

with different configurations regarding the number of

computers from Cluster. Running a processing task with

GECC includes now a small overhead mainly due to

packing and unpacking temporary annotated files in order

to reduce network transfers. First, we registered the

overhead time when the Cluster contains only one

computer (just 1 core): 283 seconds. The time is then

recorded for a Cluster with sizes: 2, 4, 8 and 16. Each

XML file and the annotator are packed and send as a task

to be executed by a computer from the cluster. The

measurement of time starts when the first task is sent and

stops when the last task results are uploaded.

The time obtained for each test case is shown table 1.

Conditions
Time

elapsed

(seconds)

Saved

time

(seconds)

Test annotator without GECC 3523 -

Test annotator

with GECC

The Cluster

contains

2 computers 1358 -

4 computers 689 669

8 computers 362 327

16 computers 210 152

Table 1: Running times for the evaluation experiment

Using a Cluster to execute a sequence of annotations is an

advantage in terms of execution time. Analyzing the

results we can observe the execution time is decreasing

when more computers are added to the Cluster. Doubling

the number of computers from the Cluster the execution

time is reduced by about 50%. From the initial baseline

running time of 3523 seconds the maximum improvement

measured is for the maximum number of 16 available

networked computers, for which the same flow on the

same input took just 210 seconds (about 6% of the

original time).

Another less measurable advantage of adopting the

ALPE/GECC way of building and running complex

processing flows is the ease with which these flows can be

computed and executed, especially for users not familiar

with the modules employed. Both ALPE and GECC offer

visual interfaces in which annotation formats and

processing modules are shown as nodes and edges

respectively on a graph. In ALPE, the user can input files

which are classified on a processing graph, and then he

can select a desired output node. After selecting one of the

computed flows, the user can run that flow in GECC

automatically. The process of building and running the

flow manually can require the user to collect and select

available processing modules, then to decide which

modules to run and in which order, after making sure he

has the hardware and software requirements to do so. All

this makes building and running large linguistic

processing flow prohibitive for a large scale of humanities

and social studies researchers, often requiring linguistic

technologies. Even computer scientists working in NLP

can benefit from the streamlined flow management by

easily designing test cases and observing the impact of a

different module in a complex flow.

4. Conclusions

ALPE will be used as a management tool for Grid services,

in itself being adapted as a Grid service. Due to its

particular functionalities, it will offer improved usability

and access to linguistic tools and resources, factors

especially important to large scale and multilingual

research projects. Using ALPE as a Grid services

management environment allows the creation of a global

linguistic hierarchy, integrating a multitude of services

43

targeting linguists and students alike.

GECC can serve as a central hub for any linguistic

annotation flows as computed by ALPE. The significant

increase in speed will increase the appeal of complex

processing flows making them available for large scale

annotation efforts and comparisons between processing

modules on large scale corpora. Also, since Grid type

networks already are employed in several NLP research

projects, the developed tools and resources of those

projects can be easily integrated into ALPE. Both GATE

and UIMA plan to offer the integrated modules as web

services in the near future, which will make them easily

usable as ALPE modules.

One important further development of ALPE will be a

web-service allowing users to build, configure and use

ALPE hierarchies on the web, either as a limited

password-protected resource or a global linguistic

resources collection. This type of hierarchy is able to

manage multilingual resources and resources which

require a fee to be paid before usage. Each user will be

able to contribute its own tools and annotated resources,

as well as using processing chains adapted to its

specifications, both in terms of input and output formats

and cost and performance issues. GECC will be made

available via the GNU General Public License in the near

future.

5. Acknowledgements

The authors would like to thank MsC. students Mereuţă

Radu-Adrian and Frona Ioana, for their help and support

at different stages of system development.

6. References

Cristea, D., Forăscu, C., Pistol, I.C. (2006)

“Requirements-Driven Automatic Configuration of

Natural Language Applications”. In Bernadette Sharp

(Ed.): Proceedings of the 3rd International Workshop

on Natural Language Understanding and Cognitive

Science - NLUCS 2006, in conjunction with ICEIS

2006, Cyprus, Paphos. INSTICC Press, Portugal.

ISBN: 972-8865-50-3.

Cristea, D., Pistol, I. (2008): “Managing Language

Resources and Tools Using a Hierarchy of Annotation

Schemas”. Proceedings of the Workshop on

Sustainability of Language Resources, LREC-2008,

Marakesh.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan V.

(2002) “GATE: A framework and graphical

development environment for robust NLP tools and

applications”. In Proceedings of the 40th Anniversary

Meeting of the ACL (ACL’02). Philadelphia, US.

Ferrucci D., Lally, A. (2004) “UIMA: an architectural

approach to unstructured information processing in the

corporate research environment”, Natural Language

Engineering 10, No. 3-4, 327-348.

Gannon, D., Bramley, R., Fox, G., Smallen, S., Rossi, A.,

Ananthakrishnan, R., Bertrand, F., Chiu, K., Farrellee,

M., Govindaraju, M., Krishnan, S., Ramakrishnan, L.,

Simmhan, Y., Slominski, A., Ma, Y., Olariu, C.,

Rey-Cenvaz, N., (2002) “Programming the Grid:

Distributed Software Components, P2P and Grid Web

Services for Scientific Applications”, In Cluster

Computing journal, Volume 5, Number 3, Pp. 325-336.

Gannon, D., Grimshaw, A., (1998) “Object-Based

Approaches”, The Grid: Blueprint for a New

Computing Infrastructure, Ian Foster and Carl

Kesselman (Eds.), pp. 205-236, Morgan-Kaufman.

Pistol I. C., Cristea D. (2009) “Managing Metadata

Variability within a Hierarchy of Annotation Schemas”,

Proceedings of the 6th International Workshop on

Natural Language Processing and Cognitive Science -

NLPCS 2009, Milan, Italy - May 2009, pp. 111-116,

ISBN: 978-989-8111-92-0.

Fielding R., Taylor R. (2002) “Principled design of the

modern Web architecture”, ACM Transactions on

Internet Technology, volume 2, issue 2, pp. 115-150,

ISSN: 1533-5399

Baker, M., Buyya, R., Hyde, D. (1999) “Cluster

Computing: A High-Performance Contender”, IEEE

Computer 32(7): pp. 79-80

44

Corpora by Web Services

Adam Kilgarriff
Lexical Computing Ltd

Brighton, UK
E-mail: adam@lexmasterclass.com

Abstract

Corpora are large objects and querying them efficiently is non-trivial. There are substantial costs to building them, storing them,
maintaining them, and building and maintaining software to access them. We propose a model where this work is done by a corpus
specialist and NLP systems then use corpora via web services. Our corpus tool is fast, even for billion-word corpora, and offers a wide
range of queries via its web API. We have large corpora available for twenty-six languages, and are experts in preparing large corpora
from the web, with particular expertise in web text cleaning and de-duplication. We regularly increase our coverage of the world’s
languages via our ‘corpus factory’ programme. For English, we are building corpora that are both bigger and more richly marked up
than others available. We present a case study of a current project using the Sketch Engine, via its web API, to automatically draft
‘fill-the-gap’ test items for language testing. The combination of the web services model, the corpora, and the tools, will allow many
NLP researchers to use bigger and better corpora in more sophisticated ways than would otherwise be possible.

1. Barriers to entry
In the days of rule-based NLP, starting a PhD was easy.
The student could write a few grammar rules, lexical
entries and example sentences, and all the technology
required was a prolog system.

Since the advent of empirical methods, it is harder. Now
the student needs a corpus and tools to access it. Before
embarking on their research question - perhaps about
syntax, or parsing, or anaphora, or discourse structure -
they must first review the different resources they might
use, or work out if they must build their own, and then
cross the technical and administrative hurdles to building
it or acquiring it. They must then either write their own
code for accessing it or install and become expert on
somebody else's tool. Any output for the first few months
is likely to be dominated by aspects of the data or tool that
they had not anticipated rather than linguistic ones, and it
is all too likely that they start feeling their thesis is being
sidetracked into corpora and corpus tools. If they do not
have the programming skills or technical support to clear
these hurdles, they are likely to become dispirited or to
shy away from the question that first motivated them and
to switch to one which makes use of corpora in simpler
ways, though they may then forever be dogged by the
anxiety that their research will not stand up to scrutiny by
the researcher, otherwise like them, but who did have the
support or computational skill to `do everything properly'.

Might it be possible to use corpora without all this
overhead, like a driver collecting a hire car?

We believe not only that it is possible (and that we already
have a service offering what is required), but that it is
likely to improve the quality of research as energies are
not wasted on non-specialist, mediocre, corpus-
preparation and corpus-accessing, but are directed at the
topic that motivated the researcher.

2. The Sketch Engine
The Sketch Engine is a corpus query tool. It has been
widely used for lexicography, by clients including Oxford
University Press, Cambridge University Press, Collins,
Macmillan and FrameNet, and for linguistic and language
technology teaching and research at universities. Corpora
for many languages have been installed. It is fast,
responding promptly for most queries for billion-word
corpora. It offers all standard corpus query functions:
concordancing, sorting and sampling of concordances,
wordlists and collocates according to a range of
parameters, full regular-expression searching, subcorpus
specification and searching on subcorpora. It also offers
some non-standard ones:

• word sketches: one-page summaries of a word’s
grammatical and collocational behaviour, see
Figure 1

• a distributional thesaurus
• keyword lists which identify the distinctive

words of a subcorpus: see Figure 2.

The basic input is a corpus, preferably lemmatised and
part-of-speech tagged. For the word sketches and
thesaurus, either the corpus must already be parsed, or
another input is required: a shallow grammar, written as a
regular expression over words and POS-tags, in which
each grammatical relation to appear in the word sketch is
defined. For a computational linguist with a knowledge of
the language in question, preparing a basic grammar is not
a large task.

2.1 The Sketch Engine Web Service and API
Lexical Computing Ltd., the owner of the Sketch Engine,
provides a web service which gives easy access to corpora.
Users can start using the corpus for their question directly:
the user interface is simple and there is no software to
install.

For four years now there has been a Web API for the
Sketch Engine. It is written in JSON and is designed for
easy integration into tools written in Java, Python, Perl etc.
It covers the core functionality of the Sketch

45

web BiWeC freq = 787440
object_of 33396
surf 1199 9.79
browse 851 8.33
weave 629 8.21
host 1487 7.86
spin 523 7.8
base 4884 7.71
search 1386 7.62
crawl 166 6.66
scour 116 6.47
chat 256 6.3
untangle 83 6.25
interconnect 75 5.91

and/or 18695
clipart 503 9.48
software 2083 6.16
correu 36 5.95
spider 68 5.11
print 372 5.05
desktop 115 4.98
email 509 4.97
transience 19 4.97
designer 213 4.87
gopher 19 4.64
telnet 19 4.62
multimedia 63 4.62

pp_of-i 10574
deceit 198 7.86
intrigue 176 7.54
spider 95 5.79
lie 247 5.78
interconnection 31 5.66
deception 67 5.56
interrelationship 21 5.38
quill 20 5.34
interdependence 23 5.26
datum 2007 5.0
corruption 71 3.99
trust 126 3.98

modifies 649632
site 264048 11.04
page 97315 10.12
browser 19649 9.36
server 14586 8.73
design 14395 7.96
cam 4617 7.77
designer 5430 7.68
standard 7949 7.3
developer 4218 7.29
application 9633 7.11
address 5487 6.99
interface 3077 6.64

Figure 1: Word sketch for the English noun web, drawn from the 5.5b BiWeC corpus, based on 787,440 occurrences

(truncated to fit.) The first figure for each collocation is the frequency count, the second is the salience score (Logdice, see
help pages at http://www.sketchengine.co.uk). One can sort by either. Other options include ‘more data’, ‘less data’ and

clustering of collocates. Clicking on the frequency count gives a concordance of the instances.

 new_model_corpus:speech new_model_corpus

lemma Freq ARF ARF/mill Freq ARF ARF/mill Score

sir 6559 537.5 560.0 8641 1365.5 24.5 16.5

Yeah 12839 1015.8 1058.3 17703 3342.1 60.0 15.3

hey 9294 781.6 814.3 12371 2709.5 48.7 14.1

Hello 4623 411.1 428.3 6574 1392.0 25.0 12.5

okay 9512 709.7 739.4 14043 2997.1 53.8 11.7

fuck 7720 456.6 475.7 11540 1750.3 31.4 11.7

hi 3309 291.0 303.1 4449 961.2 17.3 11.5

shit 4607 370.6 386.1 7266 1554.7 27.9 10.4

No 12340 1097.5 1143.4 20342 5795.3 104.1 10.1

Huh 2667 234.5 244.4 3708 903.8 16.2 9.7

uh 3106 219.2 228.4 4439 828.3 14.9 9.6

oh 17684 1498.8 1561.5 31159 9048.8 162.5 9.1

Bye 1145 102.6 106.9 1284 196.9 3.5 8.6

bye 1233 110.8 115.4 1529 320.0 5.7 8.0

bitch 1643 146.3 152.4 2495 629.8 11.3 7.6

sorry 8127 726.5 756.8 15558 5234.7 94.0 7.4

yes 18823 1667.0 1736.8 37498 12833.4 230.4 7.3

darling 1364 119.9 124.9 1971 495.4 8.9 7.1

honey 1588 140.9 146.8 2689 681.6 12.2 7.1

you 336328 30020.7 31276.7 759009 251027.5 4507.6 6.9

Fig. 2. Top keywords of spoken component of New Model Corpus, as computed and presented in the Sketch Engine, with

simple-maths parameter of 10. Component parts (won, don) of contracted forms removed.

46

Engine: one can submit queries which return
concordances, word sketches, word lists and thesaurus
entries.1

2.2 Corpora available in the Sketch Engine
We specialise in large general-language corpora (as
required for lexicography). We have
publicly-accessible corpora of over 5m words for
twenty-six languages (including all major world
languages), with over 1 billion words for three: see
Table 1.2 We have a ‘Corpus Factory’ (Kilgarriff et al
2010) programme for adding to the list of languages in
our repertoire by preparing 100m word corpora from
web sources, using BootCat methods (Baroni and
Bernardini 2004).

Arabic (MSA) 174 Persian 6
Chinese (simp and trad) 456 Portuguese 66
Czech 800 Romanian 53
Dutch 128 Russian 188
English 5,508 Slovak 536
French 126 Slovene 738
German 1,627 Spanish 117
Greek 149 Swedish 114
Hindi 31 Telugu 5
Indonesian 102 Thai 108
Irish 34 Vietnamese 174
Italian 1,910 Welsh 63
Japanese 409
Norwegian 95

Table 1: Languages, and the largest corpus available for
that language in the Sketch Engine (April 2010, figures

in millions of words+punctuation)

3 The Merits of Big, High-Quality Corpora
Since Banko and Brill (2004), it is entirely clear that
corpus-based NLP methods tend to perform better, the
bigger the corpus. This is one reason for wanting a big
corpus. Another is simply to have ample data even for
rare phenomena. A third is that a very large corpus will
have many large subcorpora. If, for example, we wish
to look at Business English, or medical English, or
informal English, we can build a classifier to
distinguish text of this type from others, and then apply
the classifier to a very big corpus, which will then give
a subcorpus large enough to support research and
model-building for the specific variety.

Corpus quality is less discussed than corpus size. It is
harder to define and measure. Also, if people become
aware of bad data in their corpus, they are more likely
to remove it than announce it. Data cleaning is not
high-status work, and papers are likely to pass over it
lightly at best, either ignoring the failings of the dataset
or presenting results after obvious anomalies have been

1 Full documentation at
http://trac.sketchengine.co.uk/wiki/SkE/Methods/index
2 We collaborate with numerous groups, and some
corpora were built by others, in particular Serge Sharoff
at the University of Leeds, UK, and Marco Baroni,
Silvia Bernardini, Adriano Ferraresi and colleagues at
the Universities of Bologna and Trento, Italy.

excluded. Thus a paper which describes work with a
vast web corpus of 31 million web pages devotes just
one paragraph to the corpus development process, and
mentions de-duplication and language-filtering but no
other cleaning (Ravichandran, Pantel, and Hovy 2005,
section 4). Another paper using the same corpus notes,
in a footnote, “as a preprocessing step we hand-edit the
clusters to remove those containing non-English words,
terms related to adult content, and other
webpage-specific clusters” (Snow, Jurafsky, and Ng
2006).

Academic papers do not often present results which
compare performance on ‘better’ and ‘worse’ corpora.
Nonetheless, few would dispute the near-tautology that
better corpora are likely to give better results. There
are many forms that bad data in corpora can take. They
include duplicates, navigation bars and other web
material, long lists, logfiles, code, texts in the wrong
language, and language-like computer-generated spam.
(There are other issues about texts in the correct
language but which introduce unwanted biases because
there are so many of them. Almost all
general-language corpora have this problem, at least
from some users’ perspective.)

We are corpus specialists. We have explored in depth
the issues of web data cleaning (Baroni et al 2008),
character encoding (Kilgarriff et al 2010) and
de-duplication of large datasets (Pomikalek et al 2009).
People accessing our corpora will very often be
accessing bigger and better corpora than would
otherwise be possible.

3.1 The Google/Yahoo/Bing option
A number of researchers have followed the lead of
Grefenstette (1999) and gathered data through
extensive querying of one of the main search engines
(in Grefenstette’s case, Altavista, now usually Google,
Yahoo or Bing); see for example Keller and Lapata
(2003), Nakov and Hearst (2005), Nakov (2008). The
search engines access far more data than we do even in
our largest corpora: as against our 5.5 billion, Google
indexes at least a trillion words of English. Search
engines can be used as a corpus query tool, and if size
of data is the overriding consideration, we can offer no
alternative. However there are numerous
disadvantages to using Google, Yahoo or Bing in this
way:

• they are not linguistically aware so do not
permit e.g., searches for lemmas

• the query syntax is limited (and subject to
change without notice)

• they limit the number of queries one can make
• they limit the number of results per query
• results are sorted according to a scheme which

bears no relation to a linguist’s wish to see a
random sample

• results are not replicable.

(For a full critique, see Kilgarriff 2007.) Using the
search engines is a solution with many downsides: if a
corpus of 5.5 billion words (for English) is big enough
(and for very many, though by no means all, kinds of

47

research it will be) then there are many advantages to
using a specialised service for linguists, such as the
Sketch Engine, rather than a search engine.

3.2 New English Corpora 1: BiWeC
BiWeC (Big Web Corpus, Pomikalek et al 2009) is a
response to the ongoing need for bigger corpora, and to
bridging the gap between corpora that are available in
corpus query tools and the web as available via search
engine indexes. Our target is 20b words, perhaps 1% of
the non-duplicate textual data indexed by Google (see
Kilgarriff 2007 for more on relative sizes of large
corpora and Google indexes). Our work here has
focused on, first, efficient crawling, and then,
high-accuracy data cleaning and de-duplication. At
time of writing, 5.5 b words have been fully cleaned,
de-duplicated, lemmatised, POS-tagged, and loaded
into the Sketch Engine.

3.3 New English corpora 2: New Model Corpus
The British National Corpus3 has been very widely
used across linguistics and language technology, and
has often been held up as a model for how to design a
corpus. However it was designed in the 1980s, before
the web existed, and the model, as well as the data, is
out of date (for the case in full see Kilgarriff et al 2007).

The next question is: what does a contemporary model
corpus look like? The New Model Corpus is a response,
comprising 100m words gathered entirely from the web
but with proportions of different text types not unlike
those of the BNC. It is available for research, and we
plan to annotate it as a community-wide exercise, with
all NLP researchers invited to download the data,
process it with their tools, and return their annotations
to us. We shall then integrate the annotations to give a
multi-annotated corpus which will also be available for
research.

4 A Case Study: TEDDCLOG
TEDDCLOG (Taiwan English Data Driven CLOze test
Generation) is a system which drafts fill-the-gap
exercises (sometimes known as cloze tests) for learners:
the learner is given a sentence in which one word (the
key) has been replaced with a gap, and a choice of four
or five words (the key plus three or four distractors) to
fill the gap. Exercises of this kind are popular with
teachers of English and also with language testing
organisations. However the tests are usually based on
invented sentences, created by human ‘test item
writers’. There is a now well-chronicled tendency for
there to be a mismatch between the language of
invented sentences and that found in corpora of
naturally-occurring English.

4.1 The Algorithm
TEDDCLOG uses the following algorithm:

1. User inputs the key
2. Look up the key in the thesaurus to find

distractors
3. Find collocates for the key in its word sketch

3 http://natcorp.ox.ac.uk

4. Find a collocate which is used with the key but
not with any distractors (the koc, key-only
collocate)

5. Find a short simple sentence containing
key+koc

6. Prepare output: blank out key from sentence,
present key and distractors in random order.

Steps 2-5 each use the web API. They are described in
detail below.

4.2 The Corpus
We currently use UKWaC (Ferraresi et al 2008, 1.5
billion words) and may switch to BiWeC.

Size is important for two reasons:

1. A corpus has to be very large to provide more
than a handful of sentences for most
key-collocate pairings. With more to choose
from, there is a better chance that there will be
one which is short and simple.

2. It is critical that the distractors are not
acceptable alternatives to the key, in the
context provided by the sentence. If the
corpus is big enough, then the absence of any
occurrences of the koc with the distractors is
evidence that they are not acceptable.

It would be possible to use a far larger corpus than
UKWaC, by using the web as indexed by Google or
Yahoo directly. This could give stronger evidence of
the non-acceptability of distractors with the koc.
(Sumita et al (2005) use a method of this kind.)
However the use of the web in this way raises other
difficulties as discussed above.

4.3 Worked Example
We want to test the use of the verb react. The writer
enters react into the system.

Finding distractors: the Thesaurus Module
The API call to the thesaurus returns words which
typically occur in the same context as the search term.
Table 2 shows the SkE Thesaurus for react. (The table
reveals that most of the words with similar distribution to
react relate to the human-interaction uses of the word,
probably because this is the most frequent kind of use of
react.) The three top-ranking list members, respond,
interact and behave, are noted and retained for use as
PDs (potential distractors).

Finding the Key-only Collocate (Koc): Sketch
Differences Module
The Sketch Engine also provides a “Sketch Difference”
or sketchdiff display, showing which collocates are
shared (and “how shared they are”) and which are not,
between two similar words. Figure 4 shows the sketch
differences for react and respond. We see that react
occurs 232 times with positively as a MODIFIER, and
respond, 1624 times. The user can click on the number
to see the 232, or 1624, concordance lines.

48

Figure 3. TEDDCLOG System architecture

react ukWaC freq = 24778

Lemma Score Freq

respond 0.417 114163

interact 0.305 25685

behave 0.296 24508

realise 0.25 110985

cope 0.247 48313

adapt 0.245 50930

listen 0.238 127002

answer 0.237 105714

intervene 0.237 14898

contribute 0.235 137428

Table 2: Distributional thesaurus entry for react.

react/respond ukwac freq = 24778/114163

Common patterns
react 6.0 4.0 2.0 0 -2.0 -4.0 -6.0 respond

modifier

7491 24903

positively

232 1624

angrily

355 57

differently

395 320

appropriately

69 690

quickly

683 1671

subject 5902 19760

government 84 585

people 572 1198

patient 39 296

body 177 230

audience 75 149

"react" only patterns
 modifier 7491 5.8

violently 119 56.4

badly 265 54.1

furiously 55 47.9

chemically 49 43.4

adversely 51 37.1

subject 5902 4.5

acid 59 27.5

metal 34 19.5

character 44 15.4

Figure 4: Sketch Diff for react and respond (truncated).

react

Thesaurus

module

Several metals

react violently

with cold water.

Diffs module

Concordance

module

behave, interact,

respond

Text

processing

module

Several metals ___

violently with cold

water.

(a) behave (b) react

(c) realise (d) respond

behave

realise

respond

metals behave x

metals respond x

metals realise x

metals react √

49

TEDDCLOG needs collocates that are not shared with
distractors (kocs). Candidate kocs can be seen under the
“react only” patterns. TEDDCLOG takes the
high-salience collocates that do not occur with the first
distractor, applying the condition that the collocate must
be a correctly spelled English word and not a proper
name.
In the simplest case, the first candidate koc does not
co-occur with any of the three distractors. In other cases,
TEDDCLOG either finds new candidate kocs until one is
found that does not occur with any of the distractors, or,
depending on parameter settings, finds new distractors
from the thesaurus that do not occur with a potential koc.
The process is continued until we have a koc, and set of
distractors that do not occur with it.
At this point in the algorithm, we have decided on the
key and three distractors. We have also established that
we wish our carrier sentence to include the collocation:
in our example, metals react. The next step is to
determine what the carrier sentence will be.

Selection of Carrier Sentence
The carrier sentence needs to contain metal as subject of
react. There are 34 such sentences in UKWaC. The next
task is to choose the most suitable for a
language-teaching, cloze exercise context.
Many sentences are unsuitable, for a range of reasons.
For example:

2H 2 O 2(aq) == 2H 2 O (l) + O 2(g) or a metal
reacting with acids, and you can study the effects
of a catalyst e.g. adding Cu 2+ (aq) ions to a
zinc-acid mixture, though I 'm not sure easy it is to
get good quantitative results for advanced level
coursework?

Firstly, the sentence is too long, giving the learner work
to do which is not directly related to the task that the
exercise assesses. Secondly, it contains formulae which
will be incomprehensible to non-chemists. Another
example is:

It uses these reactions to explore the trend in
reactivity in Group 1. The Facts General All of
these metals react vigorously or even explosively
with cold water .

Here, the problem is that we have not one sentence but
two, and a heading and subheading in between. The
corpus processing has been led astray by the period
following the 1, interpreting it as part of the token “1.”
rather than as an end-of-sentence marker, and has also
failed to mark off the heading (“The facts”) and
subheading (“General”) as not being part of the
following sentence.
Atkins and Rundell (2008) discuss the criteria for good
examples in dictionary definitions, concluding that such
examples must be intelligible to learners, avoiding
difficult lexis and structures, puzzling or distracting
names, and anaphoric references which cannot be
understood without access to the wider context. These
lexicographical desiderata are equally applicable to the
selection of carrier sentences for cloze exercises. The
SkE concordancing software is equipped with a feature
called GDEX (Good Dictionary Example Extraction:

Kilgarriff et al, 2008), which ranks sentences extracted
from corpora according to the following criteria:

• Sentence length: a sentence between 10 and
25 words long is preferred, with longer and
shorter ones penalized. (Overshort sentences
may not provide enough context to show the
user the intended meaning of constituent
words.)

• Word frequencies: a sentence is penalized for
each word that is not amongst the commonest
17,000 words in the language, with a further
penalty applied for rare words.

• Sentences containing pronouns and anaphors
like this that it or one often fail to present a
self-contained piece of language which makes
sense without further context, so sentences
containing these words are penalized.

• Sentences where the target collocation is in
the main clause are preferred (using heuristics
to guess where the main clause begins and
ends, as we do not yet use a parser).

• Whole sentences – identified as beginning
with a capital letter and ending with a full stop,
exclamation mark, or question mark, are
preferred.

• Sentences with ‘third collocates’, that is,
words that occurred with high salience in
sentences containing the key and koc, are
preferred. This will increase the chances that
the context in which the collocation is shown
is typical for the collocation.

• Sentences with more than two or three capital
letters, and more than two or three punctuation
marks and other non-alphanumeric characters,
are penalized. This turns out to be a simple
way of setting aside most aberrant and
junk-filled ‘sentences’.

GDEX sorts the concordance lines for any SkE search so
that the ‘best’ sentences are presented first. The
sentences which are most likely to be selected for
dictionary examples or cloze exercises appear at the
beginning of the concordance display. Unwanted
sentences, including web noise, are relegated to the end
of the concordance so a human user need not waste time
looking at them.
TEDDCLOG uses the API with GDEX switched on to find
the best sentence containing the key+koc collocation,
here metal as subject of react.

Current status is that we have a prototype system
(Smith et al 2009) and are developing a proposal in
collaboration with a testing organisation, to turn it into
an industrial-strength system.

5 Relation to CLARIN
The EU Project CLARIN4 aims to establish research
infrastructure for language technology, based on web
services, and we have approached CLARIN regarding
the role that the services discussed here might play.
However it seems that CLARIN’s perspective is on a
longer term and more ambitious plane, with emphasis

4 http://www.clarin.eu

50

on standards and community-wide integration, rather
than currently-available modest services as here.

6 Summary

We have made the case for ‘corpora by web services’
with NLP researchers using corpora without needing to
store them on their local machines or expend effort on
building or maintaining them or associated software.
In this way researchers will be able to make use of
larger and better corpora than is otherwise possible.
The Sketch Engine is a very fast and flexible corpus
query tool, into which many large corpora for many
languages are already loaded, with a web API, so we
are already set for ‘Corpora by Web Services’ and
indeed we already have some users developing NLP
applications in this way.

For English, we are developing two new resources with
‘Corpora by Web Services’ in mind: firstly BiWeC,
which moves the scale of resource we offer up by a
scale of magnitude, and second, the New Model Corpus,
with which we hope to update the BNC as a reference
corpus for English. All being well, these two projects
will come together in a very large, very well marked up
corpus for English which is fully accessible by web
API. Using a corpus will not merely be like picking up
a hire car, it will be like picking up a Ferrari.

7 References

Banko, Michele, and Eric Brill 2001. Scaling to Very

Very Large Corpora for Natural Language
Disambiguation. Proc ACL. Toulouse, France.

Baroni, Marco and Silvia Bernardini 2004. BootCaT:
Bootstrapping Corpora and Terms from the Web. Proc
LREC, Gran Canaria.

Baroni, Marco, Francis Chantree, Adam Kilgarriff and
Serge Sharoff 2008. CleanEval: a competition for
cleaning web pages. Proc LREC. Marrakech,
Morocco.

Ferraresi, Adriano, Eros Zanchetta, Silvia Bernardini
and Marco Baroni 2008. Introducing and evaluating
UKWaC, a very large web-derived corpus of
English . Proc. 4th WAC workshop, LREC,
Marrakech, Morocco.

Grefenstette, Gregory. 1999. The WWW as a resource
for example-based MT tasks. In ASLIB Translating
and the Computer Conference, London.

Keller, Frank and Mirella Lapata. 2003. Using the web to
obtain frequencies for unseen bigrams.
Computational Linguistics, 29(3):459–484.

Kilgarriff, Adam 2007. Googleology is Bad
Science. Computational Linguistics 33 (1):
147-151.

Kilgarriff, Adam, Sue Atkins and Michael Rundell
2007. BNC Design Model Past its Sell-by. Proc.
Corpus Linguistics, Birmingham, UK.

Kilgarriff, Adam, Milos Husák, Katy McAdam,
Michael Rundell, Pavel Rychlý 2008. GDEX:
Automatically finding good dictionary examples in
a corpus. Proc EURALEX, Barcelona, Spain.

Kilgarriff, Adam, Siva Reddy, Jan Pomikalek 2010. A

Corpus Factory for many languages. Proc LREC,
Malta.

Nakov, P. 2008. Noun compound interpretation using
paraphrasing verbs: Feasibility study. Proc. Artificial
Intelligence: Methodology, Systems, Applications
(AIMSA'08).

Nakov, Preslav and Marti Hearst. 2005. Search engine
statistics beyond the n-gram: Application to noun
compound bracketing. Proc. Computational Natural
Language Learning (CoNLL-2005), pages 17–24,
Ann Arbor, Michigan.

Pomikalek, Jan, Pavel Rychlý and Adam Kilgarriff
2009. Scaling to Billion-plus Word Corpora.
Advances in Computational Linguistics. Special
Issue of Research in Computing Science Vol 41,
Mexico City.

Ravichandran, Deepak, Patrick Pantel, and Eduard
Hovy. 2005. Randomized algorithms and NLP:
Using locality sensitive hash functions for high speed
noun clustering. In Proc. ACL, Ann Arbour,
Michigan, USA.

Smith, Simon, Adam Kilgarriff, Scott Sommers, Gong
Wen-liang, Wu Guang-zhong Automatic Cloze
Generation for English Proficiency Testing Proc.
LTTC International Conference on Language
Teaching and Testing, Taipei, Taiwan.

Snow, Rion, Daniel Jurafsky, and Andrew Ng. 2006.
Semantic taxonomy induction from heterogeneous
evidence. In Proceedings of ACL, Sydney

Sumita, E., Sugaya, F. and Yamamoto, S. 2005.
Measuring Non-native Speakers’ Proficiency of
English by Using a Test with
Automatically-Generated Fill-in-the-Blank
Questions. Proc. 2nd Workshop on Building
Educational Applications using NLP, Ann Arbor.

51

An Open Service Framework for Next Generation Localisation

David Lewis, Stephen Curran, Dominic Jones, John Moran, Kevin Feeney
Centre for Next Generation Localisation

Knowledge and Data Engineering Group

School of Computer Science and Statistics

Trinity College Dublin

College Green, Dublin, Ireland

E-mail: {Dave.Lewis|Stephen.Curran|Dominic.Jones|John.Moran|Kevin.Feeney}@scss.tcd.ie

Abstract

The localisation industry makes strong use of language processing pipelines at the core of its bulk localisation workflows, where
software text and technical manuals are translated into the languages of target markets. Natural language technologies such as machine
translation and text analytics are now maturing to a stage where they are being adopted as components in these workflows. However,
they also offer the opportunity to broaden the localisation business into domains where the source content is less predictable and
produced and consumed more rapidly and in higher volumes by a wider range of users. To exploit the business opportunities of such
Next Generation Localisation, the localisation industry must adopt a more flexible, extensible and lower cost mechanism for the
integration of language processing workflows across many, increasingly specialised players. This paper outlines an open services
framework that is being developed by the Centre for Next Generation Localisation that will allow industry to react rapidly to changing
business models and new opportunities by exploiting service oriented architectures for service reuse and (re)composition, extensible
meta-data driven interoperability and flexible service and workflow management capabilities.

1. Introduction

Localisation is the industrial process of adapting digital

content to culture, locale and linguistic environment

(Johnson 2007). It is a key enabling, value adding,

multiplier component of global manufacturing, services,

software and content distribution industry so as a business

process it must be conducted at high quality, speed,

volume and low cost. The localisation industry makes

strong use of language processing pipelines at the core of

its bulk localisation workflows, where software text and

technical manuals are translated into the languages of

target markets. These language processing workflows

have been well tuned to this domain by the various players

in the value chain, such as the multinationals that are high

volume generators of content requiring localisation and

the Language Service Providers (LSPs) that provide

outsourced localisation services, including the

management of the translation of textual content. The

business drivers in this industry produce workflows that

are driven by the cost reduction needs of bulk publishers,

resulting in little innovation into new business areas or

applications.

Natural language technologies such as machine

translation and text analytics are now maturing to a stage

where they are being adopted as components in these

workflows. However, they also offer the opportunity to

broaden the localisation business into domains where the

source content is less predicable and produced and

consumed more rapidly in higher volumes by a wider

range of users. The potential for innovation for the

localisation industry exists in several directions;

 Outwards: addressing language as the next big barrier

to be overcome in the use of the Internet for global

communication and value generation

 Inward to focus on the need of the individual

consumer through personalisation, i.e. the tailoring of

the delivery of content, not only to the users locale

but also to their personal content consumption

preferences and their current physical, social and task

context.

 Sideways into other corporate activities of existing

knowledge- and service-intensive localisation clients,

e.g. customer care and customer relations

management or leveraging Web 2.0 technologies to

engage with crowd-sourcing or open innovation

value networks.

We identify such a shift and broadening in the localisation

industry as Next Generation Localisation. This will

involve making the workflows for linguistic processing

and translation much more customer driven, rather than

product driven as currently. It will require dealing with a

much wider range of content sources, including user

generated content and highly transient content that

provides much of the value found in Web 2.0. It will also

involve leveraging a wider range of linguistic human

skills and value exchange models, beyond the scope of

today‟s professional translators.

This presents a major challenge in systematically

integrating fine-grained, on-demand quality into web

content and web application localisation. This requires

integrating mechanisms to determine and deliver quality,

reliability and speed that match immediate user

requirements into such web offerings. Though linguistic

technologies allow us to automate some tasks, such as

machine translation or entity recognition, the bounds in

the confidence of the quality of outcomes needs to be

understood and carefully managed. Key to this is

empowering the user to assess that quality and demand

more if required and indicate the level of quality they are

willing to pay for in a given context. Content owners must

then be able to adaptively tailor allocation of localisation

resources (whether human or automated) to a wider and

more dynamic range of quality targets.

52

To exploit the business opportunities of such Next

Generation Localisation, industry must adopt a more

flexible, extensible and lower cost mechanism for the

integration of language processing workflows across

many, increasingly specialised players. Service Oriented

Architectures (SOA) offer a viable route to addressing

this challenge. This paper outlines an Open Service

Framework that is being developed by the Centre for Next

Generation Localisation (www.cngl.ie) that harnesses the

power of SOA to enable industry to react rapidly to

changing business models and opportunities through

service reuse and composition, extensible meta-data

interoperability and flexible service and workflow

management capabilities.

2. Background

The localization industry has already undertaken a
number of separate document focussed standardization
activities to support interoperability between different
localisation applications. The Localisation Industry
Standards Association (LISA – www.lisa.org) has
developed various localisation standards:
 Translation Memory Exchange (TMX) for

exchanging Translation Memory (TM) database
content (TMX 2005). Such content is key in
eliminating the re-translation of content segments
that have previously been translated. TMs also
support fuzzy matches, where translations of similar
source segments can be considered by translators.
Many TM tool providers have implemented support
for TMX in their products.

 Term Base eXchange (TBX): XML Terminology
Exchange Standard, to allow terminology to be
exchanged between content author and translator
tools (TBX 2008). An XML linking standard for
terms, called Term Link, is also being investigated.

 Segmentation Rules eXchange (SRX), for exchanging
the rule by which content is originally segmented.
There has been very little support to date for SRX
because segmentation is the main component that
distinguished TM tools. Segmentation has direct
consequences for the level of reuse of a TM. A TM's
value is significantly reduced without the
segmentation rules that were used to build it.

 Global information management Metrics eXchange
(GMX): A partially populated family of standards of
globalization and localization-related metrics

The Organization for the Advancement of Structured
Information Standards (OASIS – www.oasis-open.org),
which produces e-business standards has had a number of
initiatives, the most notable being XML Localisation
Interchange File Format (XLIFF 2008). XLIFF is the
most common open standard for the exchange of
localisable content and localisation process information
between tools in a workflow. Many tool providers have
implemented support for XLIFF in their products.
The W3C, which develops many core web standards, has
an Internationalisation Activity
(www.w3.org/International) working on enabling the use
Web technologies with different languages, scripts, and
cultures. Specific standardisation includes the
Internationalisation Tag Set to support
internationalisation of XML Schema/DTDs (ITS 2007).

To date, therefore, though file interoperability is
supported in places, standard localisation processes and
workflows and associated open interfaces addressing
common interoperability issues have not yet been widely
adopted. Outside of proprietary scenarios, digital
publishers and service providers cannot easily integrate
their processes and technologies and monitoring end to
end process performance is extremely difficult. This
implies lost business opportunities for many and missed
opportunities for significant performance improvement
for most of the stakeholders.
SOA coupled with workflow technologies are therefore
well placed to address this lack of interoperability and
end-to-end process management. Anecdotal evidence
suggests that elements of the localisation industry were
quick to consider the use of Web Service technology. In
2003 Bowne Global Services presented a case study
(Reynolds 2003) showing how they connected
Interwoven's TeamSite Content Management System
(CMS) to their in-house workflow engine (then named
Elcano) using Web Services. IBM also presented a white
paper discussing how web services and workflow
management feature such as supported by their
WebSphere product range could stream line the
localisation process (Flinter 2003). However, these were
focussed on integration within the enterprise, and end to
end web service solutions have been slow to emerge,
though several tools now make internal APIs available via
Web Services for enterprise integration and support of
custom client applications, e.g. for accessing TM content.
Two examples of interfaces provided to human translation
services are those provided by Translated.net and by
Lionbridge to their Freeway system. Web Service
interfaces to Machine Translation systems are more
straightforward due to less branching logic and, as such,
more common. Examples include the WebSphere
Translation Server and the Google Translate API.
In 2007 the OASIS Translation Web Services (TWS)
1.0.3 draft specification (Reynolds 2007) was released
with the aim of standardising the communication between
translation providers and their clients (Reynolds
2003)(Bargary 2006). TWS remains the only real attempt
to define web-services to support the end to end
localization process. However, TWS has a limited scope.
Rather than aiming to support the dynamic composition of
language services into flexible localization workflows, it
concentrates on supporting the negotiation of “jobs”
between service providers. It is primarily intended to
support the efficient out-sourcing of localization and
translation jobs and it does not address the composition of
language-services to form automated workflows. It is not
clear to what extent this draft specification has found
traction in industry to date.

3. Open Service Framework

Therefore, in order to deploy web-services to support
such composition, there is little standardisation to rely on.
Thus, a first step in addressing the problem is to design a
set of web-services and their interfaces suitable for the
task. In designing these services, it is worthwhile to
recall the general goals of service-oriented architectures;
the services should be designed to be as flexible and
general as possible and they should neither be tightly
coupled to one another, nor to the overall system which

53

they are part of. Furthermore, in keeping with the general
trends in service designs (Foster 2008), variability in
service behaviour should generally be supported through
the passed data-structures rather than through different
function signatures.
Our ultimate aim is to establish a Unified Localisation
Factory (ULF) that will enable future web content and
service providers of all sizes instantiate localisation
processes tailored to their needs and those of their
customers. The ULF will allow future
localisation-focussed applications that leverage advanced
language and digital content management technologies to
be rapidly integrated at low cost. This requires an Open
Service Framework for presenting and assessing
individual technologies, applications, evaluation
techniques, design patterns, interoperability standards and
workflows is a SOA.
This framework will consist of the following;
 Core Principles and Concepts: The core shared

domain knowledge that characterise the vision of
Next Generation Localisation.

 Process Map: A Business Level Reference
Framework expressed using business process
modelling concepts.

 Methods and Techniques: The procedural guidance
needed to apply the framework, to evaluate that
application and to contribute to the refinement of the
framework in an open manner.

 System Services Architecture: The software system
architecture needed to ground the application of the
framework in operational software systems.

 Reusable Elements: Specifications, models, service
definitions, APIs, software components and various
forms of design patterns (e.g. for workflow, software
integration, SOA etc) that can be used in a specific
applications of the Open Service Framework.

4. Next Generation Localisation Process
Map

As the Open Services Framework aims to support
interoperability across next generation localisation
workflows consisting of multiple parties and their various
services and applications, then ultimately it must support
this through the definition of common meta-data. The
benefits from the identification of common meta-data
models in a particular domain are to provide the
foundation for interoperability standards. Such standards
thereby:
 Reduce cost of system integration
 Support multi-vendor system architectures,

increasing the benefits of vendor competition by
reducing lock-in for the different process actors

 Maximise the reuse of data and processes and the
software services that underpin them.

However, localisation, in common with many application
domains, possesses multiple stakeholders operating
multiple systems in multiple interlinked business
processes. These factors complicate efforts towards
convergence and agreement on common industry-wide
meta-data. Attempting a programme of meta-data
modelling for interoperability standards therefore requires
a common business-level reference framework in order to
understand and discuss the different data and meta-data
requirements at different interoperability points.

Other industries have successfully used a Process Map as
a business level reference framework within which
detailed business process definitions, and thereby specific
interoperability models, can be worked upon within a
shared set of terms and associated meanings. This
requires an abstract process map that is not a reflection of
any one company‟s model and therefore provides neutral
means for discussing shared interoperability concerns.
Examples of the use of such process maps in other
industries are: the electronic Telecommunication
Operations Map (eTOM) used by the TeleManagement
Forum to support industry interoperation agreements
between vendors of telecommunications management
packages (Reilly 2009). Another example is the Smart
Building Process map used to enable standardization of
the exchange of data between CAD tools and building
operations tools in the construction and facilities
management industry (SmartBuilding).
Currently the Localisation Industry does not possess such
an agreed process map, so as part of the Framework we
propose a novel „Next Generation Localisation‟ Process
Map. The scope of this should be business processes
covered by our broad vision of Next Generation
Localisation, beyond conventional localisation workflows
into areas of: crowd-sourcing, integrated language
technologies such as machine translation, speech
processing and text analytics that use statistical
approaches; information retrieval; digital content
management and personalization; web service
development and governance. The NGL Process Map
provides a top down common analytical frame within
which specific business scenarios can be modelled. By
overlaying specific business process flows of the process
map we can start to identify where: existing standards
such as XLIFF, TMX can be applied and if necessary
extended and where new meta-data agreements are
needed, the proposal of which is an activity within CNGL.
The NGL Process Map therefore acts as a
stakeholder-neutral medium to communicate
requirements, seek solutions and contextualise the design
and agreement of interoperability standards. Of course the
structure of the Process Map itself will therefore influence
the direction of such deliberation, so we remain open to
proposals to refine this structure.
The structure currently proposed for the Process Map
consists of an orthogonal grid of abstract Stakeholder
Types ranged against shared Business Process areas. The
Business Process areas represent recognisable collections
of activities that span the localisation business process
lifecycle and includes the processes related to process
improvement. The areas can be individually populated
with more specific processes, both for abstract business
modelling and for capturing specific business scenarios.
The Stakeholders differentiate the broader range of actor
types involved in Next Generation Localisation, ranging
beyond those just concerned with the generation and
translation of content to include directly the consumer,
online communities and software developers. These can
in turn be specialised as niche stakeholders are identified
or when applying the grid to a specific concrete business
scenario. In this the process map can be used at both an
abstract industry-wide level and for the analysis of
specific business relationships and their interoperability
requirements. The orthogonal structure breaks the domain
down into a set of regions, the boundaries between which

54

become the primary foci for capturing requirements. As
the map is used as a frame for specific business scenarios
and their associated process flows, solutions to
interoperability issues at these boundaries can be collated
and after review combined into broader interoperability
models at the top levels from which future concrete
scenarios spanning the same boundaries can select
appropriate solutions.
In the current Process Map the two orthogonal axes are
defined as follows:
Stakeholder Types:
 Corporate: This contains processes performed by

organisations employing workers in a professional
capacity. It encompasses any processes that are
performed for monetary exchange, thereby
encompassing public bodies and NGOs. Several
specific sub-categories of this pool have been
identified for the NGL domain: Content Generator;
Language Service Provider; Translation Agency;
Translation Sole Trader; Web Search Service
Provider and Content Service Provider.

 Consumer: This contains processes conducted by the
ultimate consumer of content. It is distinguished from
other stakeholders in that it does not consume content
for the purpose of providing it to other processes.
Process for this stakeholder may annotate content to
provide feedback to other processes, but only as a
secondary activity to the consumption of that content.

 Community: This stakeholder represents processes
that are subject to collective decision-making and
content processing work performed by volunteers. It
therefore excludes any activities performed for

monetary reward directed to those performing it. The
processes are distinct from those of the consumer in
that they are indented to produce results of value to
some other party and they are knowingly performed
as part of a collaborative effort.

 Service Developer: This contains processes related to
the development of new software services that can
subsequently used by processes elsewhere in the
process map. It excludes processes related to the
localisation of that software, in such cases the
processes should be conducted as part of the
corporate stakeholder.

Business Process Areas:
 Content Generation: This includes authoring,

internationalization and the development of
terminology, domain models and content style
guidelines.

 Content Localisation: Translating content from a
source language to one or more target languages and
making other locale specific changes to content.

 Content Consumption: The user driven consumption
of content including search and personalisation of
content.

 Content/Asset Management: The collection, storage,
refinement and general husbanding of reusable
digital assets, e.g. TM, term-bases, guidelines, user
models, annotations, quality assessments etc.

 Process Management: The process involved in
monitoring, analysing and modifying business
processes with the view to improving performance
metrics.

Figure 1: Next Generation Localisation Process Map high level processes in each region

55

Figure 1 outlines a set of processes that we have identified
as populating the process map. The significance of this
model is the emphasis given to activities beyond the
traditional corporate work-flow, highlighting the
important of managing the dynamic relationship with the
consumer of content; of leveraging the collective
intelligence of online communities and integrating the
software service developer into SOA-based process
improvement.

5. Language Processing Services
Architecture

Adoption of an SOA advocates software integration
through well defined functional interfaces that can be
invoked remotely, typically using the Web‟s HTTP
protocol with input and output parameters encoded in
XML. The W3C have standardized an XML format, The
Web Service Description Language (WSDL), for
describing and exchanging such service definitions. Web
services can be composed into more complicated
applications using explicit control and data flow models
that can be directly executed by workflow engines. This
allows new workflow applications to be defined
declaratively and immediately executed, thus greatly
reducing the integration costs of developing new
workflows and increasing the flexibility to modify
existing ones. Such web-service based service
composition is known as Web Service Orchestration.
OASIS has a standardized web service orchestration
language called the Business Process Execution
Language (BPEL), which has resulted in the development
of several commercial execution platform and BPEL
workflow definition tools, which support workflow
definition through drag-and drop interfaces. This
approach has already been by the LanguageGrid project
(Inaba 2007) for the rapid development of linguistic
applications by defining BPEL orchestration of web
services. These services offer access to language
resources provided in a mutual manner by different
academic and research organisations. Resources include
parallel text, cross-lingual dictionaries, machine
translators and morphological analysers. In our prior work
in this area (Lewis 2008) we used BPEL composition of a
machine translation service and a language identification
service to integrate more flexible content handling into
WorldServer, a well established localisation workflow
management product from SDL Inc (www.idiominc.com).
This work highlighted how linguistic processing services
for localisation workflow can be readily abstracted into
services that take a source language segment and either
adds target language segment, sort target segments or
annotate segment pairs. From these a wide range of
specialised linguistic services can be derived and
composed to address linguistic processing needs for
localisation. However, the simplicity of this linguistic
processing service taxonomy does not reflect the need to
configure and train the systems underlying these services,
this being the processes where core value is derived.
Further, as modern linguistic processing is increasingly
statistical, the monitoring of statistical performance
analysis over the various source language content flow
being localised becomes a vital part of the processes. For
this reason we add to the core linguistic processing
service interface taxonomy, two parallel abstract interface

types:
 A Service Configuration interface: via which the

component can be configured to operate in the
desired manner, e.g. by providing a domain trained
statistical model to a Machine Translation service
component

 A Service Monitoring and Logging interface via
which operational data about the performance of the
component can be remotely monitored or locally
logged. This interface has generic operations for the
configuration of the behaviour of monitoring and
logging, e.g. producing event on a threshold being
reached.

These parallel interfaces are seen a essential to developing
web services for Next Generation Localisation due to the
key role played by ongoing process monitoring in the
design and deployment of new, improved processes,
tailored to a wider range of business, social and individual
consumer needs. The definition of these interfaces may be
implemented as simply as dedicated operations on a web
service, though ongoing work of the Service Component
Architecture group at OASIS (www.oasis-opencsa.org)
and the web service activities at W3C
(www.w3.org/standards/webofservices/) promise a more
standardised mechanism for assembling web service
components with multiple interfaces.
Figure 2 gives an indication of the different combinations
in which systems can be assembled in accordance with the
service architecture as a range of service components
deployed and accessed from a variety of client
applications. These could range from service invocations
made by existing Globalisation Management Systems
(GMS) and Computer Assisted Translation (CAT)
software. Platforms such as WorldServer and Trados from
SDL and Catalyst from Alchemy already have extension
APIs that allow invocation of third party services. A
communication bus between the service components and
the client applications based on WSDL/SOAP providing
the best operational support for workflow-based clients,
such as BPEL web service orchestration engines, which
can then explicitly define fault and compensation
handling workflow branches. However it is recognized
that many applications may be better suited to RESTful
service invocation models typical of web mash-ups, e.g.
in JavaScript web browser clients or PHP web server
modules. This mode of operation can also fit naturally
with invocations from web application platforms such
FaceBook and Twitter or for invocation from third party
mobile software clients such as iPhone Apps, however in
these cases WSDL client access is also commonly
available.
The service components currently under development in
the CNGL divide broadly into those that provide
linguistic processing and those providing on-demand
personalised access to multilingual content. The linguistic
processing services such as Machine Translation, Speech
Synthesis and Recognition and Text Analytics provide
value that depends on statistical training over large
volumes of data. The personalisation services adapt
content to particular user preferences and context, based
on rich meta-data assembled about the user, the context
and the setting of the interaction. In both cases, the value
of the service depends on appropriate configuration,
which must therefore become a major element of any
progressively improving workflow or application. At the

56

same time, it must be acknowledged that statistical
language processing and meta-data driven adaptation will
never deliver complete accuracy in all cases, so integrated
operational monitoring is needed to support ongoing
reconfiguration of individual components through
statistical retraining or improved meta-data modelling
(which itself may rely on statistical techniques for

semantic annotation of content or social network analysis
of user activity). Therefore to support operational
monitoring and process improvement for end-to-end
workflows that span our NGL stakeholder types, shared
data-model for monitoring and configuring the operation
of the various server components, via the parallel
interfaces identified above, will be essential.

Figure 2: Potential configurations of the NGL Open Services Architecture

6. Example Next Generation Localisation
Processes

In the CNGL project, we are applying this Framework as
we develop a series of demonstrator systems that bring
together advanced technologies from the Centre‟s
academic partners and the current real world needs of its
industrial partners or of broader real-world applications.
In relation to advancing the current localisation workflow
with statistical machine translation and text analytics
service, figure 3 shows an idealised reference workflow in
the Business Process Modelling Notation that we are
using to explore this area. It highlights how any instance
of this workflow can exploit multiple instances of
component sub-workflows or activities. The importance
of intelligently selecting between these instances at
various points in the workflow are then highlighted (the
diamond, star-filled BPNM icon for a complex gateway
decision). So for example a content publisher may select
different instances of service providers who can perform
the Translation Job sub-workflow. Within this, the service
provider may divide the job and select different Translate
Section sub-workflows, which employ different
Translation Memories and then themselves make
intelligent decisions about selecting between different
Machine instances and post-editors on a segment by
segment basis. After reassembly, the content provider
may again select between different providers to perform
the Review Job sub-workflow. Key to the aim of
developing mature, optimising and transparent processes,
as well as publishing the result, the quality checked

translations and other process monitoring data are fed
back passed to a process. One feedback path already in
common practice assembles Translation Memories for
future use. Another uses them to train future Statistical
Machine Translation (SMT) instances, potentially by
grouping content by domain or style to get more accurate
results with more computationally efficient SMT engines.
Also, feedback may be provided on problems encountered
with terminology and content consistency. By supporting
these steps with web services and using web service
orchestration, configuration and monitoring, such
decision making can become highly dynamic, itself being
driven by statistical analysis of the content against domain
categorisations. This accompanying reduction in process
management overhead means this process can be
conducted in a wider range of scenarios, beyond
transitional bulk translation scenarios. For instance, cheap,
or zero cost SMT coupled with suitably motivated
crowd-sourcing for post-editing and reviewing tasks may
move the value of the process away from translation and
towards the intelligent husbanding of STMs and training
of MTs, allowing niche operators who combine linguistic
and natural language technology skills to emerge.
By way of example consider a new application developed
in CNGL to demonstrate the integration of MT and
crowd-sourcing in support of multilingual Twitter
consumption. This takes Twitter feeds followed by a user
and passes them through, first a language identification
service, which then routes this to a language specific MT
engine.

57

Figure 3: Generic Bulk Localisation Process Flow showing process feedback loops

Figure 4: Screen shot of MyIsle Twanslator App at http://www.myisle.org/twanslate

This reuses a BPEL sequence that combines a text
analytics web service for language identification and a
web service wrapper for the Matrex MT service, trained in
specific language pairs. Though this orchestration was
originally developed to demonstration their support for
conventional localisation workflows in the WorldServer

GMS (Lewis 2009), this application allows the same
technology to be integrated into a crowdsourced
post-editing setting. Here users are encouraged to rate and
if willing to post-edit the machine translated Tweets,
providing input to further training of the MT (see
screenshot on figure 4). A simple initial gauging of the

58

user‟s language competence allows this rating and
post-editing dialogue to be personalised to the user and
also to their willingness to participate in these steps.
Though simply assembled in a few days as a mash up of
the Twitter API and invocation of the BPEL web service
orchestration, this application can now be easily scaled to
a fully managed service that can be revised and tuned over
time at low cost. Such Twitter applications therefore
quickly enable the study of a number of issues key to
NGL, i.e. collective content annotation, rating and
translation (crowd-sourcing) across a social network;
machine translation of perishable content and short text
form content; social network informed personalisation of
content querying and content translation and automated
semantic annotation based on domain personalisation and
text analytics.

7. Conclusion

We have described an Open Services Framework that we

are developing to enable a broad range of Next

Generation Localisation. We have emphasised the need

for common meta-data to support web service

interoperability as well as for the configuration and

monitoring of systems via web services interfaces. The

proposed NGL Process Map provides a semantic,

process-oriented frame for discussing such meta-data

agreements as new forms of NGL processes

encompassing the broader set of stakeholders is explored.

Our further work will involve expanding the range of

example processes, including application in personalised

multilingual customer care and social networking. Web

service interfaces and associated meta-data will be

harvested and common models proposed. Web service

definition structures will be aligned with emerging service

component architectures, including support for access

control and business rules. Where meta-data requirements

are volatile, we will adopt triple-base models based on the

W3C‟s Resources Description Framework

(www.w3.org/RDF) to allow rapid refinement of data

models. We will also explore the deployment of

compute-heavy processes such as MT training onto cloud

computing environments.

8. Acknowledgements

This research is supported by the Science Foundation

Ireland (Grant 07/CE/I1142) as part of the Centre for Next

Generation Localisation at Trinity College Dublin.

9. References

Bargary, K. (2006) “Ignite implements Web Services”,

Localisation Focus, vol. 5, Issue 1, Pages 22-23,

Ireland, 2006

Lewis, D., Curran, S., Feeney, K., Etzioni, Z., Keeney, J.,

Way, A., and Schäler, R. (2009). Web service

integration for next generation localisation. In

Proceedings of the Workshop on Software Engineering,

Testing, and Quality Assurance For Natural Language

Processing (Boulder, Colorado, June 05 - 05, 2009).

ACL Workshops. Association for Computational

Linguistics, Morristown, NJ, 47-55.

Flinter, S. (2003) “A J2EE based Localization Services

Architecture”, IBM Whitepaper, Jan 2003, accessed

from

ftp://ftp.software.ibm.com/software/globalization/docu

ments/j2ee_lsa.pdf on 25 Feb 2010

Foster, I., Parastatidis, S., Watson, P., and Mckeown, M.

2008. How do I model state?: Let me count the ways.

Commun. ACM 51, 9 (Sep. 2008), 34-41.

SmartBuilding “Information Delivery Manual Guide to

Components and Development Methods”,

SmartBuilding Norway, accessed from

http://idm.buildingsmart.no/confluence/download/atta

chments/446/IDM2_Methodology.pdf?version=1 on

25 Feb 2010

Inaba, R., Murakami, Y., Nadamoto, A., Ishida T. (2007)

“Multilingual Communication Support Using the

Language Grid” in Intercultural Collaboration,

LNCS 4568, Springer, 13 Aug 2007, pp118-132

Internationalization Tag Set (ITS) (2007) Version 1.0

W3C Recommendation 03 April 2007, accessed from

http://www.w3.org/TR/its/ on 25 Feb 2010

Johnson, D. (2007) “Getting Started in Localization”,

Multilingual, Oct/Nov 2007, pp 3-5

Reilly, J., Kelly, M. (2009) “The eTOM - A Business

Process Framework Implementer's Guide”, TM Forum

Reynolds, P. (2003) “Web Services for Translation”,

accessed from

http://www.translationdirectory.com/article395.htm on

25 Feb 2010

Reynolds, P. et al (2007) “Translation Web Services -

draft committee specification” OASIS Translation Web

Services TC, Proposed draft specification 16 May 2007,

access from

http://www.oasis-open.org/committees/download.php/

24350/trans-ws-spec-1.0.3.html on 25 Feb 2010

Systems to manage terminology, knowledge, and content

– TermBase eXchange (TBX), Localization Industry

Standards Association, 29 Oct 2008, access from

http://www.lisa.org/TBX-Specification.33.0.html on

25 Feb 2010

TMX 1.4b Specification OSCAR Recommendation,

Localisation Industry Standards Association, 26 April

2005, accessed from

http://www.lisa.org/fileadmin/standards/tmx1.4/tmx.ht

m on 25 Feb 2010

XLIFF “A white paper on version 1.2 of the XML

Localisation Interchange File Format (XLIFF)”,

Revision: 1.0, 17 Oct 2007 accessed from

http://xml.coverpages.org/XLIFF-Core-WhitePaper20

0710-CSv12.pdf on 25 Feb 2010

XLIFF Version 1.2, OASIS Standard, 1 February 2008,

accessed from

http://docs.oasis-open.org/xliff/xliff-core/xliff-core.ht

ml on 25 Feb 2010

59

http://www.w3.org/RDF

Web Communication Protocols for Coordinating the Modules of AnHitz,
a Basque-Speaking Virtual 3D Expert on Science and Technology

Igor Leturia
Elhuyar Foundation
Zelai Haundi kalea 3

Osinalde Industrialdea
20170 Usurbil, Spain
i.leturia@elhuyar.com

Arantza del Pozo, David Oyarzun
Vicomtech

Mikeletegi pasealekua, 57
Miramon Teknologia Parkea

20009 Donostia-San Sebastian, Spain
{adelpozo, doyarzun}@vicomtech.org

Urtza Iturraspe
Robotiker

202. eraikina
Zamudioko Teknologia Parkea,

48170 Zamudio, Spain
uiturraspe@robotiker.es

Xabier Arregi, Kepa Sarasola,
Arantza Diaz de Ilarraza

IXA Group, University of the Basque Country
Informatika Fakultatea

649 posta-kutxa
20080 Donostia-San Sebastian, Spain

{xabier.arregi,kepa.sarasola,a.diazdeilarraza}@ehu.es

Eva Navas, Igor Odriozola,
Iñaki Sainz

Aholab Group, Basque Country University
Ingeniaritza Goi Eskola Teknikoa

Urkijo Zumardia, z.g.
48013 Bilbao, Spain

{eva.navas,igor.odriozola}@ehu.es, inaki@aholab.ehu.es

Abstract

AnHitz is a prototype of a virtual Basque-speaking 3D expert that can answer questions or perform cross-lingual searches on science
and technology, and show the search results in Basque by means of machine translation. It has been named after the 3-year strategic
research project on language, speech and visual technologies for Basque carried out by several organizations, and built as a
demonstrator of the technologies developed. Because the six modules comprising AnHitz have been implemented by different
organizations using different operating systems, programming languages or libraries, it was impossible to build the demonstrator in a
single executable or machine. As a result, the prototype has been constructed using separate programs in various machines that interact
using network communication and web services protocols. Despite the employed approach having some drawbacks –mainly higher
time delays when audio rendering is done via the web–, the outcome is indeed satisfactory, as it has allowed us to build a fully
functional demonstrator that has showed good performance and acceptance in an evaluation made with 50 users, and has made a great
impact on the Basque media.

1. Background

1.1 The AnHitz project
AnHitz is a prototype demonstrator that sets out to show
the potential of the integration of language, speech and
visual technologies. It is the outcome of a 3-year strategic
research project on language, speech and visual
technologies for Basque, also called AnHitz. This project
has been promoted by the Basque Government in its
Science and Technology Plan for 2006-2008 to develop
language technologies for Basque.

1.2 The AnHitz consortium
AnHitz is a collaborative project between five
participants, each of them with expertise in a different
area:

• Vicomtech (http://www.vicomtech.org/): An applied
research centre working in the area of interactive
computer graphics and digital multimedia. It was
founded jointly by the INI-GraphicsNet Foundation
and by the EiTB, the Basque Radio and Television
broadcasting corporation.

• Robotiker (http://www.robotiker.com): A technology
centre specialized in information and

telecommunication technologies, part of the
Tecnalia Technology Corporation.

• Elhuyar Foundation (http://www.elhuyar.org): A
non-for-profit organization that aims to promote the
normalization and standardization of Basque, with
activities in the fields of lexicography and
terminology, dictionary publishing, language
planning, science and technology communication,
textbooks and multimedia products and services,
alongside R&D in language technologies for
Basque.

• The IXA Group of the University of the Basque
Country (http://ixa.si.ehu.es): Specialized in the
processing of written texts at different levels
(morphology, syntax, semantics; corpora, machine
translation, IE-IR…).

• The Aholab Signal Processing Laboratory Group of
the University of the Basque Country
(http://aholab.ehu.es): Specialized in speech
technologies (speech synthesis and recognition,
speaker identification…).

1.3 Vision
Basque is an agglutinative language with a very rich
morphology. There are around 700,000 Basque speakers,
about 25% of the total population of the Basque Country,

60

but they are not evenly distributed. There are six dialects,
but since 1968 the Academy of the Basque Language
(Euskaltzaindia) has been involved in a standardization
process. At present, the morphology is completely
standardized, but the lexical standardization process is
still under way.
Language technology development for Basque differs in
several aspects from the development of similar
technologies for widely used and standardized languages
such as French (Chaudiron & Mariani, 2006), Norwegian
(Maegaard et al., 2006) or Dutch-Flemish (D'hallewey et
al., 2006). This is mainly due to two reasons:

• The size of the speakers' community is small. As a
result, there are not enough specialized human
resources, they lack financial support, and
commercial profitability is, in almost all cases, a
very difficult goal to reach.

• Due to its rich inflectional morphology, Basque
requires specific procedures for language analysis
and generation. Thus, it is not always possible to
reuse language technologies developed for other
languages. This is relevant in both rule-based and
corpus-based approaches, since this applicability (or
portability) depends largely on language similarity.

For these reasons, we believe that research and
development for Basque should be (and, in the case of the
members of AnHitz, usually is) approached following
these guidelines:

• High standardization of resources to be useful in
different lines of research, tools and applications.

• Reuse of language resources, tools, and
applications.

• Incremental design and development of language
resources, tools, and applications in a parallel and
coordinated way in order to get the maximum
benefit from them. Language resources and research
are essential to create any tool or application; but,
by the same token, tools and applications will be
very helpful in the research and improvement of
language resources.

• Use of open source tools.

1.4 Resources, tools and applications developed
Some of the organizations that are part of AnHitz have
been working in Natural Language Processing and
Language Engineering for Basque since 1990. The most
basic tools and resources (lemmatizers, POS taggers,
lexical databases, speech databases, electronic
dictionaries, etc.) had been developed before AnHitz, but
most of them have been further improved within it, and
many others have been created in this project:

• Textual resources: ZT Corpusa (Areta et al., 2007), a
corpus of science and technology texts
(http://www.ztcorpusa.net); EPEC, a corpus tagged
and disambiguated at the morphological, syntactic
and semantic levels.

• Speech resources: SpeechDat FDB1060-EU, a
SpeechDat-like database for Basque that contains
recordings obtained over the fixed telephone

network; SpeechDat MDB600-EU, another
SpeechDat-like database for Basque that contains
recordings obtained over the mobile telephone
network; EMODB (Navas et al., 2004), emotional
speech database recorded by a female speaker in the
six MPEG4 emotions and neutral style; Amaia and
Aitor (Saratxaga et al., 2006), emotional speech
database phonetically balanced for female and male
voices; BIZKAIFON (Castelruiz et al., 2004),
multimodal (speech and video) database for the
Western dialects of the Basque language
(http://bizkaifon.ehu.es).

• Textual tools: Erauzterm (Gurrutxaga et al., 2004),
tool for automatic term extraction from Basque texts
and corpora; ElexBI (Alegria et al., 2006a), tool for
the extraction of pairs of equivalent terms from
Spanish-Basque translation memories
(http://itzulterm.elhuyar.org/); Corpusgile and Eulia
(Areta et al., 2007), advanced tools to create,
linguistically annotate and query corpora; CorpEus
(Leturia et al., 2007a), a web-as-corpus tool for
Basque that allows the querying of the Internet as if
it were a Basque corpus (http://www.corpeus.org);
Dokusare (Saralegi & Alegria, 2007), a system to
identify science news of similar content in a
multilingual environment by using cross-lingual
document similarity techniques; Co3 (Leturia et al.,
2009), a system to automatically build multilingual
comparable corpora (Spanish-English-Basque)
using the Internet as a source; AzerHitz (Saralegi et
al., 2008), a system to automatically extract pairs of
equivalent terms from Spanish-Basque comparable
corpora; Elezkari (Saralegi & López de Lacalle,
2009), a cross-lingual information retrieval system
focused on Basque, Spanish and English; Eulibeltz
(Díaz de Ilarraza et al., 2007), a tool to create and
linguistically annotate bilingual aligned corpora;
Eihera (Alegria et al., 2006b), named entity
recognizer for Basque.

• Speech tools: AhoT2P, a letter to allophone
transcriber for standard Basque; AhoTTS_Mod1, a
linguistic processor for speech synthesis.

• Text applications: Xuxen (Aduriz et al., 1997),
spell-checker suited to the agglutinative nature of
Basque that combines dictionaries and
morphological analysis; Lemmatization based
dictionaries for text-processors; Elebila (Leturia et
al., 2007b), a public search engine for content in
Basque (http://www.elebila.eu); Opentrad-Matxin
(Alegria et al., 2007; Alegria et al., 2008), open-
source machine translation system for Spanish-
Basque (http://www.opentrad.org); English-Basque
statistical MT (Stroppa et al., 2006); Ihardetsi (Ansa
et al., 2008), a Question Answering system for
Basque.

• Speech applications: AhoTTS (Hernáez et al.,
2001), a modular Text-To-Speech conversion system
for Basque, Spanish and English
(http://aholab.ehu.es/tts/tts_en.html); AhoTTS for

61

PDA (Sanchez et al., 2006); ZTRec, a Basque
speech recognizer of science and technology terms
and questions.

• Visual applications: AnHitzDlg, Basque speaking
avatar.

2. The AnHitz demo
Apart from the various resources, tools and applications
developed in the AnHitz project, we have also built a
demonstrator that sets out to show the potential of all
these different technologies working together. It is a 3D
virtual expert on science and technology that includes
Question Answering and Cross Lingual Information
Retrieval systems in those areas. The interaction with the
system is carried out in Basque (the results of the CLIR
module that are not in Basque are translated through
Machine Translation) and is speech-based (using Speech
Synthesis and Automatic Speech Recognition).
This is a typical conversation with AnHitz when
performing a cross-lingual search:

- Kaixo, nola duzu izena? (Hello, what's your name?)
- Kepa (Kepa)
- Kepa esan al duzu? (Did you say Kepa?)
- Bai (Yes)
- Kaixo, Kepa, ni Anhitz naiz (Hello, Kepa, I am

Anhitz). Zientzia eta Teknologiari buruzko galderak

erantzun ditzaket (I can answer questions about
Science and Technology), edo hitzak bilatu
dokumentu biltegi eleaniztun batean (or look for
documents containing keywords in a multilingual
repository). Kepa, zer egin nahi duzu egitea, galdera
bati erantzutea edo edo hitzak bilatzea? (Kepa, what
do you want me to do, answer a question or look for
keywords?)

- Hitzak bilatzea (Look for keywords)
- Esan bilatu nahi dituzun hitzak, Kepa (Tell me which

keywords you want me to look for, Kepa)
- Ozono geruza (Ozone layer)
- "ozono geruza" esan duzu? (Did you say "ozone

layer"?)
- Bai (Yes)
- "ozono geruza" bilatzen… (Looking for "ozone

layer"…) Espainierazko dokumentuak itzultzen…
(Translating documents from Spanish…) Hauek dira
aurkitu ditudan emaitzak: (These are the results I
have found:)

And next AnHitz will show on the screen to its right a list
with clickable titles and snippets of the results found. The
results that were not originally in Basque are translated
by means of machine translation (see Figure 1). And the
user can tell the system to read the titles or snippets
he/she wants aloud, using TTS.

Figure 1: Screen capture of the AnHitz demo

An example of a conversation involving a question would
be like this (with the same introductory part):

- Kepa, zer egin nahi duzu egitea, galdera bati
erantzutea edo edo hitzak bilatzea? (Kepa, what do

you want me to do, answer a question or look for
keywords?)

- Galdera bati erantzutea (Answer a question)
- Esan egin nahi duzun galdera, Kepa (Put the

62

question you want answered, Kepa)
- Nork asmatu zuen telefonoa? (Who invented the

telephone?)
- "Nork asmatu zuen telefonoa?" esan duzu? (Did you

say "who invented the telephone?")
- Bai (Yes)
- Galderaren erantzuna bilatzen… (Looking for the

answer to your question…)
- Erantzuna Graham Bell izan daitekeela uste dut. (I

think the answer is Graham Bell.) Nahi al dituzu
ikusi aukera guztiak euren probabilitatearekin? (Do
you want to see all the possible answers I have
found and their probabilities?)

- Bai (Yes)

- Hor ondoan dituzu aurkitu ditudan aukera guztiak
euren probabilitatearekin: (These are the possible
answers I have found and their probabilities:)

And then AnHitz shows the list of possible answers on
the text screen, together with each one’s probability and
the paragraph from which each has been inferred.

3. Description of the modules
The AnHitz prototype, as we have already pointed out,
comprises various modules, which will be described in
more detail in the following subsections. The architecture
of the overall system is shown in Figure 2.

Science and
Technology
document
collection

(eu)

Science and
Technology
document
collection
(eu-es-en)MT

(es-eu)

MT
(en-eu)

CLIR
(eu-es-en)

QA
(eu)

ANHITZUSER

Doc(s)
(es)

Doc(s)
(en)

Doc(s)
(eu)

Doc(s)
(eu)

Doc(s)
(eu)

Search term(s)
(eu)

Question
(eu)

Answer(s)
(eu)

ASR
(eu)

TTS
(eu)

Text
(eu)

Text
(eu)

Speech
(eu)

Speech
(eu)

Avatar

Figure 2: Architecture of the modules of the AnHitz demo

3.1 Avatar
The avatar module developed by Vicomtech, AnHitzDlg,
includes all the necessary functionalities for showing and
animating the 3D character that acts as the front-end of
the AnHitz demonstrator. Its lip animation is
synchronised with the audio synthesised by the
multilingual TTS module in several languages and it can
also show facial emotions when required. In addition, the
module generates blinking and head movement
animations through a set of behaviour rules in order to
increase the illusion that the 3D character is alive.
It has been developed in C++, using OpenSceneGraph
(http://www.openscenegraph.org) as its graphic library.
Although it has only been tested in the Windows XP and
Windows Vista Operative Systems, the multiplatform
features of both the avatar module and the
OpenSceneGraph library allow its easy migration to
Linux systems too.

3.2 ASR

The only Automatic Speech Recognition (ASR) system
for Basque available at the time of AnHitz’s development
was Nuance’s Vocon3200. This ASR system is grammar-
based. Elhuyar and Robotiker had to design various
grammars in Backus-Naur Form or BNF
(http://en.wikipedia.org/wiki/Backus-Naur_Form) in
order to adapt the system to the AnHitz demo: a grammar
for names, a grammar for yes/no answers, a grammar for
search terms, a grammar for common science and
technology questions, etc. The search terms and questions
were extracted out of the most frequent searches of the
logs of Zientzia.net (http://www.zientzia.net), a Basque
popular science website owned by Elhuyar.
Vocon3200 is written in C and can be used under
Windows.

3.3 TTS
The Text-To-Speech system used in AnHitz is AhoTTS
(Hernáez et al., 2001), a multilingual system developed
by the Aholab Signal Processing Group of the University
of the Basque Country for commercial and research

63

purposes. The system has a modular architecture because
it has been specially designed to develop all the modules
that integrate a TTS system independently. The system
uses three main processing modules: the text processor,
the linguistic processor and the synthesis engine. In
addition, three databases are used: one dictionary which
includes morphological and phonetic information about
the words, a database for prosody prediction, and the
synthesis database containing the recordings that will be
manipulated to generate the synthetic speech (Sainz et al.,
2009). The system currently works in Basque, Spanish
and English, using Festival (Taylor et al., 1998) for the
English text processing module.
AhoTTS is written in C/C++ and is fully functional both
in the Unix and Windows operating systems.

3.4 CLIR
The Cross-Lingual Information Retrieval module used is
Elezkari, which has been developed by Elhuyar (Saralegi,
& López de Lacalle, 2009). The search terms are entered
in Basque and the information retrieval is done in various
popular science corpora in Basque, English and Spanish.
In order to achieve this, the search terms have to be
properly translated into the other languages (dealing with
ambiguous translations, Out-Of-Vocabulary words, etc.).
The system works under Linux. It is programmed in C
and makes use of the Indri search engine
(http://www.lemurproject.org/indri/).

3.5 MT
Matxin, developed by the IXA group of the University of
the Basque Country (Alegria et al., 2007; Mayor et al.,
2009), is the system used for Machine Translation in
AnHitz. It translates text from Spanish into Basque using
a transfer rule-based approach. The first version of an
English-Basque rule based MT system is being developed
at the moment.
Its modules have been programmed using C and C++
programming languages, it works under Linux and its
free code is publicly available in Sourceforge
(http://matxin.sourceforge.net).

3.6 QA
The Question Answering system used in AnHitz is
Ihardetsi, developed by IXA (Ansa et al., 2008; Alegria et
al., 2009). It works over a Science and Technology corpus
compiled by Elhuyar and IXA, the ZTCorpus. As is
common in question answering systems, Ihardetsi is
based on three main modules: the question analysis
module, the passage retrieval module and the answer
extraction module. These modules have been
implemented as autonomous web services by reusing
some linguistic tools previously developed in the IXA
group, and the QA system becomes a client that calls
these services in a pipeline when it needs them by using
the SOAP (Simple Object Access Protocol)
communication protocol.
The Ihardetsi QA system runs under Linux.

3.7 AnHitz main program
The AnHitz main program controls the conversation flow
and responds to the user’s queries by making use of the
other modules.
The control of the conversation flow includes introducing
itself, prompting the user for his/her name, the action to
perform, the terms to search or the question to answer,
showing different emotions depending on the certainty of
the answer, etc. To improve the performance of the ASR
system when it did not understand correctly, we used the
confidence level returned by the ASR system, and
empirically found reasonably good thresholds of this
confidence level for correct recognition, doubtful
recognition and incorrect recognition. Thus, the system
asks for confirmation in the case of doubtful recognition
and repeats the question in the case of incorrect
recognition.
The main program has been developed in Python and,
since it uses no operating system-specific libraries, it can
run indistinctly under Linux or Windows.

4. Communication among the modules
Bearing in mind what has been said in the previous
section, we can observe that the AnHitz modules, since
they have been built by different organizations, run on
different operating systems and use different
programming languages and/or libraries. This made it
extremely difficult, if not impossible, to integrate the
demonstrator into a single machine, let alone into an
executable file.
As a result, the AnHitz prototype demonstrator has been
constructed as a distributed system running in different
machines over the Internet and communicating via net
protocols and web services, even among the modules
running in the same machine. The main program of the
demo, the avatar module and the ASR system run on a
Windows laptop. The TTS system runs on a Linux
machine at Aholab, the CLIR system on a Linux machine
at Elhuyar and the MT and QA systems on different
Linux machines at IXA. The modules have been
implemented as servers using network communication
protocols, and the main program is the client that makes
requests to them.
Different protocols have been used for communication.
There has been no particular reason to choose one or the
other: in some cases, the module was already on the web
implemented as a web service with a certain protocol; in
others, the programmer just used the protocol he/she was
more familiar with.
The avatar module receives its speaking orders via simple
sockets. It then asks the TTS module for the audio file
and phoneme information file using an HTTP request.
The ASR system activates itself and the microphone
when it receives a request via sockets. The CLIR module
is called using the SOAP protocol. The MT system for
translating the texts from Spanish into Basque is also
called using SOAP. The QA module is queried via
sockets. An illustration showing the communication
among the modules is shown in Figure 3.

64

ASR

Avatar

Sockets

SOAP

SOAP

HTTP CLIR

Linux

Elhuyar

TTS

Linux

Aholab

MT

Linux

QA

Linux

IXA

Sockets

AnHitz
Sockets

Windows

Figure 3: Communication among AnHitz’s modules

5. Evaluation
The demo prototype developed in AnHitz was evaluated
in order to measure its performance and weigh up the
impression of potential users about it. 50 users formulated
3 questions and 3 cross-lingual search queries each,
testing the system 300 times in total. During the trials,
several objective observations, such as the number of
failures and successes of the ASR or QA systems, were
noted down. At the end of each interaction, the testers
filled in a questionnaire regarding more subjective
matters (quality of the TTS, CLIR or MT systems,
general impression, etc.).
The aim of the evaluation was twofold: on the one hand,
the performance of the individual modules was evaluated
in real world uses; on the other, we were able to weigh up
the AnHitz demo’s performance and the users’
impressions about it. The results of the evaluation are
detailed in the following paragraphs.
The ASR system, together with the
confirmation/repetition system implemented in the
AnHitz demonstrator, understood correctly 63.19% of the

times. Another 12.59% of the times it understood
correctly but was not sure and asked for confirmation.
13.43% of the times the system did not understand
correctly and asked for confirmation, so the user could
repeat the sentence. Only in 10.79% of the cases did the
system understand wrongly without giving the option to
correct. When users were asked whether AnHitz had
understood what they said overall, 55.11% of the testers
answered “almost always” or “most of the times”,
34.69% “sometimes” and 10.20% “a few times”. No one
chose “hardly ever”.
Regarding the intelligibility of AnHitz's speech, 85.42%
thought it was “very good” or “good” and 14.58% “quite
good”. No one chose “bad” or “very bad”. 43.75% of the
testers judged the speech as “very natural” or “natural”,
31.25% “quite natural” and 25.00% “artificial” or “very
artificial”.
The question answering system returned the correct
answer 30.61% of the times, and in another 15.30% the
correct answer was among the given first five possible
answers. 54.08% of the times the system did not return a
correct solution or did not answer at all. However, some

65

of these incorrect outcomes might be due to the correct
answer not being in the corpus, and so the results could
have been better.
The users judged the CLIR results to be “very good” or
“good” 68.35% of the times; found them to be “quite
bad” in 22.30% of the cases, and thought they were
“completely unrelated” 9.35% of the time.
30.00% of the times the users found the translations of
the MT system to be “very good”, “good” or “quite
good”; “comprehensible” in another 38.89%; and “quite
bad”, “bad” or “very bad” in the remaining 31.11%.
Regarding usefulness, 62.50% of the users thought the
system was “very useful” or “useful” and 37.50% thought
it was “quite useful”. No one said it was “quite useless”
or “completely useless”. When asked about the suitability
of extending the AnHitz approach to other application
domains, 20.83% said “it should always be like this with
machines”, 39.58% that they would like to see it “in
many cases” and another 39.58% “in some cases”. No
one chose “maybe in a few cases” or “never”.

6. Dissemination
At the end of the AnHitz project, its participants and
some members of the Basque Government gave a press
conference, which was very well attended by the media.
Practically every radio, TV or newspaper covered the
news the same day or the next. Furthermore, the demo
prototype aroused great interest, and many media devoted
a video, interview or article to it. Some of these
appearances of AnHitz in the media can be seen at
http://www.elhuyar.org/hizkuntza-zerbitzuak/EN/Anhitz-
project.
We also showed the prototype to the general public
during the Week of Science and Technology 2008, in two
stands in Donostia-San Sebastian and Bilbao. Students
from schools and members of the public in general had
the chance to try it out and play with it, and they were
generally surprised and interested.

7. Conclusions
The AnHitz project has proved to be very effective for
improving the already existing language and speech
resources for Basque and for creating new ones. The
AnHitz prototype demonstrator implemented to integrate
the tools and resources developed has shown that
collaboration between agents working in the different
language, speech and visual research fields is crucial for
exploiting the potential of the technologies and build
applications useful for the end user. The evaluation of the
AnHitz demonstrator has shown that despite being based
on systems still in the research stage, its performance is
acceptable.
In order to build the completely functional AnHitz demo
integrating different language, speech and visual
technologies, a modular remote architecture with network
communications has been used. The benefits of building
the demo using this networked approach have been
enormous, and we doubt we could have built it otherwise.
However, this approach also presents some drawbacks.

The main disadvantage is the time delay that originates
when AnHitz has to speak, due to the transmission over
the Internet of the audio files generated by the TTS
module. Other delays exist too, because some processes,
mainly MT and QA, need their time; but these are
inevitable and not due to the modular architecture.
However, we reduced the effect of these delays to some
extent by locally caching the already processed audios,
queries and translations, so that the most frequent and
repetitive sentences and queries can be executed instantly.
Another drawback is the lack of control over the remote
modules and servers. If something goes wrong in one of
them, the whole AnHitz demo is affected and it is not
trivial to put things back up.
Nevertheless, we consider that the results have been very
satisfactory overall, since both the responses obtained
from the users in the evaluation and the media coverage
have been very positive.
One future improvement of the AnHitz demo could be the
use of virtualization to run two operating systems at a
time and thus allow the installation of all the modules in
the same machine. However, we are not sure this
approach would work out due to the complexity, libraries,
versions, etc. of the modules. But even with all the
modules in one machine, the network communications
approach would still be used.
Another possible improvement to explore in the future is
the implementation of the AnHitz demonstrator as a web
application, which would allow the general public to
experiment with the potential of the combination of
language, speech and visual technologies.

8. Acknowledgements
This work has been partially founded by the Industry
Department of the Basque Government under grant IE06-
185 (AnHitz project).

9. References
Aduriz, I., Alegria, I., Artola, X., Ezeiza, N., Sarasola, K.

(1997). A spelling corrector for Basque based on
morphology. Literary & Linguistic Computing, 12(1),
pp. 31--38.

Alegria, I., Gurrutxaga, A., Saralegi, X., Ugartetxea, S.
(2006a). Elexbi, a basic tool for bilingual term
extraction from Spanish-Basque parallel corpora. In
Proceedings of Euralex 2006. Torino: Euralex, pp. 159-
-165.

Alegria, I., Arregi, O., Ezeiza, N., Fernandez, I. (2006b).
Lessons from the development of a named entity
recognizer for Basque. Procesamiento del Lenguaje
Natural, 36, pp. 25--37.

Alegria, I, Díaz de Ilarraza, A., Labaka, G., Lersundi, M.,
Mayor, A., Sarasola, K. (2007). Transfer-based MT
from Spanish into Basque: reusability, standardization
and open source. Lecture Notes on Computer Science,
4394, pp. 374--384.

Alegria, I., Casillas, A., Diaz de Ilarraza, A., Igartua, J.,
Labaka, G., Lersundi, M., Mayor, A., Sarasola, K.
(2008). Spanish-to-Basque MultiEngine Machine

66

Translation for a Restricted Domain. In Proc. of the 8th
Conference of the Association for Machine Translation
in the Americas (AMTA-2008). Hawai, USA: AMTA,
pp. 57--69.

Alegria, I., Ansa, O., Arregi, X., Otegi, A., Soraluze, A.
(2009). Ihardetsi: A Question Answering system for
Basque built on reused linguistic processors. In Proc.
SALTMIL 2009 workshop: Information Retrieval and
Information Extraction for Less Resourced Languages.
Donostia: SALTMIL, pp. 37--43.

Ansa, O., Arregi, X., Otegi, A., Soraluze, A. (2008).
Ihardetsi question answering system at QA@CLEF
2008. In Working Notes of the Cross-Lingual
Evaluation Forum. Aarhus: CLEF, pp. 369--376.

Areta, N., Gurrutxaga, A., Leturia, I., Alegria, I., Artola,
X., Diaz de Ilarraza, A., Ezeiza, N., Sologaistoa, A.
(2007). ZT Corpus: Annotation and tools for Basque
corpora. In Proceedings of Corpus Linguistics 2007.
Birmingham: University of Birmingham.

Castelruiz, A., Sánchez, J., Zalbide, X., Navas, E.,
Gaminde, I. (2004). Description and design of a web
accessible multimedia archive. In Proc. of 12th IEEE
Mediterranean Electrotechnical Conference
(MELECON). Dubrovnik: IEEE, pp. 681--684.

Chaudiron, S., Mariani, J. (2006). Techno-langue: The
French National Initiative for Human Language
Technologies (HLT). In Proc. of fifth international
conference on Language Resources and Evaluation
(LREC). Genoa: ELRA, pp. 767--772.

D'hallewey, E., Odijk, J., Teunissen, L., Cucchiarini, C.
(2006). The Dutch-Flemish HLT Programme STEVIN:
Essential Speech and Language Technology Resources.
In Proc. of fifth international conference on Language
Resources and Evaluation (LREC). Genoa: ELRA, pp.
761--766.

Díaz de Ilarraza, A., Igartua, J., Sarasola, K., Sologaistoa,
A., Casillas, A., Martinez, R. (2007). Spanish-Basque
Parallel Corpus Structure: Linguistic Annotations and
Translation Units. In Proceedings of TSD 2007
Conference. Plzen: TSD, pp. 230--237.

Gurrutxaga, A., Saralegi, X., Ugartetxea, S., Lizaso, P.,
Alegria, I., Urizar, R. (2004). A XML-based term
extraction tool for Basque. In Proc. of fourth
international conference on Language Resources and
Evaluation (LREC). Lisbon: ELRA, pp. 1733--1736.

Hernáez, I., Navas, E., Murugarren, J.L., Etxebarria, B.
(2001). Description of the AhoTTS conversion system
for the Basque language. In Proceedings of 4th ISCA
Tutorial and Research Workshop on Speech Synthesis.
Edinburgh: ISCA, paper 202.

Leturia, I., Gurrutxaga, A., Alegria, I., Ezeiza, A. (2007a).
CorpEus, a 'web as corpus' tool designed for the
agglutinative nature of Basque. In Proceedings of Web
as Corpus 3 workshop. Louvain-la-Neuve: ACL-
SIGWAC, pp. 69--81.

Leturia, I., Gurrutxaga, A., Areta, N., Alegria, I., Ezeiza,
A. (2007b). EusBila, a search service designed for the
agglutinative nature of Basque. In Proceedings of
iNEWS’07 workshop. Amsterdam: ACM-SIGIR, pp.

47--54.
Leturia, I., San Vicente, I., Saralegi. X. (2009). Search

engine based approaches for collecting domain-specific
Basque-English comparable corpora from the Internet.
In Proceedings of 5th International Web as Corpus
Workshop (WAC5). Donostia: ACL-SIGWAC, pp. 53--
61.

Maegaard, B., Fenstad, J., Ahrenberg, L., Kvale, K.,
Mühlenbock, K., Heid, B. (2006). KUNSTI -
Knowledge Generation for Norwegian Language. In
Proc. of fifth international conference on Language
Resources and Evaluation (LREC). Genoa: ELRA, pp.
757--760.

Mayor, A., Alegria, I., Diaz de Ilarraza, A., Labaka, G.,
Lersundi, M., Sarasola, K. (2009). Evaluación de un
sistema de traducción automática basado en reglas o
por qué BLEU sólo sirve para lo que sirve.
Procesamiento del Lenguaje Natural, 43, pp. 197--208.

Navas, E., Hernáez, I., Castelruiz, A., Luengo, I. (2004).
Obtaining and evaluating an emotional database for
prosody modelling in standard Basque. Lecture Notes
on Computer Science, 3206, pp. 393--400.

Sainz, I., Erro, D., Navas, E., Hernáez, I., Saratxaga, I.,
Luengo, I., Odriozola, I. (2009). The AHOLAB
Blizzard Challenge 2009 Entry. In Proc. Blizzard
Challenge 2009 workshop. Edinburgh: Blizzard.

Sanchez, J., Luengo, I., Navas, E., Hernáez, I. (2006).
Adaptation of the AhoTTS text to speech system to
PDA platforms. In Proceedings of the SPECOM 2006.
San Petersburg: SPECOM, pp 292--296.

Saralegi, X., Alegria, I. (2007). Similitud entre
documentos multilingües de carácter científico-técnico
en un entorno web. Procesamiento del Lenguaje
Natural, 39, pp. 71--78.

Saralegi, X., San Vicente, I., Gurrutxaga, A. (2008).
Automatic extraction of bilingual terms from
comparable corpora in a popular science domain. In
Proceedings of Building and Using Comparable
Corpora workshop. Marrakech: BUCC, pp. 27--32.

Saralegi, X., López de Lacalle, M. (2009). Comparing
different approaches to treat Translation Ambiguity in
CLIR: Structured Queries vs. Target Co-occurrence
Based Selection. In Proceedings of the 6th
International Workshop on Text-Based Information
Retrieval. Linz: TIR.

Saratxaga, I., Navas, E., Hernáez, I., Luengo, I. (2006).
Designing and recording an emotional speech database
for corpus based synthesis in Basque. In Proc. of fifth
international conference on Language Resources and
Evaluation (LREC). Genoa: ELRA, pp. 2126--2129.

Stroppa, N., Groves, D., Way, A., Sarasola, K. (2006).
Example-Based Machine Translation of the Basque
Language. In Proc. of the 7th Conference of the
Association for Machine Translation in the Americas
(AMTA-2007). Boston, USA: AMTA, pp. 232--241.

Taylor, P., Black, A., Caley, R. (1998). The architecture of
the Festival Speech Synthesis System. In Proc. 3rd
ESCA Workshop on Speech Synthesis. Jenolan Caves,
ESCA, pp. 147--151.

67

Utilizing Web Service Technology to Create Danish Arabic Language

Resources

Mossab Al-Hunaity

Center for Language Technology

University of Copenhagen

musab@hum.ku.dk

Abstract

Language resources are a major challenge for modern SMT applications. We propose a new model that utilizes the web service
technology to create a bilingual text resource out of a monolingual corpus. We consider the Danish-Arabic pair as a case study
for this model, yet it’s possible to apply our model to any language pair. Our system compiles the monolingual corpus into many
small segments and distributes them to network users. Received user translations are validated by both the system and human
judges. Finally accepted translation is stored in bilingual translation memory.

1. Introduction

Building any statistical machine language (SMT)

system between any language pair requires bilingual

language resources. When translating between widely

spoken languages pair like the case between English-

Spanish or English-Arabic or Arabic-French it is

common that SMT system developer can find

bilingual resources easily like newspapers , blogs ,

parallel corpora , etc. The problem arises when we try

to build SMT system between languages with limited

common language resources like the case of Arabic

and Danish. A possible solution for this problem is to

use pivot technology where we develop two SMT

systems with common language resources. For a

language pair like the Arabic and Danish we build an

Arabic-English SMT where Arabic is the source

language and English is the target language. We build

another English-Danish SMT system where English

is the source language and Danish is the target

language. We pipeline the result of the AR-EN

system as an input to the EN-DA system. Finally we

receive a Danish translation for our source Arabic

text. English plays a pivot role in this approach.

Although the pivot strategy provides a solution for

the above problem it still has many drawbacks. Pivot

approach translation output quality is less than direct

approaches; usually translating sentences between

many SMT (pivoting) will cause a partial loss of the

meaning and sometimes may lead to a completely

different meaning of the source sentence. A clear

example of this is Google Translate¹ which relies on

pivot approach when translating between languages

with limited common resources like the case between

Arabic and Danish pair. SMT systems based on Pivot

approach sometimes produce results that are far away

from the correct meaning. Building a quality SMT

system requires a common bilingual resource. We

propose a method that utilizes the web service

technology to build bilingual text language resources

for languages pair with limited parallel resources like

the case with Arabic and Danish. Our framework is

composed of five major web services that

communicate with each other. Our major services

are: Segmentation, Distribution and Replication,

Translation collection, Validation, and Update

translation memory. Figure 1 describes our model

components. The five web services communicate

with each other to process a monolingual corpus and

finally produce a bilingual translation memory for

any selected languages pair. We apply our

experiments on the Danish–Arabic languages pair.

Yet it can be applied to any languages pair. The

services communicate with each other in a sequential

order. The segmentation service will partition the

monolingual corpus into documents, which will also

be processed into sentences. Each sentence will be

represented as a segment and it will be stored in a

special XML format, as demonstrated in figure 2.

The replication and distribution web service will

create many copies of each segment and will

disseminate segments through the web. Translation

collection web service collect users translation

feedback and send them in a proper XML format to

the validation service, which in return will validate if

the output is a possible candidate translation of the

source sentence. A human evaluator is recommended

to approve the received translation. Finally the update

web service will update the translation memory with

a new bilingual Danish-Arabic Entry. In the next

section we describe related work. Section 3 presents

our system model and its various details. Finally we

discuss our conclusions and future work in section 4.

1: http://translate.google.com/

68

2. Related Work

SOA (Service Oriented Architecture) and web

services technology are playing a major role in today

modern software development Hayashi (2010).

Efforts now are spent to utilize SOA and web service

technology with natural language processing

techniques. The notion of SaaS (Software as a

Service) is now being adopted in NLP projects as

LRaaS (Language Resource as a Service) Hayashi

(2010). In his work Sornlertlamvanich (2010) argues

that internet is now considered the largest linguistic

resource which demand the development of many

dedicated API set. Grefenstette (2010) suggested

directions on how we can utilize web 2.0 for creating

linguistic resources, especially the linguistic

knowledge available within web users and their

ability to provide language support. Dini and Petras

(2010) introduce many technical challenges for

building language resources for European languages

like integration, language resources maintenance and

licensing, which demand a dynamic software

infrastructure like the one web services have. Using

the internet as a primary source for corpus building

for under-resourced languages was the aim of pioneer

projects like the Crúbadán project Scannel (2007),

they built their resources mainly by crawling the web.

Fairon et.al (2007) proposed to use the web as a

linguistic resource, mostly via search engine queries

or by using ad-hoc data crawling software. Sharoff

(2006) used ad-hoc queries to create general corpora

for many languages. Leturia et. al (2007) used search

engine queries for collecting bilingual specialized

comparable corpora from the Internet. Baroni et. al

(2004) used the web to enhance corpora quality.

Although many free source corpora are available, still

there is a need for common and open corpora

Steinberger (2006). Biemann et.al (2009) described

the web as a major resource for data collection and

building for their Leipzing Corpora, their effort

should make it easy to build free access language

resources using web as a source of data and web

technologies as emerging tools. We believe our

technique should make it easy to build language

resources easily and effectively. We are different

from previous mentioned studies in that we target

quality of language resources and hence we prefer
human involvement in language resources collection.

3. Model Introduction

The system deploys five services to generate a

bilingual text translation memory (Danish-Arabic)

from of a source monolingual corpus (Danish), see

figure 1. Web services interact with each other using

XML formatted SOAP messages. In Sections 3.1

through 3.5 we explain our model system

components details.

Figure 1: Model web services components

3.1 Segmentation Service

The service will process the monolingual corpus and

compile it into a group of small XML files. Figure 2

represent a sample XML file extracted from the

Danish monolingual corpus. The segmentation

service will process this XML document into many

segments that is ready to be distributed through the

net work. Figure 3 represent a sample segment

structure. Each segment contains only one small

sentence. Segments include the sentence location

details which makes it easy to map sentence to its

original document location after translation.

3.2 Replication and Distribution Service

This service receives segments files produced by the

segmentation service. Usually each file should

contain one sentence. It will make many copies of

each file and will start to disseminate these segments

through the network.

69

<?xml version="1.0" encoding="UTF-8"?>
<SRCSET setid="Climate_Change_Summit" srclang="DA">

 <DOC docid="1" genre = "text" >
 <seg id="1.1">
 de fire vigtige punkter, der bør rummes i en aftale i

 København
 </seg>
 <seg id="1.2">
 Hvor meget er industrilandene villige til at reducere deres
 udledning af drivhusgasser?

 </seg>
 <seg id="1.3">
 Hvor meget er toneangivende udviklingslande

 som Kina og Indien villige til at gøre for at begrænse
 stigningen i deres udledning?
 </seg>

 <seg id="1.4">
 Hvis København kan levere varen på de fire
 punkter, vil jeg være glad,” siger Yvo de Boer.

 </seg>
 </DOC>
</SRCSET>

<?xml version="1.0" encoding="UTF-8"?>
<SRCSET setid="Climate_Change_Summit" srclang="DA">

 <DOC docid="1" genre = "text" >
 <seg id="1.1">
 de fire vigtige punkter, der bør rummes i en aftale i

 København
 </seg>
 </DOC>

</SRCSET>

<?xml version="1.0" encoding="UTF-8"?>
<SRCSET setid="Climate_Change_Summit" srclang="DA">
 <DOC docid="1" genre = "text" >

 <seg id="1.2">
 Hvor meget er industrilandene villige til at reducere deres
 udledning af drivhusgasser?

 </seg>
 </DOC>

</SRCSET>

Figure 2: Sample document extracted from the Danish monolingual corpus.

Figure 3: Segments produces from a corpus document, ready to be sent
to network users.

Figure 4 shows two possible feedbacks received from network users

70

Network users will receive segment as a message

asking them to translate a sentence. Network users

can be any target language (Arabic) literate user.

Figure 4 illustrates this process. User can respond to

the request by translating the sentence or by ignoring

the request. The service will send many replica of the

same segment to many users. The more segment

replicas on the network are sent the higher the system

chances to receive a response from users to the

translation request. Receiving many translations to

the same sentence will give us the chance to choose

the best translation for our translation memory.

3.3 Translation Collection

The Translation Collection service will collect

translation from network users who agreed to respond

to the translation request. For each target sentence

sent to network users the service will group all

received translation into one XML file. Figure 5

describe users translation file for one sentence. Every

translation is identified with a sequence identifier

(ID) , original sentence ID (Seg) and user IP address

(User) . This structure will make it easy for the

system to organize user translation feedback.

<?xml version="1.0" encoding="UTF-8"?>
<SRCSET setid="Climate_Change_Summit" srclang="DA">

 <DOC docid="1" genre = "text" >

 <trans id="1" seg ="1.1" user=”192.168.4.22”>

 الصين تعلق أھمية كبيرة على التصدي لتغير المناخ
 </trans>

 <trans id="2" seg ="1.1" user=”192.168.8.36”>
 الصين تھتم بموضوع المناخ
 </trans>

 <trans id="3" seg ="1.1" user=”192.168.8.64”>
 الصين دولة اسيوية
 </trans>

 </DOC>
</SRCSET>
Figure 5: All users received translation for a text segment.

3.4 Translation validation service

After collecting translation text from network users, a

validation service will ensure that the received

translation is valid and can be considered as a

candidate translation for the source sentence. For

example Figure 5 shows three user translations for

the source sentence. Translations received from

network users can be valid or invalid, in our example

we can find two valid translations(trans id 1 and 2).

We inspect four main features we find most

interesting to decide how valid the translation is. We

consider translation length, similarity matching

between source and destination sentences, translation

accuracy and translation fitness. The validation

service is a useful to filter candidate user translation

from other none useful or incorrect translation we

may receive from network users. This should save the

human evaluators times and help increase their

efficiency, so now human evaluators have only to

verify what the system suggest as a correct

translation.

3.4.1 Length Validation

Let S and D be two different sentences. Both S and D

are composed of a group of words where

S= {s1, s2,... , sm} and D= {d1, d2, … , dn}.We

define L (X) to be a length function that returns the

number of words each sentence have. We compare

the length of the original sentence (S) to the length of

the translated sentence (D) as formulated below.

� = L(S)
L(D) . .1

The service accept a sentence D as a possible

translation for sentence S if r is greater than 0.75.

Otherwise D is too short to be a candidate translation

for sentence S. the observation underlying this

believe is that a long sentence tend to be translated

into long sentences, and a short sentence tend to be

translated into long sentence.

3.4.2 Similarity Matching

Now for each sentences pair (S, D) we compare their

similarity. We construct an alignment matrix for each

pair (S, D) as it appears in Table 1. Alignment matrix

has two dimensions. One represent source language

sentence (S) and the other represent user translation

(D) for that sentence. Matrix elements can have two

values {0,1}. {0} value mean there is no match

between S(i) and D (j) while {1} means the opposite.

A match function will search for a possible match in

the dictionary between Si and Dj as we describe in

Table 1. So for example for the word couple

{tillægger, تعلق } the match function will search the

Danish Arabic dictionary directly for a meaning. If it

manage to find that the Danish word “tillægger” has

an Arabic meaning of “تعلق”word then the search will

71

return the value of {1} as a sign of success. If the

match function didn’t find a direct meaning in the

Danish Arabic dictionary then it will search the

Danish DanNet web service for other concepts the

Danish word { tillægger } has. Again the match

function will try to find a match in the Danish Arabic

dictionary for the Danish word { tillægger } and the

other concepts it receives from the Danish DanNet.

Figure 6 below simulate these steps. We apply the

match function for all alignment matrix elements. For

example If the sentence S was: “Kina tillægger det

stor betydning at håndtere klimaændringerne “which

means in English “China attaches great importance to

tackling climate change”. A possible user translation

may be represented in sentence D which is “ اخالمن لتغير
 We construct the ." الصين تعلق أھمية كبيرة على التصدي

alignment matrix between the two sentences as

described in Table 1. For each entry we call the

match function described above. For the Danish-

Arabic words pair like {tillægger, تعلق }, we can find

a value of {1} which means the “tillægger” word is a

possible translation for “تعلق” word. While for the

pair { betydning , الصين } we find the value of {0}

which means that “ betydning” word is not a

possible translation for the “الصين” word. To estimate

the overall similarity between the sentences pair,

source Danish sentence and the target Arabic

translation we introduce the Sim function which can

be empirically calculated as below.

Sim (S,D) = ∑ n
J=1 ∑ match (Si,Dj)m

i=1

max(�(�), �(�)) . .2

The S represents the source language which is

Danish. The D represents the destination language

which is Arabic. The match (Si,Dj) function will

check if a dictionary meaning match is possible

between any selected matrix elements as described

above. The Sim function count number of pairs with

{1} value , and compare that with the longest

sentence length. To demonstrate we apply this

formula to the example we have in table 1. We have

two sentences (dimensions), each composed of eight

elements. This will form an alignment matrix of 64

pair match. Eight of them of got the value {1}.we

apply formula 2. Sim (S,D) =
�
� .

 S

D

Kina tillægger det stor betydning at handler klimaændringerne � match (Si,Dj)

 1 0 0 0 0 0 0 0 1 الصين

 1 0 0 0 0 0 0 1 0 تعلق

 1 0 0 0 1 0 0 0 0 أھمية

 1 0 0 0 0 1 0 0 0 كبيرة

 1 0 0 1 0 0 0 0 0 على

 1 0 1 0 0 0 0 0 0 التصدي

 1 1 0 0 0 0 0 0 0 لتغير

 1 1 0 0 0 0 0 0 0 المناخ

Table 1: Alignment matrix between source (Danish) and destination (Arabic) sentences.

Tillægger

DanNet

tildele

forære afgive

gøre

 عَلَّقَ

AWN

 أبدى م*حظة

 إرتبط إتصل

 بنى

 عَلَّقَ

Figure 6: Using Arab wordNet (AWN) and DanNet to

get word various concepts

72

This score mean every word at the source sentence

has a match at the destination sentence. The result is

a good hint that sentence D is a good candidate

translation for the source sentence S.

3.4.3 Translation Accuracy

Another interesting issue we consider is how accurate

user translation is. By accurate we mean what is the

probability that user selected a translation that

conveys the best word meaning. We use Arabic

WordNet (AWN) web services to verify that. The

AWN web service will provide us list of all possible

concepts or meaning for the selected word as it

appears in figure 6. If a word has for example four

meanings, that means the probability that this word is

the suitable translation selection would be
�
� = 0.25.

We apply formula 3 to calculate the general

probability that the destination sentence D is an

accurate translation of a sentence S. For example in

Table 2 we calculate the average probability for the

sentence according to formula 3: Acc (D)=
�.��

� =0.51.

Table 2: Translation sentence words accuracy values.

Consequently this means that the average probability

that this sentence is a suitable translation is 0.51.

The AWN represents the Arabic WordNet function.

It will return the number of possible concepts to the

selected word. The m represents the number of words

in a selected sentence.

���(�) =
� � 1

���(�(�))�

!"�
. .3

Table 2 show how the Accuracy is calculated for

translated sentence D.

3.4.4 Translation Fitness

A fitness measure is required in translation validation

to indicate the quality level of the translated

sentences. For any sentences pair (S,D) we consider

both similarity and accuracy values to estimate

translation fitness. Fitness value between sentence

pair (S, D) can be formulated as follows:

%&'()** (�, �) = �&#(�, �) ∗ ��� (�) ..4

Sim (S,D) and Acc (D) are calculated as explained in

section 3.4.2 and section 3.4.3 respectively.

According to our observations to the sample data sets

a fitness threshold greater of (0.35) is quite

acceptable to be considered for human evaluation.

For our example presented earlier the Fitness

(S, D) = 1 * 0.51 = 0.53 which indicate that this is a

good candidate translation and can be considered for

human evaluation.

3.5 Human Evaluation

System validation indicates whether the destination is

a good candidate translation for the source sentence

or not. It doesn’t mean that the sentence is accepted.

Human validation is still needed to finally approve

translation and make sure that translation is

acceptable and free of syntactical and grammatical

errors. Our validation technique will only aid the

human evaluators and help filter invalid received

translation from network user especially when we

have too many feedbacks for the same segment or

sentence. Human evaluators can easily select or

modify a candidate sentences to be the source

sentence translation.

3.6 Update the Translation memory

Now a new entry with both the source language

sentence and the translated sentence language (S,D)

can be added to the translation memory.

<?xml version="1.0" encoding="UTF-8"?>
<SRCSET setid="Climate_Change_Summit" srclang="DA",
dstlang="AR">

 <DOC docid="1" genre = "text" >

 <trans id="1" seg ="1.1" srcdoc ="1" >

 Kina tillægger det stor betydning at tackle
klimaforandringerne
 </trans>

 <trans id="1" seg ="1.1" user=”192.168.4.22”>
 الصين تعلق أھمية كبيرة على التصدي لتغير المناخ
 </trans>

 </DOC>

</SRCSET>
Figure 7: Sample translation memory input.

� المناخ لتغير التصدي على كبيرة أھمية تعلق الصين

1/1 1/11 1/2 1/7 1/1 1/4 1/10 1/1 4.08

73

It is possible that not all of the monolingual corpus

segments would be translated. This will make

fragmented segments to appear in translation

coverage of the monolingual corpus. Translated

segments will be used to feed our translation memory

which can be used to enhance SMT system learning.

Figure 7 describes a sample entry to the translation

memory after being processed by the system

4. Conclusion and future Work

We presented a model that can utilize the web service

technology to create bilingual text resources out of

other monolingual data source. We selected the

Danish- Arabic pair to be model input, yet any

languages pair can be selected. We presented a

sample scenario on how that model can be deployed

through the network target language literate users.

We demonstrated a simple validation service that

helps human judges to verify translated sentence

quality. Our model interacts with common popular

language web services like the DanNet and Arab

wordNet while validating user translation. In the

future we plan to expand our model to interact with

other software agents that can provide translation,

like Google Translate. We plan to use agents

translation as a translation hint for our human

network users which will make it easy for them to

translate segments they received from the system. We

also intend to make the process of translation

validation fully automatic and minimize the human

role in that process. We intend to test more similarity

matching techniques between the source sentence and

user translated sentence. We also plan to deploy our

model with different language pair like English and

Danish for the same monolingual corpus so that we

can get a multilingual resource for our developed

translation memory.

5. References

C. Biemann, G. Heyer, U. Quasthoff, and M. Richter.

The Leipzig corpora collection - mono-lingual

corpora of standard size. In Proceedings of Corpus

Linguistic 2007, Birmingham, UK, 2007

C. Fairon, H. Naets, A. Kilgarriff. Building and

exploring web corpora, Proceedings of the 3rd Web

as Corpus Workshop, incorporating Cleaneval.

Presses Universitaires de Louvain, Louvain 2007.

G. Grefenstette. Proposition for a web 2.0 version of

linguistic resource creation . In proceeding of

FLaReNet Forum 2010: Language Resources of the

future, 2010.

I .Leturia , A.Gurrutxaga, I.Alegria, A. Ezeiza. A ‘web

as corpus’ tool designed for the agglutinative nature

of Basque. In Building and exploring web corpora,

Proceedings of the 3rd Web as Corpus workshop,

Belgium, 2007.

K. Scannel ,The crúbadán project: corpus building for

under-resourced languages. Proceedings of the 3rd

Web as Corpus Workshop, 2007

L. Dini and V.Petras The challenge of multilinguality in

Europeana: web services as language resources. In

proceeding of FLaReNet Forum 2010: Language

Resources of the future, 2010.

M .Baroni, S.Bernardini, Bootstrapping corpora and

terms from the web. In Proceedings of LREC 2004.

Lisbon, Portugal 2004.

R. Steinberger, B. Pouliquen, A. Widiger, C. Ignat, T.

Erjavec, D. Tufiş, D. Varga. The JRC-Acquis: A

multilingual aligned parallel corpus with 20+

languages. In Proceedings of the 5th International

Conference on Language Resources and Evaluation .

Genoa, Italy, 2006.

S. Sharoff. Creating general-purpose corpora using

automated search engine queries. Baroni &S.

Bernardini (Eds.), WaCky! Working papers on the

Web as Corpus. Bologna, Italy, 2006

V. Sornlertlamvanich .Will Language as a Service

(LaaS) increase the interoperability in language

resources and applications? . In proceeding of

FLaReNet Forum 2010: Language Resources of the

future, 2010

Y. Hayashi. Toward a standardized set of language

service Web APIs. In proceeding of FLaReNet

Forum 2010: Language Resources of the future,

2010.

74

Technology-Neutral Machine Translation with an Abstracted Technology Stack

Joachim Van den Bogaert
Woodrow Wilsonplein 7, 9000 Gent, Belgium

E-mail: joachim@crosslang.com

Abstract
Web Services allow easy integration of Machine Translation (MT) into existing workflows. The use of XML facilitates MT
implementation across platforms. The abundance of different interfaces, however, makes it sometimes difficult to switch technologies
easily. Each existing MT service needs to be called with its own specific parameters. Moreover, the inner workings of different MT
systems may be so different that parameters are not interchangeable. As a result, workflows need to be re-engineered for each new MT
integration. The difficulties involved in switching MT technologies, become clear when pre-processing and post-processing
technologies are introduced. The efforts it takes to re-target existing code and resources to a new MT system are considerable and can
be reduced. In this paper we will present the design and implementation of a Technology-Neutral MT Gateway Service with an
abstracted technology stack that makes MT integration of different systems easier and maximises the re-use of existing pre-processing
and post-processing routines and resources.

1. Introduction
Most popular MT systems are offered in the form of Web
Services. Google Translate (Google Inc., 2009), Systran
(Systran Inc., 2009), Language Weaver (Language
Weaver Inc., 2009), Apertium (Corbí-Bellot, et al., 2005)
and Moses (Koehn, et al., 2007), for example, have
interfaces that can be called over the web. The standard
procedure of setting up communications which such
systems consists of automatically creating a client proxy
class that talks to the interface by generating it from the
Web Service’s WSDL page (Web Services Description
Language (Christensen, Curbera, Meredith, &
Weerawarana, 2001)). This only requires a
WSDL-capable conversion tool that is included in most
Web Services frameworks, for example WSDL2Java in
the Java Axis2 framework (The Apache Software
Foundation, 2009) or svcutil for the .NET framework
(Microsoft Inc., 2010). The result is code that can be used
almost immediately. Although the use of Web Services
greatly reduces the effort required to integrate MT into an
existing system, it sometimes is difficult to switch MT
technologies quickly. This may be necessary because of
quality issues, the availability of language pairs, or when
comparing the performance of different systems. To be
able to do this, some kind of abstraction of the MT
interface is required, as described in Figure 1.

It is not so hard to come up with a solution on the client
side that meets this requirement - a unified/abstract1 MT
interface is easily set up. However, when extra
functionality is introduced, things tend to get more
complex. Suppose that we wanted to add Named Entity
Recognition (NER) to our workflow in order to get better
MT output (Babych & Hartley, 2003). We then would

1 We will use the term ‘abstract’ instead of ‘unified’,
because ‘abstract’ is used in the object-oriented software
engineering literature to refer to processes which provide
a generic interface to specialized objects.

have to redesign the procedure for each existing MT
system we are using, because, unfortunately, not only MT
interfaces differ between existing MT systems, but also
the mechanisms they employ to process meta-data – if
such mechanisms are available at all. This situation is
described in Figure 2.

A more integrated solution is required here. To
accommodate for such scenarios, we have designed and
implemented a Gateway Service that resolves these kind
of issues at the service side. Similar solutions have been
proposed, amongst others by Sánchez-Cartagena &
Pérez-Ortiz (2010), but their work focuses on harnessing
existing MT engines and improving scaleability. The
ScaleMT architecture they describe also deals with issues
on a lower implementation level, such as sentence
segmentation and routing. Other frameworks which
connect different MT systems are, for example, (Heafield
& Lavie, 2010) and (Barrault, 2010), but these
architectures are aimed at combining the output of
different MT systems to create new and better output.
Our system focuses on the integration of a translation
pipeline over different MT engines. In the system we
produced, an extra layer of functionality is added to each
Web Service separately, while the additional functionality

Figure 1

75

can still be called over the abstract interface. The
advantage is that a pre-processing or post-processing
procedure has to be implemented only once for all
available MT systems. More importantly, all created
resources can also be re-used, without the need to
re-target them to a different MT system.

2. Example: NER
We can illustrate how this works with Named Entity
Recognition, as proposed in the previous section. Jurafsky
& Martin (2009, p. 762) describe Named Entity
Recognition as “the task in which proper names
mentioned in a text are detected and categorised.
Commonly, the notion of a named entity is extended to
include things that aren’t entities per se, but nevertheless
have practical importance and do have characteristic
signatures that signal their presence; examples include
dates, times, named events, and other kinds of temporal
expressions as well as measurements, counts, prices, and
other kinds of numerical expressions”. Traditionally,
special tags are used to mark the named entities in a text,
such as the SGML ENAMEX tag set (see for example
(Grishman & Sundheim, 1996)). For an MT system to use
and recognise these tags, a tagging routine and a tag
conversion routine are required, as described in Figure 3.
The tagging routine intercepts the text that needs to be
translated and adds mark-up to it. The advantage over the
non-abstract interface is that the NER can be implemented
after the call to the abstract Translate() method. In an
abstract MT interface it is also easy to add a

TagNamedEntities(string sourceText) method. But the
problem we now have is that each MT system handles
meta-data differently (if it handles meta-data at all). For
example, Systran requires tags that are formed according
to its DNT (Do-Not-Translate) standard (Listing 1), while
Moses uses a different format (Listing 2).

<!-- DNT -->
This text should not be translated.
<!-- /DNT -->

Listing 1

das ist ein kleines <n translation="dwelling"
prob="0.8">haus</n>

Listing 2

In order to accomplish our NER tagging and its
processing by the MT systems, a conversion routine for
each MT system needs to be added. Note that if no
abstract MT interface would have been available, also the
tagging routine would have to be implemented for each
MT system separately. To make it even more interesting
from a localisation-industry point-of-view, we add a
typical file format, such as TTX (Brockmann, 2009) to the
flow. TTX is a proprietary xml-format that basically
wraps xml formats for translation. It is not an official
standard, like XLIFF (Schnabel, et al., 2008) for example,
but because of the widespread use of SDL’s TagEditor
(SDL Inc., 2009) – the most popular translation tool
among translators – with which the format is associated,
TTX has become the de facto standard for translation. We

Figure 2

Figure 3

76

now also need a conversion routine, as most current MT
systems only accept plaintext, xml or html. At this
moment, the usefulness of an abstract MT interface
becomes very clear. Figure 3 illustrates how the abstract
MT interface differs from an implementation-specific MT
interface. In the example TTX, a NER module exposed by
a Web Service, and the Systran Web Service are used.

3. MT abstraction
To abstract the MT interface, the most common
operations for MT were defined in a generic interface,
while systems-specific settings were isolated in a
configuration framework. The design objective was to
keep the translation interface as tidy as possible while
keeping the MT systems highly configurable. This was
achieved by decoupling translation and configuration.
Note that this design easily allows for versioning as new
configuration parameters can be added once the
architecture is in place. All changes to engines are
absorbed by the configuration class and do not propagate
further. In practice, this means that upgrades to an MT
system will not affect the code base that uses this MT
system. In the following example we will use the
dictionary parameter – which can be configured for the
Systran translation system (pseudo-code in Listing 3), but
which is meaningless to Moses – to demonstrate interface
abstraction. Listing 4 shows the resulting pseudo-code,
Listing 5 shows the contents of the configuration.

ProxySystran.Translate("Das ist ein kleines

Haus.", Dictionaries.GeneralDictionary)

Listing 3

IMTSystem m_MTSystem =
MTSystemFactory.getMoses();
IConfig m_Config = Config.load(config.xml);
m_MTSystem.setConfig(m_Config);
m_MTSystem.config();

Listing 4

<?xml version="1.0" encoding="utf-8" ?>

<configuration>
<dictionary
file="GeneralDictionary.txt" />
</configuration>

Listing 5

The next step in the abstraction process was to develop an
internal format, based on XLIFF, to avoid an exponential
explosion of conversions when accommodating the
Gateway System for the most frequently used translation
formats. The resulting conversion produces a format that
can be used to have meta-data converted to MT
system-specific format implementations. Note that a very
poor plaintext format could be used for this purpose, but
this would result in the loss of important mark-up
information. This procedure still requires a convertor for
each MT system at the output side of the conversion
module, but at the input side the abstract MT interface
reduces the amount of conversions that normally would
be required, with factor n as shown in Figure 4.

4. MT standardisation
For some obscure reason, MT service providers do not
stick to language naming conventions. In the systems we
used, a mixture of ISO 639 (Library of Congress, 1988)
names and ad-hoc non-standard names were defined. This
was a problem that also could be addressed by abstracting
the MT interface. The system we developed only takes
ISO 639-2 language names and ISO 3166-1 (ISO, 2007)
country names as input. Internally, these codes are
converted to system-specific language names. For our
integration purpose, it was best to leave out language
names and language pairs altogether, as the idea is that
translation is carried out by using a translation
configuration, consisting of an MT system, a set of
processors (the NER module in our example) and a
language pair, instead of an MT system with all sorts of
system-specific parameters. Each configuration is
assigned a key, so that a call to a Translate method, would
only require the text and the configuration key. This
makes the language names as required parameters
obsolete. For historical reasons though, we added
methods that include language names to our abstract
interface, this also allows us to optimise for speed, as no

Figure 4

77

database queries need to be performed when initialising
the translation configuration. Some other speed
optimisations will be discussed in the following section.

5. Shortcuts and REST API
For the sake of processing speed, shortcuts were added to
allow for immediate translation of plaintext, html and xml.
This resulted in better throughput for some applications in
our current set-up, which require up to 20,000 document
translations per day, as no conversion filters are required.
In terms of coding effort, this added some overhead,
because conversion filters had to be added for each file

type, which would not be required if we would start from
the modified XLIFF format, but business requirements
could not justify a pure system. On the other hand, the
programming overhead was minimal since the xml and
html input types already inherently encode
meta-information.
At the same time a REST (Fielding, 2000) API was
implemented to avoid the protocol overhead associated
with SOAP (Gudgin, et al., 2007). Again, this proved to
produce better response and throughput times.
Implementing the API itself was not so difficult, as we
could build it on top of our Web Services framework
(GlassFish 3 (Sun Microsystems Inc., 2009)).
Eventually we ended up with a double system as
illustrated in Figure 6: for more complex workflows, the
pure system is used, because of the file compatibility layer.

For workflows that are focussed on speed, we can use the
simplified APIs combined with the REST API. Note that
it is still possible to use complex workflows with the
shortcut API.

6. Processor abstraction
For the NER example to work, some sort of
GetNamedEntities(string text) method needs to be
provided in the abstract MT interface, but this would
conflict with the design goal to keep the MT interface as
tidy as possible. At the same time it would make it
difficult to update the system when new processors are
added. If, for example, a dictionary is added to the MT
system, all references to the MT object would need to be
updated with the new MT object that contains the new, say
for example,
ReplaceDictionaryEntriesWithDictionaryTranslations
(string text) method.
This is a very common problem in software engineering.
To avoid it, we implemented the Strategy pattern (Gamma,
et al., 1995), which is a generic solution to these kinds of
issues. As a result, we were able to isolate the abstract MT
code from the additional pre-processing and
post-processing code as described in Figure 5.

We deliberately chose the
ReplaceDictionaryEntriesWithDictionaryTranslations(str
ing text) method to demonstrate how generic and
MT-technology-independent our solution is. Systran
provides dictionaries within its translation system, and
allows for customised dictionary encoding (which is a
very cumbersome task), whereas Moses, for example,
does not. By using the generic dictionary processor on top
of the generic MT interface, we were able to bypass the
proprietary Systran dictionary mechanism, and at the
same time it allowed us to re-use the dictionary for any
other MT system, without any additional effort.

Figure 6

Figure 5

78

7. Support for research and production
experiments: configuration at runtime

In order to provide a real-world solution for
experimenting with MT extension, we made the whole
pipeline configurable at runtime. We integrated the
processing as a plug-in system that allows users to add
any module they see fit, without the need to restart or
recompile the server. Suppose, for example, that a NER
module is required for Spanish. With the plug-in system,
it is possible to look for all available Spanish NER
solutions, write a processor for each of them, upload them
to the server, attach each of them to the pipeline and do an
experiment. After the experiment has been carried out and
the results have been analysed, the best-performing
configuration can be selected. Note that this makes the
whole processing system vendor-technology neutral: it
allows a client to search for the best components and
assemble them in a fully customised pipeline. This opens
up quite some possibilities, as often only vendor-specific,
non-portable and non-reusable customisation is offered as
a black-box solution.

8. Conclusion and future work
We presented an MT-technology-neutral framework that
allows vendor-technology-neutral customisation. The
design can be conceived as a technology stack as
illustrated in Figure 7.

The first layer takes care of MT abstraction and exposes
all MT methods, such as Translate(). The second layer
takes care of file conversions. The third layer adds
processing capabilities. The fourth layer, finally, converts
all data to the MT-system-specific formats.
Each layer is isolated from the other layers, which allows
for flexible extension. As a result, language resources
created for the customisation of one specific MT system
can now be ported to any other MT system within the
framework. Additionally, the system provides a plug-in
system, which facilitates experimenting with different
configurations of pipelines. At the same time it provides
the benefit that MT users can become independent from
technology vendors.
In a next release, we are planning to integrate the GATE
(Cunningham, et al., 2002) framework into the Gateway
system. This will allow users with a linguistic background
but no programming experience to add custom created
functionality and resources to the translation pipeline.

9. References
Babych, B., & Hartley, A. (2003). Improving Machine

Translation Quality with Automatic named Entity
Recognition. Proceedings of the 7 th International
EAMT workshop on MT, (pp. 1-8). Budapest.

Barrault, L. (2010). MANY. Open Source Machine
Translation System Combination. The Prague Bulletin
of Mathematical Linguistics , 147-155.

Boitet, C., Bey, Y., & Kageura, K. (2005). Main research
issues in building web services for mutualized,
non-commercial translation. Proceeding of the 6th
Symposium on Natural Language Processing, Human
and Computer Processing of Language and Speech,
SNLP-05 .

Brockmann, D. (2009). TTX Compatibility Guide for SDL
Trados Studio 2009. SDL Trados.

Christensen, E., Curbera, F., Meredith, G., &
Weerawarana, S. (2001, March 15). Web Services
Description Language (WSDL) 1.1. Retrieved March 2,
2010, from W3c.org: http://www.w3.org/TR/wsdl

Library of Congress. (1988). ISO 639 Language Code List.
Retrieved March 2, 2010, from ISO 639 Language
Code List:
http://www.loc.gov/standards/iso639-2/php/code_list.p
hp

Corbí-Bellot, A. M., Forcada, M. L., Ortiz-Rojas, S.,
Pérez-Ortiz, J. A., Ramírez-Sánchez, G.,
Sánchez-Martínez, F., et al. (2005). An Open-Source
Shallow-Transfer Machine Translation Engine for the
Romance Languages of Spain. Proceedings of the
European Associtation for Machine Translation, 10th
Annual Conference, (pp. 79-86). Budapest.

Cunningham, H., Maynard, D., Bontcheva, K., & Tablan,
V. (2002). GATE: A framework and graphical
development environment for robust NLP tools and
applications. Proceedings of the 40th Anniversary
Meeting of the Association for Computational
Linguistics, (pp. 168-175). Philadelphia, USA.

Fielding, R. T. (2000). Architectural Styles and the Design
of Network-based Software Architectures. Irvine:
University of California.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995).
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Google Inc.. (2009). Google AJAX Language API.
Retrieved March 2, 2010, from Google AJAX
Language API:
http://code.google.com/intl/nl-BE/apis/ajaxlanguage/

Figure 7

79

Grishman, R., & Sundheim, B. (1996). Design of the
MUC-6 Evaluation. Proceedings of the TIPSTER Text
Program: Phase II (pp. 413-422). Vienna, Virginia,
USA: Association for Computational Linguistics.

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J.,
Nielsen, H. F., Karmarkar, A., et al. (2007, April 27).
SOAP Specifications. Retrieved March 2, 2010, from
SOAP Version 1.2 Part 1: Messaging Framework
(Second Edition):
http://www.w3.org/TR/2007/REC-soap12-part1-20070
427/

Heafield, K., & Lavie, A. (2010). Combining Machine
Translation Output with Open Source. The Carnegie
Mellon Multi-Engine Machine Translation Scheme.
The Prague Bulletin of Mathematical Linguistics ,
27-36.

Hoang, H., & Koehn, P. (2008). Design of the Moses
Decoder for Statistical Machine Translation. Software
Engineering, Testing, and Quality Assurance for
Natural Language Processing, (pp. 58-65). Ohio.

ISO. (2007, September 21). ISO - Maintenance agency
for ISO 3166 country codes. Retrieved March 2, 2010,
from ISO - Maintenance agency for ISO 3166 country
codes:
http://www.iso.org/iso/country_codes/iso_3166_code_
lists/english_country_names_and_code_elements.htm

Jurafsky, D., & Martin, J. H. (2009). Speech and
Language Processing (Second Edition ed.). New Jersey:
Pearson Education.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C.,
Federico, M., Bertoldi, N., et al. (2007). Moses: Open
Source Toolkit for Statistical Machine Translation.
Annual Meeting of the Association for Computational
Linguistics (ACL). Prague.

Language Weaver Inc.. (2009). LW Translation On
Demand. Retrieved March 2, 2010, from LW
Translation On Demand:
http://www.languageweaver.com/translator-software

Löwy, J. (2007). Programming WCF Services. O'Reilly
Media.

Microsoft Inc.. (2010). Microsoft .NET Framework.
Retrieved March 2, 2010, from Microsoft .NET
Framework:
http://www.microsoft.com/uk/net/Default.aspx

Nasierding, G., Xiang, Y., & Dai, H. (2004). Towards
Extended Machine Translation Model for Next
Generation World Wide Web. International conference
on grid and cooperative computing, (pp. 1017-1020).
Wuhan.

Peiris, C., & Mulder, D. (2007). Pro WCF Practical
Microsoft SOA Implementation. New York, USA:
Apress.

Sánchez-Cartagena, V. M., & Pérez-Ortiz, J. A. (2010).
ScaleMT: a Free/Open-Source Framework for Building
Scalable Machine Translation Web Services. The
Prague Bulletin of Mathematical Linguistics , 97-106.

Schnabel, B., Jewtushenko, T., Savourel, Y., Reid, J., &
Raya, R. M. (2008, February 1). XLIFF 1.2
Specification. Retrieved March 2, 2010, from XLIFF

1.2 Specification:
http://docs.oasis-open.org/xliff/xliff-core/xliff-core.ht
ml

SDL Inc. (2009). SDL Trados Studio 2009 Professional.
Retrieved March 2, 2010, from SDL Trados Studio
2009 Professional:
http://www.sdl.com/en/sites/sdl-trados-solutions/deskt
op-products/sdl-trados/

Sun Microsystems Inc.. (2009, January 23). Project
GlassFish. Retrieved March 2, 2010, from Project
GlassFish: https://glassfish.dev.java.net/

Systran Inc.. (2009). Translation Server - Sytran
Enterprise Server 7. Retrieved March 2, 2010, from
Translation Server - Sytran Enterprise Server 7:
http://www.systran.co.uk/translation-products/server/s
ystran-enterprise-server

The Apache Software Foundation. (2009, October 23).
Apache Axis2. Retrieved March 2, 2010, from Apache
Axis2: http://ws.apache.org/axis2/

80

