
Propbank Instance Annotation Guidelines
Using a Dedicated Editor, Jubilee

Jinho D. Choi, Claire Bonial, Martha Palmer

University of Colorado at Boulder
Boulder, CO 80302, USA

choijd@colorado.edu, bonial@colorado.edu, mpalmer@colorado.edu

Abstract
This paper gives guidelines of how to annotate Propbank instances using a dedicated editor, Jubilee. Propbank is a corpus in which the
arguments of each verb predicate are annotated with their semantic roles in relation to the predicate. Propbank annotation also requires
the choice of a sense ID for each predicate. Jubilee facilitates this annotation process by displaying several resources of syntactic and
semantic information simultaneously: the syntactic structure of a sentence is displayed in the main frame, the available senses with their
corresponding argument structures are displayed in another frame, all available Propbank arguments are displayed for the annotators
choice, and example annotations of each sense of the predicate are available to the annotator for viewing. Easy access to each of these
resources allows the annotator to quickly absorb and apply the necessary syntactic and semantic information pertinent to each predicate
for consistent and efficient annotation. Jubilee has been successfully adapted to many Propbank projects in several universities. The
tool runs platform independently, is light enough to run as an X11 application and supports multiple languages such as Arabic, Chinese,
English, Hindi and Korean.

1. Introduction
Jubilee is a Propbank instance editor developed at the Uni-
versity of Colorado at Boulder. Propbank is a corpus in
which the arguments of each verb predicate are annotated
with their thematic roles (Palmer et al., 2005). In addi-
tion, each predicate is annotated with its sense ID, alter-
natively referred to as a roleset or frameset ID. All the
Propbank annotations are done on top of the Penn Tree-
bank style phrase structure (Marcus et al., 1993). For each
verb predicate found in every tree of a corpus, we create
a Propbank instance that consists of the predicate’s sense
ID (e.g., run.02) and its arguments labeled with numbers
corresponding to thematic roles (e.g., ARG0, ARG1). The
argument structure of each individual predicate is outlined
in its corresponding frameset file (e.g., run.xml). If a
tree contains more than one verb predicate, several Prop-
bank instances are generated from the tree. Table 1 shows
an example of a Propbank instance associated with a verb
predicate, ‘run’.

E.g. John ran the Boston Marathon.
ID run.02 (‘walk quickly, a course or contest’)
ARG0 John (‘runner’)
ARG1 the Boston Marathon (‘course, race, distance’)

Table 1: Propbank instance associated with ‘run’

Prior to annotation, instances that are neither sense-tagged
nor annotated are grouped by different predicates and
formed into tasks. Each task is double-annotated and sub-
sequently adjudicated; during the adjudication process, the
annotation that is the most appropriate is selected for the
gold standard. If neither annotation is appropriate, adjudi-
cators may correct the annotation of the instance.

In the past, this procedure was done using several dif-
ferent tools. First, an annotator would claim a task using a
command-line tool. Each task could be claimed by only a

certain number of annotators, generally two, to prevent an-
notation of the same task by more annotators than intended.
After claiming a task, the annotator would start annotation
using a different tool with a GUI. Using this tool, the anno-
tator could view the tree structure of each instance in par-
enthetical notation. However, visualizing the constituent
boundaries and selecting the appropriate node for an argu-
ment was often very difficult for annotators with less ex-
pertise in this format. Furthermore, the tool did not support
information from frameset files, which must be consulted
for the appropriate annotations. Once the task was com-
pletely double-annotated, an adjudicator would adjudicate
the annotations using the same tool; however, the adjudica-
tor would subsequently use another tool to denote the verb
sense of each instance. Thus, three different tools were re-
quired to create one Propbank instance. Although each tool
worked effectively on its own, using several tools for one
task not only decreased the efficiency of the project, but
also required another process of checking if all tools were
used properly. This motivated the creation of a new annota-
tion tool, Jubilee, which can do all of the above and more.

With Jubilee, the entire annotation procedure can be
done using one tool that simultaneously provides rich syn-
tactic information as well as comprehensive semantic infor-
mation. More importantly, the use of Jubilee ensures that
all the annotations are saved in one place using one uni-
fied format, the lack of which had been a delaying factor
when using other tools. Moreover, this makes data mainte-
nance much easier and more consistent. The tool is highly
adaptable such that creating a new Propbank project from a
different corpus is as easy as editing a simple text file.

Jubilee is developed in Java (JDK 6.0), so it runs on any
platform where a Java virtual machine is installed. It is light
enough to run as an X11 application. This aspect is impor-
tant because Propbank files are usually stored in a server,
so annotations need to be done remotely (via SSH). One of
the biggest advantages of using Jubilee is that it accommo-

1871



dates several different languages; in fact, it has been used
for Propbank projects in Arabic (M.Diab et al., 2008), Chi-
nese (Xue and Palmer, 2009), English (Palmer et al., 2005),
and has been tested in Hindi and Korean (Han et al., 2002).

This paper details how to annotate Propbank instances
using Jubilee. There are two modes in which to run Ju-
bilee: normal and gold mode. In normal mode, annota-
tors are allowed to view and edit only tasks that have been
claimed by themselves or by one other annotator. In gold
mode, adjudicators are allowed to view and edit all tasks
that have undergone at least single-annotation. Annotators
and adjudicators are expected to run Jubilee in normal and
gold mode, respectively. Although there are two different
modes, the interfaces are very similar, so learning one mode
effectively teaches the other.

2. How to obtain Jubilee
Jubilee is available as an open source project on Google
code.1 The webpage gives detailed instructions of how to
download, install and launch the tool (Choi et al., 2009).

3. Jubilee in normal mode
Annotators are expected to run Jubilee in normal mode. In
normal mode, annotators are allowed to view and edit only
tasks claimed by themselves or one other annotator when
the max-number of annotators allowed is two. Jubilee gives
the option of assigning a different max-number of annota-
tors as well.

When you run Jubilee in normal mode, you will
see an open-dialog (Figure 1). There are three com-
ponents in the open-dialog. The combo-box at the top
shows a list of all Propbank projects. Once you select a
project (e.g., english.sample), both [New Tasks]
and [My Tasks] will be updated. [New Task] shows
a list of tasks that have either not been claimed, or claimed
by only one other annotator. [My Tasks] shows a list of
tasks that have been claimed by the current annotator.

Figure 1: Open-dialog

Once you choose a task and click the [Enter] button, Ju-
bilee’s main window will be prompted (Figure 5). There
are three views available in the main window: the treebank
view, frameset view and argument view. The following sec-
tions explain how each view is used for Propbank annota-
tion.

3.1. Treebank view
By default, the treebank view shows the first tree in the
selected task. Each node in the tree consists of two ele-

1http://code.google.com/p/propbank/

ments: POS-tag and word-token. Upon annotation, a Prop-
bank argument label is added to each node constituting an
argument of the selected predicate. The verb predicate is
marked with a special tag ‘rel’. The text-box on the right
shows the user ID indicating the user annotating this in-
stance. The text-box at the bottom shows the raw sentence
of the tree.

Figure 2: Treebank view

3.2. Frameset view
The frameset view displays and allows the annotator to
choose the sense of the predicate with respect to the current
tree. The predicate text-box on the left shows the lemma
of the predicate associated with the selected roleset.2 The
roleset combo-box at the middle gives the full list of role-
set IDs associated with the predicate lemma. As a roleset
is selected, a short definition of the roleset as well as its
generalized argument structure appear in the roleset infor-
mation pane. To view annotation examples of the currently
selected roleset, click the [Example] button.

Figure 3: Frameset view

3.3. Argument view
The argument view contains buttons representing each of
the Propbank argument labels. To annotate an argument
(e.g., ARG0), select the node to be annotated in the tree-
bank view, then click the corresponding argument button
(e.g., [0]). When you click the button, the argument label

2The term ‘roleset’ is interchangeable with a term ’frameset’
depending on the language being annotated.

1872



appears on the selected node, along with its relative location
in the tree (e.g., 1:1). The first number of this designation
indicates the index of the word-token closest to the selected
node and the second number indicates the phrase level of
the node from the closest word-token. The [Erase] but-
ton is used to remove the annotation and the [-UNDEF]
button is used to assign an argument that is not defined in
the argument structure of the currently selected roleset.

Figure 4: Argument view

3.4. Links and concatenations

Several operators are used to perform concatenations and
coreference links. For example, the ‘*’ operator is used to
link relative pronouns to their antecedents, which are never
co-indexed in the Treebank.

Propbank:
REL : have
ARG0: [NP *-3]
ARG1: [NP *T*-6]
LINK-SLC: [WHNP-6 that] * [NP answers]

Treebank:
NP

NP

answers

SBAR

WHNP-6

that

S

NP-3

we

VP

VB

like

S

NP

*-3

VP

TO

to

VP

VB

have

NP

*T*-6

In the absence of Treebank co-indexing between a null ele-
ment and its overt referent, annotators can provide semantic
information about the null element by manually linking it
to its overt referent using the ‘*’ operator.

Propbank:
REL : accounting
ARG0: [NP-SBJ *PRO*] * [NP-SBJ income taxes]
ARG1: [PP for 7%]

Treebank:
NP

NP-SBJ

income taxes

,

,

S

NP-SBJ

*PRO*

VP

VBG

accounting

PP

for 7%

Similarly, the ‘&’ operator is used to link the object trace
after a passive verb to its referent in the subject position in
reduced relative constructions.

Propbank:
REL : covered
ARG1: [NP *] & [NP countries]
ARGM-LOC: [PP-LOC in the eastward expansion]

Treebank:
NP

NP

countries

VP

VBN

covered

NP

*

PP-LOC

in the eastward expansion

Additionally, in the cases where an argument is discontinu-
ous such that it cannot be captured in the annotation of one
node, the ‘,’ operator is used to concatenate more than one
node into a single argument.

Propbank:
REL : concluded
ARG1: [NML China - Africa] , [NNP Forum]
ARGM-TMP: [RB recently]

Treebank:
NP

ADJP

RB

recently

VBN

concluded

NML

China - Africa

NNP

Forum

1873



Figure 5: Jubilee’s main window

Thus, each of the described operators assists annotators in
capturing the appropriate semantic information given cer-
tain syntactic constraints.

3.5. Verb particle constructions
Some English verbs use particles to form their predicate
lemmas (e.g., ‘run out’, ‘run up’). For such verb particle
constructions, the particle is concatenated with the verb to
form a single predicate lemma, annotated with the ‘rel’
(‘relation’) tag. To concatenate the particle, choose the par-
ticle node and type Ctrl+Shift+/. The resulting rel
annotation will reflect the locations of both the original
predicate and the concatenated particle. Note that if the an-
notator accidentally erases the rel tag on any verb, it can
be recovered using the same shortcut, Ctrl+Shift+/, on
the verb.

4. Jubilee in gold mode
Adjudicators are expected to run Jubilee in gold mode. In
gold mode, adjudicators are allowed to view and edit all
tasks that have undergone at least single-annotation. When
you run Jubilee in gold mode, you will see the same open-
dialog as you saw in Figure. 1. The [New Tasks] shows
a list of tasks that have not been adjudicated and the [My
Tasks] shows a list of tasks have been adjudicated. Gold
mode does not allow adjudicators to open tasks that have
not been at least single-annotated.

Once you launch Jubilee in gold mode, you will see al-
most the same main window as in Figure 5, except there

will be a list showing all annotations for the currently se-
lected instance at the top of the treebank view (Figure 6).
The first line shows the annotation done by the adjudicator,
and the following lines show annotations done by differ-
ent annotators. By default, the first annotation is chosen
as gold. The adjudicator can choose an alternate annota-
tion by clicking on the other annotation. The treebank view
dynamically changes to reflect the selected annotation. Ju-
bilee also gives an option of skipping instances for which
all annotations are the same, thereby quickening the pace
of adjudication. To modify the annotation in cases where
neither is perfectly correct, the adjudicator can simply ma-
nipulate the arguments as described for the normal mode.

5. Software demonstration
For the treebank view, we will compare its graphical rep-
resentation of the trees with the parenthetical representa-
tion: the clear visual representation of the phrase structure
helps the annotator to better understand the syntax of the
instance and to annotate the appropriate node within the
correct span. For the frameset view, we will detail what
kind of semantic information it provides as you choose dif-
ferent rolesets. This will highlight how Jubilee’s support of
sense annotation not only speeds up the annotation process,
but also ensures consistent annotation because the roleset
information provides a guideline for the correct annotation
of a particular verb sense. For the argument view, we will
illustrate how to annotate Propbank arguments and use the
operators for concatenations and links; thereby also demon-

1874



Figure 6: The treebank view in gold mode

strating that having each of these labels clearly visible helps
the annotator to remember and evaluate the appropriateness
of each possible argument label. Finally, we will show how
intuitive it is to adjudicate the annotations in gold mode.

6. Advantages and future work
Jubilee has drastically simplified and streamlined the Prop-
bank annotation process because what was once done with
three separate tools can now be completed with one. This
has several distinct advantages. First, it speeds up the entire
process of annotation and adjudication because argument
annotation and the choice of a sense ID (roleset or frameset
ID) for the verb can be completed simultaneously. This also
ensures that annotators have a greater awareness of the ar-
gument structure and semantics of the predicate as defined
in the frameset file. Thus, annotators can quickly and ef-
ficiently familiarize themselves with a predicate and apply
that knowledge consistently to each instance. Additionally,
Jubilee’s treebank view gives the annotator a more effective
visual representation of the syntax of each instance than the
previous parenthetical notation, clarifying the relationship
between the argument structure found in the frame and that
of the individual instance. Finally, the use of one tool sim-
plifies data maintenance because one unified file format can
be used throughout the process.

Jubilee has been successfully adapted to Propbank
projects in several universities such as the University of
Colorado at Boulder, the University of Illinois at Urbana-
Champaign, and Brandeis University. We will continuously
develop the tool by improving its functionalities through
user-testing and feedback, and also by applying it to more
languages.

Acknowledgments
Special thanks are due to Professor Nianwen Xue of Bran-
deis University for his very helpful insights, as well as Scott
Cotton, the developer of RATS and Tom Morton, the de-
veloper of WordFreak, both previously used for PropBank
annotation.

We also gratefully acknowledge the support of the Na-
tional Science Foundation Grants CISE-CRI-0551615, To-

wards a Comprehensive Linguistic Annotation and CISE-
CRI 0709167, Collaborative: A Multi-Representational
and Multi-Layered Treebank for Hindi/Urdu, and a grant
from the Defense Advanced Research Projects Agency
(DARPA/IPTO) under the GALE program, DARPA/CMO
Contract No. HR0011-06-C-0022, subcontract from BBN,
Inc. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Sci-
ence Foundation.

7. References
Jinho D. Choi, Claire Bonial, and Martha Palmer. 2009.

Jubilee: Propbank instance editor guideline (version
2.1). Technical report, Institute of Cognitive Science, the
University of Colorado at Boulder.

C. Han, N. Han, E. Ko, and M. Palmer. 2002. Korean
treebank: Development and evaluation. In Proceedings
of the 3rd International Conference on Language Re-
sources and Evaluation.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated corpus
of english: The penn treebank. Computational Linguis-
tics, 19(2):313–330.

M.Diab, A.Mansouri, M.Palmer, O.Babko-Malaya, W Za-
ghouani, A.Bies, and M.Maamouri. 2008. A pilot arabic
propbank. In Proceedings of the 7th International Con-
ference on Language Resources and Evaluation.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005.
The proposition bank: An annotated corpus of semantic
roles. Computational Linguistics, 31(1):71–106.

Nianwen Xue and Martha Palmer. 2009. Adding semantic
roles to the chinese treebank. Natural Language Engi-
neering, 15(1):143–172.

1875


