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Abstract
This paper presents a comparison of three computational approaches to selectional preferences: (i) an intuitive distributional approach
that uses second-order co-occurrence of predicates and complement properties; (ii) an EM-based clustering approach that models the
strengths of predicate–noun relationships by latent semantic clusters; and (iii) an extension of the latent semantic clusters by incorporating
the MDL principle into the EM training, thus explicitly modelling the predicate–noun selectional preferences by WordNet classes. We
describe various experiments on German data and two evaluations, and demonstrate that the simple distributional model outperforms the
more complex cluster-based models in most cases, but does itself not always beat the powerful frequency baseline.

1. Introduction
Predicates impose selectional restrictions on the realisa-
tion of their complements, as first illustrated by Chom-
sky (1957) through his famous example ”Colorless green
ideas sleep furiously”. Though the sentence is syntacti-
cally well-formed, it is not semantically meaningful, unless
interpreted metaphorically. Compare also examples (1) and
(2), where most people would agree that a chocolate cake
is highly acceptable as the patient of the verb bake, but a
stone is less typical (though, again, it might be subsumed
by the context, e.g., as metaphorical when the baking result
was unenjoyably hard).
(1) Elsa baked a chocolate cake.
(2) ?Elsa baked a stone.
Approaches in computational linguistics that model selec-
tional restrictions commonly refer to them as selectional
preferences. This illustrates the fact that selectional restric-
tions refer to a certain degree of acceptance, rather than a
binary decision, and furthermore that this degree of accep-
tance is typically represented by probabilistic models.
Selectional preferences are of great interest to research in
Computational Linguistics. From a lexicographic perspec-
tive, they constitute a crucial part of the lexical semantic
knowledge and thus are to be included in the lexicon, cf.
the word sketches in the Sketch Engine (Kilgarriff et al.,
2004) as a prominent lexicographic example. Furthermore,
one can rely on lexical selectional preferences to detect ac-
cordance with or discrepancies to regularities. This feature
allows, e.g., to determine the degree of compositionality
of multi-word expressions (McCarthy et al., 2007). From
a more practical perspective, selectional preferences can
help with the pervasive problem of data sparseness: They
can be regarded as generalisations of semantic realisations
(e.g., if typical direct objects of the verb drink are coffee,
tea, beer, wine, one can describe the selectional restrictions
of this complement by their hypernym beverage), and use
the generalisations to induce properties for sparse nomi-
nal instances, such as regina, a regional brand of German
lemonade, which is probably not or only sparsely captured
by corpus data. Example applications in this direction are

word sense disambiguation relying on selectional prefer-
ences (McCarthy and Carroll, 2003), and semantic role la-
belling (Erk, 2007; Zapirain et al., 2009).
This paper presents a comparison of three computational
approaches to selectional preferences: (i) an intuitive dis-
tributional approach that uses second-order co-occurrence
of predicates and complement properties; (ii) an EM-based
clustering approach that models the strengths of predicate–
noun relationships by latent semantic clusters (Rooth et al.,
1999); and (iii) an extension of the latent semantic clus-
ters by incorporating the MDL principle into the EM train-
ing, thus explicitly modelling the predicate–noun selec-
tional preferences by WordNet classes (Schulte im Walde
et al., 2008).
The motivation of our work was driven by two main ques-
tion: First, concerning the distributional approach, we are
interested not only in how well the model describes selec-
tional preferences, but moreover which second-order prop-
erties are most salient. For example, a typical direct ob-
ject of the verb drink is usually fluid, might be hot or cold,
can be bought, might be bottled, etc. So are adjectives that
modify nouns, or verbs that subcategorise nouns salient
second-order properties to describe the selectional prefer-
ences of direct objects? Our second interest lies in the ac-
tual comparison of the models: How does a very simple
distributional model compare to much more complex ap-
proaches, especially with respect to model (iii) that explic-
itly incorporates selectional preferences? And which repre-
sentation of selectional preferences is more appropriate, us-
ing (i) second-order properties, (ii) an implicit generalisa-
tion of nouns (by clusters), or (iii) an explicit generalisation
of nouns by WordNet classes within clusters? All experi-
ments in this paper were carried out for German, but can
be transferred to other languages, given that sufficient cor-
pus data is available to extract predicate–complement pairs,
plus assuming a WordNet for (iii).
In the remainder of the paper, we describe the three se-
lectional preference models and the respective experiments
(Section 2), the evaluation (Section 3), and the results (Sec-
tion 4).
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2. Selectional Preference Models

Existing approaches to the automatic induction of selec-
tional preferences fall into three categories. The majority of
the approaches models selectional preferences by exploit-
ing the hypernym/hyponym hierarchy in WordNet (Fell-
baum, 1998). Relying on corpus-based predicate–relation–
noun frequencies, they aim to find the optimal generalisa-
tion of the nouns as selectional preference characterisation
with respect to the predicate and the predicate–noun rela-
tion. As the result, the selectional restrictions are expressed
by WordNet classes, or sets over WordNet classes (most
commonly a disjunctive set of classes represented by a cut
through the hierarchy). Referring to the above example,
having seen coffee, tea, beer and wine as direct objects of
the verb drink, the hypernym beverage generalises over the
seen nouns and thus represents a suitable WordNet label for
the verb–object selectional preference. Approaches that fall
into this category are Resnik (1997), Li and Abe (1998),
Abney and Light (1999), Ciaramita and Johnson (2000),
and Clark and Weir (2002).

An alternative to WordNet-based models are cluster-based
models such as Pereira et al. (1993) and Rooth et al.
(1999). Also relying on corpus-based predicate–relation–
noun frequencies, cluster-based approaches represent se-
lectional preferences by noun clusters that generalise over
the seen nouns, without specific generalisation labels other
than the cluster numbers. Two of our models fall into this
category, with the more complex one refining the selec-
tional preference description by WordNet categories.

Last but not least, Erk (2007) suggested a distributional,
similarity-based model for selectional preferences that uses
the corpus-based input data to first define a selectional pref-
erence representation, and then use vector-based similarity
metrics to determine selectional preference scores for un-
seen nouns. Our second-order co-occurrence model is an
instance of a distributional model, in many respects similar
to Erk’s model.

While WordNet-based approaches are attractive models of
selectional preferences in that they explicitly provide pref-
erence categories, cluster-based and similarity-based ap-
proaches are attractive in that they are independent of such
a manual resource which is not available for all languages
and is costly to build.

We present and compare three approaches to selectional
preference induction: (i) an intuitive distributional ap-
proach that uses second-order co-occurrence of predicates
and complement properties; (ii) an EM-based clustering ap-
proach that models the strengths of predicate–noun rela-
tionships by latent semantic clusters (Rooth et al., 1999);
and (iii) an extension of the latent semantic clusters by in-
corporating the MDL principle into the EM training, thus
explicitly modelling the predicate–noun selectional prefer-
ences by WordNet classes (Schulte im Walde et al., 2008).
The three models have been implemented for German, but
can be transferred to other languages, given that sufficient
corpus data is available to extract predicate–complement
pairs, plus assuming a WordNet for (iii). The models are
described in some detail in the following subsections.

2.1. A second-order distributional model
According to the distributional hypothesis, the sum of con-
texts of a linguistic unit is a crucial indicator of the mean-
ing of the linguistic unit (Firth, 1957; Harris, 1968). In
this vein, we define a distributional approach to selectional
preference induction that is both intuitive and cheap. The
underlying idea is that selectional preferences of a predi-
cate’s complement are defined by the properties of the com-
plement realisations. For example, a typical direct object
of the verb drink is usually fluid, might be hot or cold,
can be bought, might be bottled, etc. So –referring to this
example– are adjectives that modify nouns, or verbs that
subcategorise nouns salient properties to describe the se-
lectional preferences of direct objects? The general ques-
tion we ask is: what characterises the realisations of se-
lectional preferences? We thus suggest a second-order co-
occurrence model for selectional preferences: a predicate’s
restrictions to the semantic realisation of its complements
are expressed through the properties of the complements.
The basis of the distributional approach
are corpus-based co-occurrences of triples
〈predicate, relation, complement〉, i.e., joint frequencies
of predicate–complement pairs with respect to a specific
functional relation. Being of second-order co-occurrence,
the model combines two types of co-occurrences: (1)
Corpus-based joint frequencies freq(p, r1, n) of pred-
icates p and nouns n with respect to some functional
relationship r1. These co-occurrences refer to the func-
tional relationships whose selectional preferences we
address. We concentrate on German verb–noun relation-
ships r1, namely subjects, direct object, and pp objects.
This choice was motivated by the language we work
on (German), plus the available data for evaluation, cf.
Section 3. The approach can easily be expanded to other
predicates and relations, but in order to incorporate the
latent semantic class model with WordNet generalisations,
the complement choice is necessarily nouns. (2) Corpus-
based joint frequencies freq(n, r2, prop) of nouns n and
noun properties prop with respect to some functional rela-
tionship r2. These co-occurrences refer to the properties
of the selectional preferences we address. We concentrate
on modifying adjectives, subcategorising verbs (for direct
object and pp object), and subcategorising prepositions,
because these properties were expected to shed light on
complementary semantic properties of the nouns (and thus
the selectional preference descriptions). We tested the
properties by themselves, and also in combinations. The
set of properties can easily be enlarged, as the experiments
will demonstrate. The joint frequencies were estimated on
approx. 560 million words from the German web corpus
deWaC (Baroni and Kilgarriff, 2006), after the corpus was
preprocessed by the Tree Tagger (Schmid, 1994) and by a
dependency parser (Schiehlen, 2003).
The distributional model comprises two parts: (1) the se-
lectional preference description with respect to a specific
verb–noun relationship, i.e., the second-order properties
of the relationships, and (2) the selectional preference fit
of a specific noun with respect to the verb–noun relation-
ship. Part (1) is a simple scoring that combines the two
types of corpus-based joint frequencies, freq(p, r1, n) and
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freq(n, r2, prop), cf. Equations (3) to (6). The second-
order selectional preference of the verb–noun relationship
r1 is represented by the joint noun–property corpus fre-
quencies across the nominal complements, cf. Equation (3)
for the most basic version. I.e., the feature vector of
the predicate is a union of the properties of the nouns.
For example, if the predicate is the verb drink, the verb–
noun relation is a direct object, and the property is ad-
jectives that modify nouns; then, the verb’s selectional re-
strictions are defined by an adjective feature vector, where
the set of adjectives is the union of the adjectives modi-
fying the nouns subcategorised by drink. The feature val-
ues score1(drink, dir obj, adj) thus rely on the frequen-
cies of all nouns that appeared as direct objects of drink,
freq(drink, dir obj, n), and on the frequencies of the ad-
jectives those nouns appeared with (not necessarily in the
same context with the verb, freq(n, n mod, adj)). For ex-
ample, if coffee appeared 50 times as direct object of drink,
and tea appeared 5 times, and if coffee was modified by the
adjective hot 100 times and by fluid 30 times, and if tea
was modified by hot 60 times and by fluid 15 times, then
score1(drink, dir obj, hot) = 50∗100 + 5∗60 = 5, 300,
and score1(drink, dir obj, fluid) = 50 ∗ 30 + 5 ∗ 15 =
1, 575. The scoring provided in Equation (3) is the most
simplest, using raw corpus frequencies. Alternative ver-
sions rely on log-transformed frequencies (Equation (4)),
probabilities (Equation (5)), and tf-idf values (Equation (6),
where tf idf(triple) = tf(triple) ∗ idf(triple), with
tf(triple) = prob(triple), and idf(triple) = log |p,r1|

|p,r1,n|

for r1, and idf(triple) = log |n,r2|
|n,r2,prop| for r2, i.e., de-

termining the “inverse document frequency” of nouns (r1)
or properties (r2) by incorporating the number of different
predicates (r1) or nouns (r2) a noun (r1) or property (r2)
occurred with).

Tables 1 to 3 present examples of second-order properties,
for the direct objects of the verb backen ’bake’ with adjec-
tive properties, anbraten ’fry’ with verb properties, and ab-
schmecken ’taste’ with preposition properties, respectively.
The tables list the eight most probable properties and also
the eight most probable nominal realisations, according to
some of the most successful distributional models. The in-
formation is rather for intuitive purposes; therefore, the sys-
tem scores are omitted. The prepositions in Table 3 are the
most difficult to grasp intuitively, but at the same time the
most successful system features, cf. Section 3.

As mentioned before, the resulting selectional preference
descriptions are predicate vectors over complement proper-
ties. In part (2), the natural fit of a specific noun can then
be specified by standard distributional similarity measures,
comparing a specific noun’s contribution to the overall pref-
erence: In order to determine the selectional preference for
a specific (seen or unseen) noun, we calculate the vector-
based similarity between the predicate’s preference vector
and the specific noun’s vector. The measures to calculate
the similarities and thus the natural fit of a specific noun
to a selectional preference description can be varied. We
experimented with four standard measures that were ex-
pected to provide different perspectives on the selectional
preference fit, due to their mathematical nature: the cosine

of the vector’s angle (a standard measure in linear alge-
bra), the skew divergence, an information-theoretic mea-
sure and variant of the Kullback-Leibler divergence (Lee,
2001), Kendall’s τ , a measure for rank correlation (Hatzi-
vassiloglou and McKeown, 1993), and jaccard, a binary
distance measure (Manning and Schütze, 1999).
Our method is similar to Erk’s approach who also used
complements’ corpus-based properties to describe selec-
tional preferences. We addressed the task from a different
direction, though, and the result is a simplified version of
her approach. The models with a single nominal property
are specific cases of her model, and only the models with
combined nominal properties come close to a general dis-
tributional description. Furthermore, our goal is different
from hers in that we were interested in the contributions of
the various properties, in addition to determining the natu-
ral fit of nouns to selectional preferences.

Properties: adjectives Example realisations
frisch ’fresh’ Keks ’cookie’
lecker ’delicious’ Brötchen ’roll’
klein ’small’ Torte ’tart’
trocken ’dry’ Kuchen ’cake’
süß ’sweet’ Brot ’bread’
warm ’warm’ Pizza ’pizza’
fett ’fat’ Waffel ’waffle’
eingeweicht ’soaked’ Pfannkuchen ’pancake’

Table 1: Direct objects of backen ’bake’.

Properties: verbsNPacc Example realisations
schälen ’peel’ Champignon ’mushroom’
schneiden ’cut’ Zwiebel ’onion’
essen ’eat’ Kartoffel ’potato’
zugeben ’add’ Gemüse ’vegetable’
anschwitzen ’sweat’ Knoblauch ’garlic’
pellen ’peel’ Hackfleisch ’minced meat’
riechen ’smell’ Roulade ’roulade’
waschen ’clean’ Keule ’haunch’

Table 2: Direct objects of anbraten ’fry’.

Properties: prepositions Example realisations
mit ’with’ Soße ’sauce’
in ’in’ Salat ’salad’
für ’for’ Brühe ’stock’
zu ’for’ Gemüse ’vegetables’
von ’from’ Eintopf ’stew’
unter ’under’ Suppe ’soup’
auf ’on’ Püree ’puree’
als ’as’ Essen ’food’

Table 3: Direct objects of abschmecken ’taste’.

2.2. Latent Semantic Classes
The Latent Semantic Cluster (LSC) approach is an instance
of the Expectation-Maximisation (EM) algorithm (Baum,
1972) for unsupervised training on unannotated data. It has
previously been applied to model the selectional dependen-
cies between two sets of words participating in a grammat-
ical relationship (Rooth et al., 1999). The cluster analyses

1383



score1(p, r1, prop) =
∑

n∈(p,r1)

freq(p, r1, n) ∗ freq(n, r2, prop)(3)

score2(p, r1, prop) =
∑

n∈(p,r1)

log(freq(p, r1, n)) ∗ log(freq(n, r2, prop))(4)

score3(p, r1, prop) =
∑

n∈(p,r1)

prob(p, r1, n) ∗ prob(n, r2, prop)(5)

score4(p, r1, prop) =
∑

n∈(p,r1)

tf idf(p, r1, n) ∗ tf idf(n, r2, prop)(6)

Figure 1: Second-order selectional preference description.

define two-dimensional soft clusters which are able to gen-
eralise over hidden data. LSC training learns three prob-
ability distributions, one for the probabilities of the clus-
ters, and a joint probability distribution for each lexical
class participating in the grammatical relationship, (e.g.,
predicates and subcategorised nouns) with respect to clus-
ter membership, thus the two dimensions. LSC was chosen
because the clusters can be considered as generalisations
over the members of the two inter-dependent dimensions.
The LSC approach therefore fits selectional preferences, by
generalising over seen and unseen lexical items.
Concerning our task, the semantically smoothed probability
of a predicate–noun pair (p, n) with respect to some func-
tional relation is defined by Equation (7). Our experiments
with LSC rely on the same corpus data as the distributional
model; we used the same verb–subject, verb–direct-object,
and verb–pp-object data. We trained three LSC models,
one for each functional relation, and a forth model that con-
tained all relations, using a relation marker at the verb (e.g.,
replacing the verb backen with backen-subj) to distinguish
between the relations. The resulting analyses were used to
calculate the probabilities of verb–noun pairs as the natural
fit of the nouns to the selectional preferences the clusters
incorporate. The training parameters were varied, produc-
ing cluster analyses with 20, 50, 100, 200, and 500 clusters,
over 50 and 100 iterations.

prob(p, n) =
∑

c∈cluster

prob(c, p, n)

=
∑

c∈cluster

prob(c) prob(p, c) prob(n, c)(7)

Table 4 presents an LSC example of a cluster containing
verbs and their direct objects, as taken from a 100-cluster
analysis. The left-hand column contains the most probable
predicates within this cluster; the right-hand column con-
tains the most probable nouns within this cluster. The nouns
are assumed to represent the selectional preferences of the
direct objects of the verb dimension.

2.3. Latent Semantic Classes integrating Selectional
Preferences

While the original LSC approach models selectional pref-
erences only implicitly, by assigning semantically similar
words to common classes, an extension of the LSC ap-
proach incorporates explicit selectional preferences. The
PAC model (Schulte im Walde et al., 2008) provides a com-
bination of the EM algorithm and the Minimum Descrip-
tion Length (MDL) principle (Rissanen, 1978), and thus

cluster, prob(c) = 0.015 (range: 0.004-0.035)
entwickeln ’develop’ Konzept ’concept’
vorstellen ’introduce’ Angebot ’offer’
erarbeiten ’work out’ Vorschlag ’suggestion’
geben ’give’ Idee ’idea’
umsetzen ’realise’ Projekt ’project’
ansehen ’look at’ Plan ’plan’
erstellen ’create’ Programm ’program’
präsentieren ’present’ Strategie ’strategy’
diskutieren ’discuss’ Modell ’model’
darstellen ’demonstrate’ Lösung ’solution’

Table 4: Example LSC cluster.

refines the second, nominal dimension by explicit general-
isations based on WordNet and the MDL principle. The
model compromises for incorporating a manual resource
(differently to the two preceding models).
The PAC model is estimated through the joint probability
of a predicate p, a subcategorisation frame type f , and the
complement realisations n1, ..., nk, cf. Equation (8). In ad-
dition to the LSC parameters in Equation (7), prob(r|c, f, i)
is the probability that the ith complement of frame f
in class c is realised by WordNet (wn) concept r, and
prob(n|r) is the probability that the WordNet concept r is
realised by complement head n. See Schulte im Walde et
al. (2008) for detailed explanations of the model.

prob(p, f, n1, ..., nk) =
∑

c

prob(p) prob(p, c) prob(f, c)

k∏
i=1

∑
r∈wn

prob(r|c, f, i) prob(ni|r)(8)

Our experiments with PAC rely on the same corpus data
as the other two models; we used the same verb–subject,
verb–direct-object, and verb–pp-object data. We trained
four PAC models, one for each functional relation, and one
for all data in one model (as PAC incorporates frame types
and thus distinguishes between functional relations). As for
LSC, we used the resulting analyses to calculate the prob-
abilities of verb–noun pairs as the natural fit of the nouns
to the selectional preferences the clusters incorporate. The
training parameters were varied as for LSC, producing clus-
ter analyses with 20, 50, 100, 200, and 500 clusters, over 50
and 100 iterations.
Table 5 presents a PAC example of a cluster containing
verbs and their direct objects, as taken from a 20-cluster
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analysis. The left-hand column contains the most probable
predicates within this cluster; the right-hand column con-
tains a selection of the most probably WordNet classes from
different hierarchical levels. The extensive WordNet hierar-
chical structure that is part of the second cluster dimension
is omitted for space and clarity reasons.

cluster, prob(c) = 0.069 (range: 0.014-0.085)
leisten ’perform’ Geschehen ’event’
geben ’give’ Aktivität ’activity’
fordern ’demand’ Veränderung ’change’
bedeuten ’mean’ Handlungssequenz ’action sequence’
ermöglichen ’enable’ Realisierung ’realisation’
verhindern ’prevent’ Anschlag ’attack’
feiern ’celebrate’ Straftat ’criminal act’
darstellen ’demonstrate’ Gerichtsverfahren ’lawsuit’
bringen ’bring’ Verbesserung ’improvement’
vornehmen ’carry out’ Optimierung ’optimisation’

Table 5: Example PAC cluster.

3. Evaluation
The three selectional preference approaches were evaluated
against human judgements on German verb–noun pairs.
The judgements had been collected by Brockmann and La-
pata (2003)1 whose study compared the WordNet-based se-
lectional preference approaches by Resnik (1997), Li and
Abe (1998), and Clark and Weir (2002), plus two distri-
butional models relying on co-occurrence frequency and
conditional probability. The human data contains 90 verb–
noun pairs, with 30 pairs each for subjects, direct objects
and pp objects, and each of the 30 pairs contains 10 differ-
ent verbs with 3 different nouns. Verbs and nouns were cho-
sen randomly; furthermore, the noun choice was done in ac-
cordance with three frequency bands of the verb–relation–
noun triples. The participants in the study were asked to
provide selectional preference scores for the 90 verb–noun
pairs; the scores were then normalised to a common scale,
and transformed by taking the decadic logarithm log10.
Brockmann and Lapata used the human judgements to
compare the above-mentioned selectional preference ap-
proaches. Each model provided selectional preference
scores for the 90 verb–noun pairs, the system scores were
transformed by taking the decadic logarithm and then cor-
related against the human judgement scores by linear re-
gression. Brockmann and Lapata found that all five models
were significantly correlated with the human judgements,
but inter-subject agreement was consistently higher than the
correlations. Furthermore, no model performed best; differ-
ent methods were suited for different functional relations.
A combination of the models by multiple linear regression
outperformed the individual models.
By using the same gold standard data and the same com-
putations as Brockmann and Lapata, we can compare not
only our models against each other, but also compare our
results to theirs. We therefore calculated system scores
for the 90 verb–noun pairs (which had previously been re-
moved from the training data) with respect to our three ap-
proaches. As Brockmann and Lapata, we also transformed
the system scores by taking the decadic logarithm, before

1Thanks to Carsten Brockmann for providing the judgement
scores to us.

performing the linear regression with their log10 human
judgements. In comparison, however, we also correlated
the original system scores against the human judgements
back-transformed by the log10 reverse function. The latter
procedure seemed reasonable, as we did not agree with a
general log10 transformation without knowledge about the
underlying data distribution.2

Furthermore, we added a second type of evaluation, and
compared the approaches using the Spearman rank-order
correlation coefficient (henceforth: ranking). This corre-
lation is a non-parametric statistical test that measures the
association between two variables that are ranked in two or-
dered series. The ranking seemed reasonable, as it looked at
the evaluation from a different perspective, assessing how
well the systems can distinguish fine-grained rank-order
differences across the gold standard pairs.
The baselines of the experiments were calculated by cor-
relating the joint corpus-based predicate–noun frequencies
of the subjects, direct objects and pp-objects with the hu-
man judgements (also by linear regression, and by rank-
ing). The upper bound of the approaches is referred to as
the inter-subject agreement (isa) on the selectional prefer-
ence judgements, as calculated by Brockmann and Lapata,
henceforth BL.

4. Results
Tables 6 to 8 present an extract of the results of the dis-
tributional approach, and the LSC and PAC experiments.
All of the results refer to the evaluation by linear regres-
sion, where the system scores were not transformed by the
decadic logarithm (and, accordingly, correlated with the
back-transformed judgements); the results with respect to
ranking will be described below. In each table, our best
results per column are printed in bold font. The overall
best results per relation are in addition printed in blue, and
marked by the significance levels *p ≤ .05, **p ≤ .01,
and ***p ≤ .001, if applicable. The BL results in Table 6
refer to the best results achieved in the Brockmann/Lapata
comparison, and provide the respective system in brackets.
The baseline and upper bound values are only listed in Ta-
ble 6 but refer to all linear regression experiments in the
three tables. The frequency baseline correlated the joint
predicate–noun frequencies against the back-transformed
human judgement scores; the log10(f) baseline corre-
lated the frequencies transformed by the decadic logarithm
against the BL judgement scores; the BL baseline is taken
from their paper and refers to log10-transformed frequen-
cies correlated against the log10 BL judgement scores.
The distributional results list the cosine scores as the mea-
sure of selectional preference fit, because it provided the
overall best scores. The rows refer to the second-order
properties, and the columns to the second-order selectional
preference description, cf. Figure 1. As mentioned before,

2If the data is normally distributed without transformation,
then it needs no transformation to go into a linear regression; if
the data is normally distributed after the transformation, then a
transformation is reasonable. In any case, the transformation will
change the linear regression, as a logarithm imposes a shape on
the scores that influences the linearity. The degree of the change
depends on the scale of the scores.
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we used adjectives, verbs, and prepositions as second-order
properties; furthermore, we enlarged and unified the prop-
erty sets: v +vp adds verb–preposition pairs (subcategoris-
ing for the respective nouns), v + vp + adj adds adjec-
tives to this set, and v + vp + adj + prep further adds
the prepositions. A number of things are striking in Ta-
ble 6: (1) Not only with respect to the cosine results but
also in more general, the prepositions by themselves, or
the union of second-order properties v + vp + adj + prep
are in many cases the most successful properties. On the
one hand, we can conclude that prepositions are a pow-
erful indicator of selectional preference properties; on the
other hand, our largest set of properties comes close to
a general distributional description without strong restric-
tions on the selection of properties, in the vein of Erk
(2007), and the question is whether a less careful choice
than the properties we provided would be as successful
or even more successful. One could try, e.g., window in-
formation as a very crude choice. (2) The best results
vary quite strongly with respect to the functional rela-
tion. Direct objects are modelled best, subjects are mod-
elled worst. (3) Not only with respect to this table but in
more general, the probability and tf-idf scores tended to
outperform the frequency- and log(f)-based scores. Note
that the best overall result in Table 6 is achieved by fre-
quency, though. (4) Quite striking in the table are the
large values of the baseline using the log-transformed
predicate–noun frequencies, .652/.559/.565/.574 for subj,
dir obj, pp-obj, overall with an upper bound for isa of
.790/.810/.820/.810, cf. BL. The baseline is so high that
it beats some of the best system (and system combina-
tion results) in BL (.408/.611/.597/.400), and some of
our results (.494/.713/.602/.517). Furthermore, our base-
line is much higher than BL’s baseline (calculated iden-
tically, as far as we know): .386/.360/.168/.301. The
only explanation for this is that the results differ because of
the different underlying corpora, 560 million words of the
deWaC vs. 179 million words of the German Süddeutsche
Zeitung newspaper corpus. To be sure whether the size
or the domain differences are the crucial ingredients, one
would have to replicate our experiments on a portion of
the deWaC comparable to BL’s portion. We hypothesise,
though, that the difference is rather due to the corpus do-
mains, which should arguably provide different frequency
counts for verb–noun pairs such as reward a child, or clean
the pavement, whose German translations are among the
gold standard pairs. The same reason applies to the fact
that our results are all above those of BL’s comparison. One
would have to re-run the various systems on our data, in or-
der to have a fair comparison. (5) As mentioned above,
the cosine measure was the most useful for our purposes.
The skew divergence and the jaccard binary measures were
always clearly below the cosine-based scores. Only the re-
sults with Kendall’s τ were in some cases similar to the co-
sine results; for subjects, τ could even beat the cosine, with
a correlation of **.532, using v+vp. (6) The cosine results
when correlating the log10 system scores against the log10
judgements were quite below the ones in Table 6, confirm-
ing our intuition that a general log10 transformation and
linear regression do not necessarily fit.

Table 7 presents the results for the LSC experiments. The
first column for each relation refers to a linear regres-
sion of the probabilities of the verb–noun pairs and the
back-transformed judgements; the second column refers to
the correlation between the log10-transformed probabili-
ties against the log10-transformed judgements. Although
the best LSC correlations are also significant, all of them
are below those of the simpler distributional model. In-
terestingly, though, the correlations based on the log10-
transformed scores were in most cases above those with-
out transformation. Concerning the number of clusters and
training iterations, there is no clear tendency towards an
optimal settings. The number of training iterations did not
consistently improve the results, and neither did a smaller
or larger number of clusters. When training used all relation
information at the same time (all func), relying on relation
markers at the verb (cf. Section 2.2), LSC performed better
than after individual training on the relation data.
Table 8 presents the results for the PAC experiments.
Again, the first column for each relation refers to a lin-
ear correlation between the probabilities of the verb–noun
pairs against the back-transformed judgements, and the sec-
ond column refers to the correlation between the log10-
transformed probabilities against the log10-transformed
judgements. The PAC results vary quite strongly with re-
spect to the verb–noun relationship: For subjects, the cor-
relation of .507 even beats the distributional model; for
all other relations, the results are worse than in the sim-
ple model, for pp objects they can even be considered quite
poor. When training all relations at the same time, the best
PAC correlation is similar (and slightly above) the best LSC
score. As for LSC, the correlations based on the log10-
transformed scores were in most cases above those without
transformation. Also similar is the fact that the number of
clusters and iterations does not have a clear tendency to-
wards selectional preference prediction. It seems to be the
case, though, that smaller numbers of clusters are better.
The evaluation by the Spearman rank-order correlation co-
efficient provides similar results as the linear regression
evaluation. The tables are omitted for space reasons.
Again, the distributional model using the cosine is identi-
fied as the most successful selectional preference approach.
In comparison to a baseline of .903/.863/.928/.884 (where
the ranking according to the joint predicate–noun frequen-
cies is correlated against the gold standard ranking), the co-
sine reaches best correlations of .880/.938/.947/.879 for
subject, direct object, pp object and across relation selec-
tional preferences. It thus beats the baseline in all cases
but the subject. In comparison, the distributional model
using the skew divergence achieves only correlations of
.758/.739/.773/.772. LSC and PAC reach correlations of
.872/.872/.896/.873 and .882/.877./.795/.850, respec-
tively. The results of the cluster approaches are therefore
in most cases below those of the distributional model, with
PAC reaching slightly higher scores than LSC.
The properties of the most successful distributional mod-
els, and the number of clusters and training iterations of the
most successful cluster models are not the same as those
in the linear regression evaluation. Therefore, we cannot
conclude about any general optimal settings of the models.
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5. Conclusions
This paper presented three computational approaches
to selectional preferences, an intuitive second-order co-
occurrence model, and two latent semantic cluster mod-
els. Quantitative and qualitative analyses of the approaches
demonstrated that the simple distributional model outper-
forms the more complex cluster-based models in most
cases. Prepositions played a dominant role among the
second-order properties, on an individual basis and in com-
binations with other properties. Even the best models,
though, did not always beat the powerful frequency base-
line. Comparing the two cluster-based models, an explicit
generalisation of nouns by WordNet classes within clusters
provides little help.
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SUBJ DIR-OBJ PP-OBJ all
f log(f) f log(f) f log(f) f log(f)

adj .416 .373 .417 .261 .113 .220 .244 .156
verb .456 .412 .271 .222 .176 .278 .201 .178
prep .461 .345 .681 .263 .318 .393 .391 .272
v+vp .468 .425 .345 .295 .344 .369 .295 .235
v+vp+adj .420 .411 .388 .287 .235 .345 .285 .222
v+vp+adj+prep .459 .465 ***.713 .328 .380 .476 .422 .359

prob tf-idf prob tf-idf prob tf-idf prob tf-idf
adj .430 .420 .352 .301 .339 .373 .309 .311
verb **.494 .406 .285 .325 .242 .487 .273 .386
prep .443 .487 .625 .680 .554 ***.602 .481 .516
v+vp .479 .387 .333 .290 .476 .564 .345 .401
v+vp+adj .435 .383 .402 .307 .401 .478 .345 .364
v+vp+adj+prep .465 .437 .705 .428 .599 .581 ***.517 .455
BL *.408 (Resnik) ***.611 (Clark/Weir) ***.597 (Clark/Weir) ***.400 (comb)
baselines & upper bound
baseline: f .274 .343 .384 .313
baseline: log10(f) .652 .559 .565 .574
baseline: BL .386 .360 .168 .301
isa .790 .810 .820 .810

Table 6: Distributional results.

SUBJ DIR-OBJ PP-OBJ all all-func
50 training iterations

20 .253 *.450 .016 .282 .181 .295 .033 .338 .118 .383
50 .332 .382 .074 .424 .117 .061 .172 .240 .185 ***.453

100 .202 .222 .313 .483 .234 .141 .203 .235 .081 .379
200 .310 .308 .285 .469 .243 .189 .216 .275 .226 .332
500 .261 .210 .258 .393 .318 .189 .157 .242 .155 .339
100 training iterations

20 .249 .165 .061 .386 .149 .352 .064 .266 .096 .362
50 .320 .317 .184 .420 .069 .042 .194 .241 .181 .439

100 .199 .306 .300 ***.569 .232 .276 .198 .264 .082 .245
200 .286 .386 .300 .505 .366 **.562 .209 ***.407 .220 .363
500 .302 .389 .285 .315 .325 .396 .185 .315 .146 .244

Table 7: LSC results.

SUBJ DIR-OBJ PP-OBJ all
50 training iterations

20 .189 .503 .209 **.509 .062 .045 .121 .377
50 .094 .208 .258 .360 .062 .045 .070 .444

100 .094 .208 .041 .074 .062 .045 .134 .400
200 .094 .208 .041 .074 .062 .045 .060 .367
500 .094 .208 .041 .074 .062 .045 .060 .367
100 training iterations

20 .185 **.507 .229 .495 .062 .045 .114 .429
50 .094 .208 .222 .478 .062 .045 .107 ***.465

100 .094 .208 .041 .074 .062 .045 .141 .385
200 .094 .208 .041 .074 .062 .045 .081 .442
500 .094 .208 .041 .074 .062 .045 .060 .367

Table 8: PAC results.
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