Summary of the paper

Title Q-WordNet: Extracting Polarity from WordNet Senses
Authors Rodrigo Agerri and Ana García-Serrano
Abstract This paper presents Q-WordNet, a lexical resource consisting of WordNet senses automatically annotated by positive and negative polarity. Polarity classification amounts to decide whether a text (sense, sentence, etc.) may be associated to positive or negative connotations. Polarity classification is becoming important within the fields of Opinion Mining and Sentiment Analysis for determining opinions about commercial products, on companies reputation management, brand monitoring, or to track attitudes by mining online forums, blogs, etc. Inspired by work on classification of word senses by polarity (e.g., SentiWordNet), and taking WordNet as a starting point, we build Q-WordNet. Instead of applying external tools such as supervised classifiers to annotated WordNet synsets by polarity, we try to effectively maximize the linguistic information contained in WordNet, thereby taking advantage of the human effort put by lexicographers and annotators. The resulting resource is a subset of WordNet senses classified as positive or negative. In this approach, neutral polarity is seen as the absence of positive or negative polarity. The evaluation of Q-WordNet shows an improvement with respect to previous approaches. We believe that Q-WordNet can be used as a starting point for data-driven approaches in sentiment analysis.
Topics Lexicon, lexical database, Emotion Recognition/Generation, Semantics
Full paper Q-WordNet: Extracting Polarity from WordNet Senses
Slides -
Bibtex @InProceedings{AGERRI10.695,
  author = {Rodrigo Agerri and Ana García-Serrano},
  title = {Q-WordNet: Extracting Polarity from WordNet Senses},
  booktitle = {Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)},
  year = {2010},
  month = {may},
  date = {19-21},
  address = {Valletta, Malta},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Bente Maegaard and Joseph Mariani and Jan Odijk and Stelios Piperidis and Mike Rosner and Daniel Tapias},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {2-9517408-6-7},
  language = {english}
Powered by ELDA © 2010 ELDA/ELRA