
The Brandeis Annotation Tool

Marc Verhagen

Computer Science Department
Brandeis University

Waltham, USA
marc@cs.brandeis.edu

Abstract
The Brandeis Annotation Tool is a web-based text annotation tool that is centered around the notions of layered annotation and task
decomposition. It allows annotations to refer to other annotations and to take a complicated task and split it into easier subtasks. The
web-interface connects annotators to a central repository for all data and simplifies many of the housekeeping tasks while keeping
requirements at a minimum (that is, users only need an internet connection and a well-behaved browser). BAT has been used mainly for
temporal annotation, but can be considered a more general tool for several kinds of textual annotation.

1. Introduction
The Brandeis Annotation Tool (BAT) is a web-based text
annotation tool that is centered around the notions of lay-
ered annotation and task decomposition. Layered annota-
tion allows annotations to refer to other annotations, task
decomposition allows taking a complicated task and split-
ting it into many easier subtasks. Web-based annotation
provides a central repository for all data and simplifies
many of the housekeeping tasks. This combination of fea-
tures distinguishes BAT from existing tools like Callisto
and GATE.1

BAT’s first incarnation, in 2007, was originally motivated
out of desperation in the context of the Tempeval evaluation
task (VGS+07), when quick task-specific annotation was
needed in order to release the data sets in time. BAT has so
far primarily been used for temporal annotation, but lately
the focus has shifted towards more general annotation and
over the last year BAT has been re-tooled to closely follow
the spirit of the Linguistic Annotation Format (LAF). The
next section outlines the basic principles of the Linguistic
Annotation Format. Section 3 describes the main function-
alities of BAT and gives an idea of where BAT differs from
LAF. The conclusion gives some pointers on further expan-
sion of functionality.

2. The Linguistic Annotation Format
The Linguistic Annotation Format (LAF) is a standard for
linguistic annotation developed by the International Stan-
dard Organization (IR06; IS07). It is intended to provide
guidance on the basic principles for representing linguistic
annotation schemes that form one of the primary bases for
language resource management. Some of the main princi-
ples of LAF are: (i) annotations are separated from the data
they annotate (that is, LAF requires stand-off annotation),
(ii) annotation structure and content are separated, and (iii)
mappings between annotation occur via a pivot format.

Annotations can consist of an arbitrary number of sub-
annotations called layers. Annotation layers can refer to

1Available at http://callisto.mitre.org/ and
http://gate.ac.uk/.

Figure 1: LAF Annotation Layers

any set of nodes created in already existing annotation lay-
ers. In this framework, arbitrarily complex annotations can
be built using several layers, including layers that define al-
ternative base segmentations or morpho-syntactic analyses
(see Figure 1).
The LAF data model for annotations comprises a directed
graph referencing regions of primary data as well as other
annotations, in which nodes are labeled with feature struc-
tures providing the annotation content. The graph is ini-
tiated by creating virtual nodes between all characters in
the primary data. Then leaf nodes can be created by refer-
ring to spans defined by virtual nodes. For example, for the
string ”The clock struck ten.”, we can create leaf nodes as
follows:2

<edge id="e1" from="0" to="3"/>
<edge id="e2" from="4" to="9"/>
<edge id="e3" from="10" to="16"/>
<edge id="e4" from="17" to="20"/>
<edge id="e5" from="20" to="21"/>

Typically, this first layer of annotation is referred to as the
base segmentation. Other annotations can be added on top
of this annotation. Below is a node from a layer defining
lemmatization and parts of speech:

2The example is taken from (IR06).

3638



Figure 2: Administrator main page

Figure 3: Layer administration in BAT

<edge id="t2" ref="e2">
<fs type="token">
<f name="lemma" sVal="clock"/>
<f name="pos" sVal="NN"/>

</fs>
</edge>

GrAF is an XML serialization that instantiates the abstract
graph of LAF. It functions as the pivot format to and from
which annotations compliant with LAF can be mapped to.
It is simple to combine several annotations into one GrAF,
as long as stand-off annotation was used for all annotations.

3. BAT Functionality
Like any self respecting annotation tool, BAT tries to make
annotation as intuitive as possible while providing a rich
enough set of features. Unlike many tools available, BAT

attempts to do some of the heavy lifting that generally falls
into the hands of the corpus administrator.

3.1. Administration
The BAT Administrator pages provide functionality for cre-
ating corpora, importing source data, creating annotator lo-
gins, assigning tasks to annotators, defining layers, upload-
ing layer data, viewing inter-annotator agreement statistics,
and viewing general progress of annotators. The sources
link in Figure 2 allows the administrator to upload the base
segmentation as a tab-separated file with filename, token
offset and token string columns. One current difference
between LAF and BAT is that BAT only allows one base
segmentation per corpus.

The most interesting part may be the possibility to define
and populate layers. Layers are created by uploading a def-
inition file that contains some basic facts about the layer

3639



Figure 4: Extent annotation in BAT

like layer name, layer type and layer domain. The domain
of a layer is the set of layers that it annotates over (that
is, the arrows in Figure 1). In the case shown in Figure 3,
the domain is all nodes labeled timex3 in the timex-extents
layer. The default domain is the base segmentation.
BAT includes the layer types extent and attribute, reflecting
the LAF difference between nodes and associated features
structures. For attribute layers, like the one shown in Fig-
ure 3, attribute names and their possible values will need
to be defined as well. BAT uses a third layer type named
relation even though under LAF there is no theoretical dif-
ference between annotating extents and relations, they are
both concerned with adding nodes. BAT departs from LAF
conventions here so it can align more with annotation prac-
tice, where there is a clear difference between marking ex-
tents, even if on top of other extents, and marking relations
between extents.

Note that the strict LAF/BAT distinction between nodes
(extents or relations) and associated feature structures (at-
tributes) may annoyingly split what one considers to be one
task into two task, for example when the task involves se-
lecting named entities with their types. Therefore, BAT will
in the future introduce mixed tasks where both extents and
attributes are annotated in one fell swoop.
There are advantages however to separating extent and
attribute annotation. One is that in some cases the ex-
tents may be created by external tools. For example, for
Tempeval2, one of the tasks is to annotate the temporal re-
lation between events in subordination relations, as in ”The
spokesperson said his country was provoked by the enemy.”.
In this case, the syntactic relation between the events said
and provoked could be created by a parser or taken from
another annotation like the Penn Treebank. Node pairs like

these can be uploaded as an extent layer and the annotator
can then concentrate on defining the attributes to the rela-
tion (that is, whether one event is before, during or after the
other).3

3.2. Annotation
When annotators log in, they see all the layers in which files
have been assigned to them as annotation tasks. Clicking a
layer name takes the annotator to a list of files in the layer
that were assigned to her. The list also indicates the sta-
tus of all these files. Files are either assigned, submitted or
frozen. In the second case, an assigned file has been previ-
ously annotated and submitted by the annotator; in the third
case, a submitted file was frozen and can therefore not be
edited anymore (although the annotator can go in and see
the annotation).
Clicking on a file name in the list of assigned files will lead
the annotator to a screen as in Figure 4. Extents are defined
by clicking the first and last tokens of the extents.4 Annota-
tors can add and delete extents and change the boundaries
of extents.

Figure 5 shows a screenshot of event attribute annotation
with an example taken from current annotation of events
performed at Brandeis University. For any kind of attribute
annotation, the extents are highlighted in the sentence and
the attributes defined in the layer definition are displayed
below the sentence. The tool uses the layer definition to

3This, by the way, is what motivated the very first version of
BAT since it made it feasible to quickly annotate large numbers of
temporal links for Tempeval.

4In cases when extents are always deemed to be one token,
something that can be specified in the layer definition, this is op-
timized to needing just one click.

3640



Figure 5: Attribute annotation in BAT

create the interface. In particular, the list of values listed for
each attribute (see Figure 3) determines whether the user is
presented with a radio button, pulldown list or a general
text input field. Currently, radio buttons are used if there
are four or less possible values and pulldown lists if there
are more. Text inputs are used if the value of the attribute
is not constrained. Finally, defaults spelled out in the layer
definition will be preselected.

An example of relation annotation is shown in Figure 6.
Relation layers are defined on top of one or two extent
layers. In the current example, the relation layer tlinks-
subordinated-events is defined on top of the event extents
layer. The layer definition for tlinks-subordinated-events is
printed below:

name = tlinks-subordinated-events
type = relation
domain = event-extents:event
label = tlink
attr.relationType = string []

In addition, the layer definition specifies the label of rela-
tion and what attributes are defined for this label. In the
case above, the label is tlink which has one attribute named
relType whose possible value is not constrained.
As with attribute layers, the interface will take the layer
definition and act accordingly. Initially, all it will show is
the document with all events highlighted. The annotator
can click an event, after which it will turn red, then click
another event. After the second click a little widget will
materialize towards the right of the event that occurs first
in the text. Now the annotator can fill in a value that de-
scribes the relation between the two events. Relations can
be removed by clicking the little red button on the left of
the relation.

Relation functionality is not complete yet since currently
only one attribute can be defined for each label. For ex-
ample, for the tlinks-subordinated-events layer the only at-
tribute defined is the relation type of the temporal link (the
name of the attribute is not shown because confusion is not
possible). The more general approach though would be to
allow a set of attributes and thereby stay in lock step with
attribute annotation and the LAF philosophy.

3.3. Adjudication phase
The administrator can assign as many annotators to each
file as she desires, typically using one to three annotators.
For each file in an annotation layer, the administrator can
also assign one judge. Judges will see an interface very
similar to the annotators, but with some major differences:

• the judge will see all annotations of the annotators but
cannot change them

• attributes submitted by the annotators will be pre-
sented in a more compact form

• cases where annotators disagree are highlighted in red
so the judge can easily focus on them

• a judge cannot submit results until all annotators have
frozen their judgements

When the annotators agree, their judgments will be copied
as defaults to the judge’s extents or attributes. Ideally, if the
annotators agree on everything, all the judge needs to do is
to glance over the results and hit the submit button.

3.4. Technical details and current status
BAT is implemented in PHP and Javascript, the data are
stored in a MySQL database. The code relies on PHP4

3641



Figure 6: Relation annotation in BAT

or higher and MySQL 4 or higher. The tool has been in-
stalled on various Linux servers and on Mac OSX 10.4.
User requirements are limited, but an internet connection is
required. Most browsers are known to work without prob-
lems, with the notable exception of many version of Inter-
net Explorer.5

The tool has been used for temporal annotation in five
languages for the Tempeval2 task scheduled for Semeval-
2010 (VGS+09). For temporal annotation, BAT has now
fully supplanted the old Alembic and Tango tools that
were used while creating Timebank (DFG+03; VKMP06;
DAH+97). The current version of BAT is available at
http://timeml.org/site/bat/. Anyone can get
an administrator account simply by following the instruc-
tions in the manual.

4. Conclusion and Future Work
BAT is a generic annotation tool that can be used with lit-
tle overhead for the annotator and that gives ample control
to the corpus administrator. Annotation tasks can be de-
fined to fit the needs of the annotation and collecting results
from annotators is a simple matter of clicking a button in
the administrator interface. Likewise, progress can be eas-
ily monitored and inter-annotator agreement statistics are
readily available.
It should be noted that there are things that are hard, if not
impossible, to annotate with BAT. For example, BAT is not
set up to be a tool for creating syntactic structure. It is pos-
sible, but in a very laborious and roundabout way. This is
due to the interface, which focusses on the text, extents se-
lected in the text, and attributes associated with the extents.
It does not do well when extents overlap or are embedded
in each other, as with syntactic structure.

5Although this wasn’t checked thoroughly for the latest Inter-
net Explorer versions.

Another limitation is that any annotation starts with a base-
segmentation and that this segmentation determines what
can be selected in the tool. It is not possible to simply swipe
a couple of characters and than create a label. This is prob-
lematic for morphology rich languages, where the base-
segmentation now has to stipulate that some morphemes
are actually tokens.

There is a large list of requested features and wanted im-
provements, as well as an even larger list of minor bugs and
annoyances. Here are some of the most useful and interest-
ing ones:

• introduce a distinction between morphemes and to-
kens, allowing annotators to select segments of words

• introduce a new layer type that combines extent anno-
tation and attribute annotation

• allow unlimited attributes for relations

• supply convenience scripts to deal with corpus import
and export

• create a task repository with some standard tasks

• optimize code that calculates statistics (this is now one
of the major bottlenecks that make it hard to have cor-
pora lager than 50,000 tokens)

• add timestamps to judgements so we have a temporal
trail of annotations

• allow users more control over the interface

• provide example corpora that people can play with
without registering

3642



Finally, one potential problem to many administrators could
be that all the data and annotations live on a server main-
tained by strangers. There is really no reason why BAT
should not be installed elsewhere and the source code will
be made publicly available under a reasonable license (Cre-
ative Commons or GPL) once its level of maturity has been
pushed up a bit.

5. Acknowledgments
The first version of BAT was developed under the ARDA
AQUAINT grant NBCHC040027, ”The TARSQI Toolkit:
Temporal Awareness and Event-based Chronicles”, and the
NSF-CRI grant 0551615, ”Towards a Comprehensive Lin-
guistic Annotation of Language”. BAT functionality is now
further developed in the context of the NSF-INT-0753069
project ”Sustainable Interoperability for Language Tech-
nology (SILT)”, funded by the National Science Founda-
tion.

Many people were involved in creating BAT. Thanks to
Alex Plotnick for much of the Javascript coding and to
Royce Stubbs for implementing the inter-annotator agree-
ment statistics. And many thanks to all the people who pro-
vided input in the design phase and who actually used BAT
in its early stages and who kept harassing me to improve
the sub-optimal features known as bugs. Listed in alpha-
betical order: Valentina Bartalesi, Tommaso Caselli, Lotus
Goldberg, Allyson Ettinger, Nancy Ide, Seohyun Im, Jes-
sica Moszkowicz, Alex Plotnick, James Pustejovsky, Roser
Saurı́, Rachele Sprugnoli, Nianwen Xue, and Yuping Zhou.
Of course, all bone-headed design decisions remain firmly
my responsibility.

6. References
David Day, John Aberdeen, Lynette Hirschman, Robyn

Kozierok, Patricia Robinson, and Marc Vilain. Mixed-
Initiative Development of Language Processing Systems.
In Fifth Conference on Applied Natural Language Pro-
cessing Systems, pages 88–95, Washington D.C., U.S.A.,
1997.

David Day, Lisa Ferro, Robert Gaizauskas, Patrick Hanks,
Marcia Lazo, James Pustejovsky, Roser Saurı́, Andrew
See, Andrea Setzer, and Beth Sundheim. The TimeBank
Corpus. Corpus Linguistics, March 2003.

Nancy Ide and Laurent Romary. Representing Linguistic
Corpora and Their Annotations. In Proceedings of the
Fifth Language Resources and Evaluation Conference
(LREC), Genoa, Italy, 2006.

Nancy Ide and Keith Suderman. GrAF: A graph-based for-
mat for linguistic annotations. In Proceedings of the Lin-
guistic Annotation Workshop, pages 1–8, Prague, Czech
Republic, June 2007. Association for Computational
Linguistics.

Marc Verhagen, Robert Gaizauskas, Frank Schilder,
Mark Hepple, Graham Katz, and James Pustejovsky.
SemEval-2007 Task 15: TempEval Temporal Relation
Identification. In Proceedings of the Fourth Interna-
tional Workshop on Semantic Evaluations (SemEval-
2007), pages 75–80, Prague, Czech Republic, June 2007.
Association for Computational Linguistics.

Marc Verhagen, Robert Gaizauskas, Frank Schilder, Mark
Hepple, Jessica Moszkowicz, and James Pustejovsky.
The TempEval challenge: identifying temporal relations
in text. Language Resources and Evaluation, 43(2),
2009.

Marc Verhagen, Robert Knippen, Inderjeet Mani, and
James Pustejovsky. Annotation of Temporal Relations
with Tango. In Proceedings of LREC 2006, Genoa, Italy,
2006.

3643


