
Efficient Minimal Perfect Hash Language Models

David Guthrie, Mark Hepple, Wei Liu

Department of Computer Science, University of Sheffield
D.Guthrie@dcs.shef.ac.uk, M.Hepple@dcs.shef.ac.uk, W.Liu@dcs.shef.ac.uk

Abstract
The recent availability of large collections of text such as the Google 1T 5-gram corpus (Brants and Franz, 2006) and the Gigaword
corpus of newswire (Graff, 2003) have made it possible to build language models that incorporate counts of billions of n-grams. This
paper proposes two new methods of efficiently storing large language models that allow O(1) random access and use significantly less
space than all known approaches. We introduce two novel data structures that take advantage of the distribution of n-grams in corpora
and make use of various numbers of minimal perfect hashes to compactly store language models containing full frequency counts of
billions of n-grams using 2.5 Bytes per n-gram and language models of quantized probabilities using 2.26 Bytes per n-gram. We show
that our approaches are simple to implement and can easily be combined with pruning and quantization to achieve additional reductions
in the size of the language model.

1. Introduction
Determining the most probable sequence of words is an in-
tegral part of many natural language processing tasks and
the probabilities of these word sequences are often stored
in a structure called a language model. Language models
typically must hold n-grams of each distinct sequence of
words up to length n that occur in a collection of training
documents and associate with each of these sequences a fre-
quency count or a probability. The use of language models
for tasks such as machine translation and speech recogni-
tion have shown that increasing the size of the model is a
constructive way of improving the performance on those
tasks. Recently, Brants et al. (2007) showed that machine
translation quality continues to improve even when increas-
ing the size of the text used to build the language model
above 1 trillion tokens.
Storing language models so that counts or probabilities can
be accessed quickly has become problematic due to the
space required to store these large models. Language mod-
els have commonly been stored in compact trie structures
that allow fast searching and enumeration of n-grams, yet
these structures do not scale well and require space propor-
tional to both the number of n-grams and the vocabulary
size. Recently, significant advances in reducing the amount
of space required to store a language model have been made
by the introduction of random access models by Talbot and
Osborne (2007a), Talbot and Osborne (2007b), and Talbot
and Brants (2008).
Random access language models make use of the idea that
it is not necessary to actually store n-grams in the language
model as long as when queried with an n-gram the model
returns the correct count or probability associated with that
n-gram. This has been achieved through the clever use of
Bloom filters (Bloom, 1970) and Bloomier filters (Chazelle
et al., 2004) that trade a very small probability of return-
ing a false positive for the fact that they can represent data
very efficiently. These techniques allow the storage of lan-
guage models that are no longer dependent on the size of
the vocabulary, but only on the number of n-grams.
In this paper we propose two new random access language
models that introduce the use of tiers of minimal perfect
hash functions to exploit the distribution of words in lan-

guage and further reduce the size required to store language
models. We achieve this reduction in space without increas-
ing the time required to query the model for an n-gram’s
probability or increasing the false positive rate. Our method
achieves storage of full n-gram counts using just 2.5 Bytes
per n-gram, which is 36% of the size that would be required
by the previously most compact random access model pro-
posed by Talbot and Brants (2008).

2. Related Work
Several methods have been used to reduce the amount of
storage required for language models by storing less infor-
mation. For instance it is possible to reduce the number
of n-grams that must be stored in the model using entropy
pruning techniques (Stolcke, 1998), clustering (Jelinek et
al., 1990; Goodman and Gao, 2000) or simply by throw-
ing away n-grams that occurred infrequently in the training
data. It is also possible to reduce the amount of bits required
to store each n-gram’s associated probability or count by
sacrificing some precision using quantization (Whittaker
and Raj, 2001). Quantization divides the possible range
intoQ discrete values so that probabilities can be stored us-
ing only dlog2Qe bits. These techniques can be used with
any structure (including ours) for further reductions in the
size of the language model and so can be seen as comple-
mentary to ours. This paper focuses on the data structures
that are used to store these n-grams and their probabilities
whether or not they have first been pruned or quantized.
Two main approaches to storing language models have been
used: compact trie structures and hash like data structures
that allow random access. In this section we give a brief
overview of both approaches, highlighting the advantages
and disadvantages of each.

2.1. Trie based language models
Most modern language modeling toolkits including SRILM
(Stolcke, 2002), CMU toolkit (Clarkson and Rosenfeld,
1997), MITLM (Hsu and Glass, 2008), and IRSTLM (Fed-
erico and Cettolo, 2007) currently store their language
models using variations on a trie data structure. A trie
(Fredkin, 1960) is a compact tree structure where each node
stores the unique prefixes of the nodes below it in the tree.
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For n-gram language models these prefixes are typically 24
or 32 bit integers that represent words (typically all words
in the vocabulary are assigned a distinct integer representa-
tion). So every node in the trie along with its parent nodes
represents a distinct n-gram. The probabilities or counts as-
sociated with an n-gram can be stored in the tree node along
with the word. Very compact representations of these struc-
tures have been devised that do not require storing pointers
and are used in the CMU toolkit (described in Whittaker
and Raj (2001)) as well as the MITLM and others (Harb
et al., 2009; Germann et al., 2009). Tries allow the model
to be stored in relatively little space and they also permit
enumeration over n-grams in the model. For instance it
is possible to list all n-grams in the model or to query the
model for n-grams that begin with certain words and iterate
through all of the results.
The main drawback of the trie approach is that it needs to
store a representation for every word in the n-gram and the
probabilities. Even using 24 bit integers for words in the
vocabulary and quantizing probabilities to 8-bit integers;
this model requires significantly more space than the ran-
dom access approach described in the next section. The
size of the trie model can be reduced using block compres-
sion as in Harb et al. (2009), but this technique can equally
be applied to random access models if the increase in the
time required to query the model is acceptable.

2.2. Random Access Language Models
Random access language models (Talbot and Osborne,
2007b; Talbot and Brants, 2008; Talbot and Osborne,
2007a) make use of hash functions to map n-grams to
their associated probabilities or counts. These structures do
not allow enumeration over the n-grams in the model, but
for many applications this is not a requirement and their
space and speed advantages make them extremely attrac-
tive. These methods store language models in relatively
little space by not actually storing the n-gram key in the
structure and allowing a small probability of returning a
false positive. In the case of n-grams these models always
return the correct probability associated with an n-gram if
the n-gram is in the model, but for n-grams that are not in
the model there is a small probability that the model will
return some random probability instead of correctly report-
ing that the n-gram was not found. There have been two
major approaches used for storing random access language
models: Bloom Filters and Bloomier Filters. We give an
overview of these approaches below.
A Bloom filter (Bloom, 1970) is a data structure used in
membership queries. It can be used to answer simple
queries of the form “Is this key in the Set?”. This is a
weaker structure than a dictionary or hash table which also
can associate a value with a key. Bloom filters use well
below the information theoretic lower bound of space re-
quired to actually store the keys and can answer queries
in O(1) time. Bloom filters achieve this feat by allow-
ing a small probability of returning a false positive. A
Bloom filter stores a set S of n elements in a bit array
B of size m. Initially B is set to contain all zeros. To
store an item x from S in B we compute k random in-
dependent hash functions on x that each return a value in

the range 1 to m. These values serve as indices to the bit
array B and the bits at those positions are set to 1. So,
B[hi(x)] = 1 for i = 1 to k. We do this for all elements in
S storing to the same bit array. Elements may hash to an
index in B that has already been set to 1 and in this case we
can think of these elements as “sharing” this bit.
To test whether the set S contains a key, say w, we run our
k hash function on w and check to see if all those locations
in B are set to 1. If w ∈ S then the bloom filter will always
declare that w belongs to S, but if x /∈ S then the filter
can only say with high probability that w is not in S. This
error rate depends on the number of k hash functions and
the ratio of m/n. For instance with k = 3 hash functions
and a bit array of size m = 20n, we can expect to get a
false positive rate of .0027.
Talbot and Osborne (2007b) and Talbot and Osborne
(2007a) made use of bloom filters to store a trigram lan-
guage model by inserting into the bloom filter a concatena-
tion of an n-gram and its associated count. To insert a tri-
gram that occurred c times they inserted the trigram into the
Bloom filter c times, each time appending a count from 1 to
c. To retrieve a trigram count from the model, a trigram is
first queried by appending a count of 1 and then if the filter
returns true the trigram is queried again appending a count
of 2. This process is repeated until the filter returns false.
They limit this process by quantizing all counts to 8-bits so
there are a maximum of 256 iterations that must be tried.
The Zipf-like distribution of language means that many of
the n-grams in the test data will occur a small number of
times, so for most lookups the iteration count is small.
More recently Talbot and Brants (2008) proposed the use
of the Bloomier filter for storing language models. A
Bloomier filter (Chazelle et al., 2004) is a membership test-
ing data structure that allows values associated with the
keys to be retrieved from the filter. Bloomier filters gener-
alize the Bloom Filters to encode arbitrary functions while
maintaining their economical use of storage. For details
on the construction of Bloomier Filters see Chazelle et
al. (2004; Talbot and Brants (2008). The Bloomier filter
is used by Talbot and Brants (2008) to store for each n-
gram an associated probability. Like the Bloom filter, the
Bloomier filter has a small probability of returning an incor-
rect result when queried with an n-gram that does not exist
in the model, but will always return the correct probability
if the n-gram is in the model.

Figure 1: A minimal perfect hash function maps keys to
integers in the range 0 to |keys| − 1 with no collisions

The Bloomier Filter can be thought of as a perfect hash
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function (Botelho et al., 2007) and this is a helpful way
of understanding how it trades some probability of false
positives for efficient storage. A perfect hash function is
a function that maps the n distinct elements of S to dis-
tinct integers in the range 1 to r with no collisions. (A
minimal perfect hash function, described in the next sec-
tion, is a function that can do this with n = r, see Fig. 1.)
We can think of a Bloomier language model as consisting
a perfect hash function ph() that maps n-grams to integers
in the range 1 to r and then storing at that index a finger-
print and a value. The fingerprint is generated by a standard
independent hash function and the value is the probability
or count associated with that n-gram. The amount of bits
used for the fingerprint determines the false positive rate
for n-grams not in the model. Storage of the fingerprint is
necessary if we know that the model might be queried for
n-grams not in the model because the perfect hash func-
tion ph() will likely map unseen trigrams to some random
index and only by comparing the fingerprints we can say
with high probability whether that n-gram was actually in
the model. (Talbot and Brants, 2008) give results of using
this model for Machine Translation experiments using 8 to
16 bit fingerprints and storing 5 to 8 bit quantized probabil-
ity values. Using this approach it is possible to store 8-bit
quantized probabilities (256 discrete values) for n-grams
with 12-bit fingerprints, using only 3.08 Bytes per n-gram.
This is significantly less than all known approaches, but we
show that using our tiered minimal perfect hash structure,
described in the next sections, it is possible to store full
n-gram counts (no quantizing) using only 2.5 Bytes per n-
gram (without increasing the false positive rate or the time
required to query the model).

3. Single MPHR Approach
In this section we describe our basic Single Minimal Perfect
Hash Rank approach (Single MPHR). Later in the paper we
show that this model can be extended by using two tiers of
minimal perfect hashes to save even more space while still
keeping a constant look up time.

3.1. Storing Ranks of Frequencies
We describe our storage structure assuming we are storing
frequency counts of n-grams. Instead of storing the fre-
quency count of each n-gram, we store the ‘rank’ of the
frequency count for each n-gram and have a separate array
to store the actual frequency count values, where the index
of this array is the ‘rank’. This was motivated by the spar-
sity n-gram frequency counts in corpora in the sense that if
we take the lowest n-gram frequency count and the highest
n-gram frequency count then most of the integers in that
range do not occur as a frequency count of any n-grams
in the corpus. For example in the Google Web1T data,
there are 3.8 billion unique n-grams with frequency counts
ranging from 40 to 95 Billion yet these n-grams only have
770 thousand distinct frequency counts (see Table 1). Be-
cause we only store the frequency rank, to keep the precise
frequency information we need only dlog2Ke bits per n-
gram, where K is the number of distinct frequency counts.
To keep all information in the Google Web1T data we need
only dlog2 771058e = 20 bits per n-gram. The memory

savings in this step is thus due to the fact that the number
of bits needed to store all the unique ranks is much less
than the bits needed to store the maximum frequency count
associated with an n-gram, dlog2Ke � dlog2 maxcounte.

FP5 FP FP1 FP3 FP2 FP FP4 ...

rank(key5) rank(key) rank(key1) rank(key3) rank(key2) rank(key) rank(key4) ...

key1 key2 key3 key4 key5 keyN...

Minimal Perfect Hash Function

Array of K distinct probability values / frequency counts

p1 p2 p3 p4 p5 p6 ... pK

Figure 2: Single MPHR data structure

3.2. Structural Overview
Like the random access models of Talbot and Osborne
(2007b; Talbot and Brants (2008; Talbot and Osborne
(2007a) we do not store n-grams directly, but instead map
each n-gram that we want to store using a perfect hash func-
tion. This hash function assigns to each n-gram an index
that we use to store a fingerprint and a rank. The hash
function will always return the correct index for each stored
n-gram, but it will also return an index for n-grams that
were never stored, so it is necessary to store the additional
fingerprint to reduce the probability of getting false posi-
tives.
To query an n-gram, we first look at the fingerprint stored
in the position given by the perfect hash function, then we
check whether the fingerprint of this n-gram matches the
stored fingerprint. If they match then we return its rank,
and another look-up into the value array is required to re-
turn the actual frequency count or probability of the n-
gram. If the fingerprints do not match, we can be sure
that the query n-gram is not stored in our model. These
lookups are order O(1). The structure of this model is
shown in Figure 2.
It should be noted that storing frequency counts is not a
requirement of the model, if instead of storing frequency
counts we were to store probabilities quantized toQ values,
our method will at most require dlog2Qe bits per n-gram
and likely less.

3.3. Fingerprints
We use Austin Appleby’s Murmurhash21 function to finger-
print each n-gram and then store the m highest order bits
of the fingerprint. This is a simple function that produces a
random sequence of bits given a key. We store this random
bit sequence, or fingerprint, for every n-gram in the model
and then later when the model is queried for an n-gram we
check to see if the queried n-gram’s fingerprint matches the

1available at http://murmurhash.googlepages.com/
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Google maximum n-gram unique frequency
Web1T frequency count counts

1gm 95, 119, 665, 584 238, 592
2gm 8, 418, 225, 326 504, 087
3gm 6, 793, 090, 938 408, 528
4gm 5, 988, 622, 797 273, 345
5gm 5, 434, 417, 282 200, 079
Total 95, 119, 665, 584 771, 058

Table 1: unique n-gram frequency counts from Google
Web1T corpus

fingerprint no. of FPs FP Rate
size (bits)

8 5132312 3.906e-2
12 320574 2.440e-4
16 19804 1.507e-05

Table 2: False positives using the MPHR approach. We
queried the Google Web 1T 1+2+3-gram model with 1.3
billion unseen 4-gram keys.

stored one. This is necessary because, as we mentioned in
the previous section, even though the minimal perfect hash
function always returns a distinct integer in the range 1 to
N for every n-gram stored in the model, it will also return
an integer for a previously unseen n-gram that was never
stored in the model. A false positive occurs if the stored fin-
gerprint located by the minimal perfect function happens to
match the fingerprint of this unseen n-gram. If this happens
the model will incorrectly return the value associated with
that stored n-gram rather than reporting that the unseen n-
gram was not found.
If the fingerprints were generated by a truly random hash
function then the expected false positive rate of the model
would be the same as selecting two identical fingerprints:

1
2m

(1)

Where m is the number of bits used for the fingerprint. To
test the actual false positive rates for our model we used it
to store all 1 to 3 grams in the Google Web1T corpus, and
then queried the model for all 4-grams from the Web1T
corpus. These 4-grams are all unseen for this model, so
when the fingerprints are compared, if the fingerprint of the
query matches the stored fingerprint then a false positive
has occurred. Table 2 shows that our actual false positive
results are very close to the expected value.

3.4. Minimal Perfect Hashing
We use the Hash, displace, and compress (CHD) (Belaz-
zougui et al., 2009) algorithm to generate a minimal perfect
hash function that requires requires 2.07 bits per key and
has O(1) access. The algorithm works as follows. Given a
set S that contains N = |S| keys (in our case n-grams) that
we wish to map to integers in the range 0 to N − 1, so that
every key maps to a distinct integer (no collisions).
The first step is to use a hash function g(x), to map every
key to a bucket B in the range 0 to r. (For this step we

use a simple hash function like the one used for generating
fingerprints in the pervious section.)

Bi = {x ∈ S|g(x) = i} 0 ≤ i ≤ r

The function g(x) is not perfect so several keys can map
to the same bucket. Here we choose r ≤ N , so that the
number of buckets is less than or equal to the number of
keys (to achieve 2.07 bits per key we use r = N

5 , so that
the average bucket size is 5). The buckets are then sorted
into descending order according to the number of keys in
each bucket |Bi|.
For the next step, a bit array, T , of size N is initialized to
contain all zeros T [0 . . . N − 1]. This bit array is used dur-
ing construction to keep track of which integers in the range
0 to N − 1 the minimal perfect hash has already mapped
keys to. Next we must assume we have access to a family
of random and independent hash functions h1, h2, h3, . . .
that can be accessed using an integer index. Belazzougui et
al. (2009) show that in practice it sufficient to use functions
that behave similarly to fully random independent hash
functions and they demonstrate how such functions can be
generated easily by combining two simple hash functions.
Next is the “displacement” step. For each bucket, in the
sorted order from largest to smallest, they search for a ran-
dom hash function that maps all elements of the bucket to
values in T that are currently set to 0. Once this function
has been found those positions in T are set to 1. So, for
each bucket Bi, it is necessary to iteratively try hash func-
tions, h` for ` = 1, 2, 3, . . . to hash every element of Bi to
an index j in T that contains a zero.

{h`(x)|x ∈ Bi} ∩ {j|T [j] = 1} = ∅

When such a hash function is found we need only to store
the index, `, of the successful function in an array σ and set
T [j] = 1 for all positions j that h` hashed to. Notice that
the reason the largest buckets are handled first is because
they have the most elements to displace and this is easier
when the array T contains more empty positions (zeros).
The final step in the algorithm is to compress the σ array
(which has length equal to the number of buckets |B|), re-
taining O(1) access. This compression is achieved using
simple variable length encoding with an index as proposed
by Fredriksson and Nikitin (2007).

fingerprint value RPH S-MPHR savings
(bits) bytes/n-gram

8 8 2.46 2.26 8.18%
8 12 3.08 2.76 10.28%
8 20 4.31 3.76 12.69 %
8 32 6.15 5.26 14.49 %

12 8 3.08 2.76 10.28%
12 12 3.69 3.26 11.69%
12 20 4.92 4.26 13.44 %
12 32 6.77 5.75 14.87 %

Table 3: Comparison between Talbot and Brants (2008)
Randomized (RPH) and our Single MPHR method (S-
MPHR)
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Method Space
bytes/n-gram

CMU 24 bit 6.2
IRSTLM 9.1

Randomized (Talbot&Brants) 3.08
Single MPHR 2.76

Table 4: Comparison between different language model
storage representations all storing 8-bit quantized values
and using 12 bit fingerprints for the random access meth-
ods.

3.5. Storage Requirement
Using the Hash, displace, and compress (CHD) algorithm,
our hash function takes up 2.07 ∗ N bits for an N sized
n-gram language model. Let us assume that the N sized n-
gram model has a total K distinct frequencies counts. An
N sized array is needed to store the bits needed to keep
m-bit fingerprints and dlog2Ke bits for the rank of each
n-gram. Lastly, another K sized array to store the actual
frequency count or probability associated with each n-gram
(each being stored using say a 32 or 64 bit integer of size
T ). This array is very small compared to the other parts of
the structure since K � N and in a typically large n-gram
language model its memory usage is insignificant. The total
space requirement of our model can be calculated as shown
in Equation 1. Table 3 and 4 show the bytes per n-gram re-
quirement of our Single Minimal Perfect Hash Rank Model
compared to other methods.

2.07×N MPH function
+(m+ dlog2Ke)×N fingerprints+ranks
+K × sizeof(T ) value array
= bits required

Equation 1: Calculating space requirements of the Single
MPHR structure

To demonstrate this we stored n-grams and full frequency
counts for the entire Google Web1T corpus (Brants and
Franz, 2006). This corpus is 24.6GB compressed and con-
tains over 3.7 billion n-grams, so storing full frequency
counts for every n-gram in a representation where they can
be accessed quickly can be difficult. The Web1T corpus
contains frequencies as large as 95 billion, so we would
need at least 37 bits to store accurate counts for each n-
gram. Using the RPH algorithm of Talbot and Brants
(2008) with 37 bit values and 12 bit fingerprints would re-
quire 7.53 bytes/n-gram, so we would need 26.63GB to
store a model for the entire corpus.
In comparison, our Single Minimal Perfect Hash Rank
method requires only 4.26 bytes per n-gram to store full
frequency count information and so can store the entire cor-
pus in just 14.98GB or 57% of the space required by the
RPH method.
This savings is mostly due to the fact that we need only 20

bits per n-gram, instead of 37, to store the ranks for every
n-gram frequency count in the corpus. We can apply the
same rank array optimization to the RPH method, so that
it would also use only 20 bits to store ranks and an addi-
tional array to hold the actual frequency counts; this sig-
nificantly reduces the amount of memory required, but our
Single MPHR structure still uses 86% of the space required
by the RPH approach.

4. Tiered MPHR
We next describe our model can be elaborated into one that
uses multiple hash stores to achieve even greater space effi-
ciency. We go on to consider how this approach might pro-
vide a basis for storing even larger language models within
a distributed architecture.

4.1. Improving space efficiency

Although the Single MPHR approach achieves a signifi-
cant improvement in space efficiency over previous meth-
ods, there is still a considerable premium on achieving even
more efficient space usage, given the size of current large
language models and the larger ones that may be over the
horizon. Our use of count ranks to record count informa-
tion may be seen as exploiting distributional characteristics
of the data in achieving more compact storage, i.e. the fact
that in the range up to the maximum count found in some
data, many of the possible count values are not used, and so
replacing actual counts with ranks allows them to be repre-
sented using a much smaller numerical range.
In this section, we further exploit distributional character-
istics of the data to achieve even more compact storage of
this information, and specifically the fact that lower rank
values (i.e. those assigned to count values shared by very
many n-grams) are sufficient for representing the count in-
formation of a disproportionately large portion of the data.
For the Google Web 1T data, for example, we find that the
first 256 ranks account for nearly 85% of distinct n-grams,
so if we could store ranks for these n-grams using only the
8 bits they require, whilst allowing perhaps 20 bits per n-
gram for the remaining 15%, we would achieve an average
of just under 10 bits per n-gram to store all the rank values.
As a simple approach to achieving this gain, we might
partition the n-gram data into subsets requiring different
amounts of space for storing rank values, and store these
subsets in separate MPHR structures, e.g. with two MPHRs
having 8 and 20 bits respectively for storing the ranks for
the example just mentioned. A more extensive partition-
ing of the data might further reduce this average cost, e.g.
with subsets requiring 4, 8, 12, 16 and 20 bits, respectively.
This simple approach has several problems. Firstly, it po-
tentially requires a series of look up steps (i.e. up to 5 for
the latter example) to retrieve the count of any n-gram, with
all hashes needing to be addressed to determine the unseen
status of an unseen n-gram. Secondly, and perhaps more
seriously, such multiple look ups produce a compounding
of false-positive error rates. Thus, we might falsely accept
an unseen n-gram as seen in each look up step, and we may
additionally construe a seen n-gram as being stored in the
wrong MPHR and so return an incorrect count for it.
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FP5 FP FP1 FP3 FP2 FP FP4 ...

rank(key5) rank(key) rank(key1) rank(key3) rank(key2) rank(key) rank(key4) ...

key1 key2 key3 key4 key5 keyN...

Minimal Perfect Hash Function

some of the values in the rank array
are used for redirection

Array of K distinct  frequency countsf1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 ... fK

Minimal Perfect Hash Function Minimal Perfect Hash Function

rank(key) rank(key) ... rank(key) rank(key) rank(key) ... rank(key)

Fingerprints are stored for all n-grams

Frequencies for ranks
stored in top level MPHR

structure

Frequencies for ranks
stored in second MPHR

structure

Frequencies for ranks
stored in third MPHR

structure

Figure 3: Tiered minimal perfect hash data structure

We will here explore an alternative approach to using multi-
ple hashes that we call Tiered MPHR, which entirely avoids
the compounding of false-positive errors, and which limits
the maximum number of looks up steps to 2, irrespective
of how many hashes are used. In this approach, there is a
single top-level MPHR which has the full set of n-grams
for its key-set, and which stores a fingerprint for every n-
gram. In addition, space is allocated to store rank values,
but with some possible values of this store being reserved to
indicate redirection to other secondary hashes where count
values can be found. Each secondary hash has a minimal
perfect hash function that is computed only for the n-grams
whose values it stores. Secondary hashes do not need to
record fingerprints, as fingerprint testing is done in the top-
level hash. For example, we might have a configuration of
three hashes, with the top-level MPHR having 8-bit storage,
and with secondary hashes having 10 and 20 bit storage re-
spectively. Two values of the 8-bit store (e.g. 0 and 1) are
reserved to indicate redirection to the specific secondary
hashes, with the remaining values (2 . . 255) representing
ranks 1 to 254. The 10-bit secondary hash can store 1024
different values, which would then represent ranks 255 to
1278, with all ranks above this being represented in the 20-
bit hash. To look up the count for an n-gram, we begin
with the top-level hash, where fingerprint testing can im-
mediately reject unseen n-grams. For some seen n-grams,
the required rank value is provided directly by the top-level
hash, but for others a redirection value is returned, indicat-
ing precisely the secondary hash in which the rank value
will be found by simple look up (with no additional finger-
print testing). Figure 3 gives a generalized presentation of
the structure of two-level MPHRs. Let us represent a con-
figuration for a two-level MPHR as a sequence of bit values

for their rank storage components, e.g. (8,10,20) for the
example above, or H = (b1, . . . .bh) more generally.
The overall memory cost of a particular configuration de-
pends crucially on distributional characteristics of the data
to be stored. In particular, for each rank value r, we
need to know the proportion of n-grams accounted for by
ranks [1 . . r], which we denote µ(r), which is easily com-
puted from the data. The top-level MPHR of a configu-
ration H = (b1, . . . .bh) has all n-grams from the data in
its key-set, so its memory cost is calculated as before as
N × (2.07 + m + b1) (where m is the fingerprint size).
The memory cost for each secondary MPHR depends on
the number of n-grams it stores, which in turn depends on
the range of ranks that it covers. For example, a secondary
hash with storage size bi that covers ranks rj , . . , rk has
N × (µ(rk) − µ(rj−1)) n-grams in its key-set and so has
memory cost N × (µ(rk) − µ(rj−1)) × (2.07 + bi). The
range of ranks covered by a secondary hash depends on the
hashes that precede it in the configuration sequence and the
overall number of hashes. In a configuration with h hashes
overall, the top-level MPHR must reserve h − 1 values for
redirection, and so covers ranks [1 . . (2b1 − h + 1)]. The
second hash will then cover the next 2b2 ranks, starting at
(2b1 − h+ 2), and so on.
Table 5 shows two-level MPHR configurations that are op-
timally space-efficient for the Google Web1T data, for dif-
ferent numbers of hashes used (as determined by a simple
brute-force search of alternative configurations). We see
that even a single secondary hash is sufficient to bring the
average memory cost below 25 bits per n-gram. Having
more hashes allows the cost to be further reduced, but with
diminishing returns for larger numbers of hashes. Having
5 hashes overall is sufficient to bring the cost per n-gram
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below 24 bits (3 Bytes) using 12 bit fingerprints. If we in-
stead use only 8-bit fingerprints the space usage drops to
19.77 bits (2.5 Bytes) per n-gram. So, using 8 bit finger-
prints and storing full n-gram counts this model is 36% of
the size of the RPH model proposed by Talbot and Brants
(2008).

Number Configuration Bits per
of hashes n-gram

2 (9,20) 24.96
3 (8,11,20) 24.29
4 (8,9,12,20) 24.05
5 (8,7,9,12,20) 23.94
6 (8,7,8,10,13,20) 23.87
7 (8,6,7,8,10,13,20) 23.82
8 (8,6,7,8,9,10,13,20) 23.77

Table 5: Optimal Tiered MPHR configurations for Google
Web1T corpus (using 12-bit fingerprints).

4.2. Language models in distributed architectures
Although the two-level MPHR approach makes it feasible
to handle the full Google Web1T data, with full count in-
formation, on machines with quite limited memory (requir-
ing ∼ 10.45GB for the 12 bit fingerprint model), substan-
tially larger data sets could still challenge the resources of
individual machines. For example, the Web1T corpus it-
self could presumably be much larger than it is, had lower
count thresholds been applied in filtering it down. The two-
level MPHR approach looks promising for use within a dis-
tributed architecture, as a basis for distributing both mem-
ory and processing cost, i.e. with the multiple hashes be-
ing stored on different machines, and with the return of a
redirect value from the top-level MPHR serving as an in-
struction to request the required count from a specific other
machine. As the approach is described above, however, by
far the largest memory requirement associates with the top-
level MPHR, and so storing even just this single hash struc-
ture places most of the memory burden on a single machine.
For example, the 8-bit top-level hash of the configurations
in Table 5 uses up 22.07 bits of the overall cost in each case.
So in those configurations the first level hash accounts for
over 90% of the space.
A substantial redistribution of the memory burden can be
achieved simply by moving all fingerprints from the top-
level MPHR to the secondary hashes. This move forces
the top-level hash to store only redirect values (i.e. no fin-
gerprints or ranks). This is because without fingerprints to
verify n-grams it also cannot reliably return the rank of any
n-grams. This modification allows the memory cost per n-
gram of the top-level MPHR to be reduced to just 2.07 plus
the bits required for redirection values, i.e. 2 bits for up
to 4 secondary hashes, 3 bits for up to 8. To illustrate, we
can consider the cost of some configurations were this ap-
proach to be applied to the Google Web1T data. For exam-
ple, the configuration (2,4,6,9,20) has overall average
memory cost of 25.49 bits per n-gram, with the top-level
MPHR requiring only 4.07 bits per n-gram, and with no
secondary hash requiring more than 8 bits per n-gram. The

configuration (3,3,3,4,5,6,8,11,20) has overall cost
per n-gram at 24.89 bits, with the top-level requiring 5.07
bits per n-gram, and all secondary hashes less than 4. The
downside of this modified model is that every n-gram will
require two look up steps, including all unseen n-grams. To
reduce the rate of mistaken redirects for unseen n-grams,
we could share the fingerprint between the top-level hash
and the secondary hash, e.g. store the first 4 bits of the
fingerprint in the top-level hash, so only 1 in 16 unseen n-
grams would be redirected, with the rest of the fingerprint
being stored/tested in the secondary hash. This modifica-
tion would reduce the rate of ‘false’ redirects for unseen
n-grams without affecting the overall false-positive rate of
the model.

5. Conclusion
We have presented two efficient methods of storing large
language models. These models allow for the storage of
frequency counts or probabilities using less space than all
known approaches while retaining O(1) access. We make
use of recent work in minimal perfect hashing and take ad-
vantage of the distribution of words in language to store lan-
guage models with full n-gram frequency counts using just
2.5 Bytes per n-gram with 8 bit fingerprints (or 3 Bytes per
n-gram with 12 bit fingerprints). These techniques make it
possible to use full language models consisting of billions
of n-grams without pruning or quantizing even on modest
hardware. We additionally show how to use our minimal
perfect hash storage structures in a distributed environment
to store even larger language models efficiently. We are
currently working on further reducing the storage required
by our methods by incorporating compression techniques.
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