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Abstract
Schulte im Walde et al. (2008) presented a novel approach to semantic verb classication. The predicate argument model (PAC) presented
in their paper models selectional preferences by using softclustering that incorporates the Expectation Maximization (EM) algorithm
and the MDL principle. In this paper, I will show how the modelhandles the task of differentiating between plausible and implau-
sible combinations of verbs, subcategorization frames andarguments by applying the pseudo-disambiguation evaluation method. The
predicate argument clustering model will be evaluated in comparison with the latent semantic clustering model by Roothet al. (1999).
In particular, the influences of the model parameters, data frequency, and the individual components of the predicate argument model
are examined. The results of these experiments show that (i)the selectional preference model overgeneralizes over arguments for the
purpose of a pseudo-disambiguation task and that (ii) pseudo-disambiguation should not be used as a universal indicator for the quality
of a model.

1. Introduction

Semantic verb classification is an important task in com-
putational linguistics. There have been various approaches
to this problem, and there are many applications which can
benefit from semantic verb classes. The intention of seman-
tic verb classification is to provide an abstraction over verbs
that share semantic properties. For example, the verbssay,
tell, talk, andaskcould be in a class which contains verbs
about verbal expression.

Schulte im Walde et al. (2008) presented a new kind of se-
mantic verb classification model. This model combines Ex-
pectation Maximization (EM) based clustering with a selec-
tional preference model with the capability of abstracting
over argument nouns. One major problem of semantic verb
clustering is data sparseness, since the stochastic model is
trained with data extracted from text corpora. The pred-
icate argument clustering model (PAC) aims to tackle this
problem by modeling selectional preference using WordNet
(Miller et al., 1990) and the Minimum Description Length
(MDL) principle (Rissanen, 1978). The idea of a clustering
algorithm with selectional preferences is based on the no-
tion that verbs belonging to the same semantic class have a
similar set of selectional preferences.

The task of evaluating such a model can be accomplished
by techniques which are commonly used to evaluate dif-
ferent kinds of verb-argument classification problems. The
particular method which I will employ is called pseudo-
disambiguation in which an algorithm is tested for its abil-
ity to discriminate between semantically plausible and im-
plausible input. The goal of this paper is to describe the pro-
cess of evaluating the PAC model in comparison with latent
semantic clustering (LSC), its predecessor, using pseudo-
disambiguation.

2. Background
2.1. Latent Semantic Clustering

Rooth et al. (1999) presented an approach for the automatic
semantic classification of interrelated dimensions, for ex-
ample a verb and its arguments. They use a soft clustering
model which is also the foundation of the PAC model.
The model clusters a given set of verbs-arguments pairs us-
ing the EM algorithm (Baum, 1972). The authors use a
clustering model based on the intuition that hidden infor-
mation about semantic classes is contained in the training
data. Each cluster is intended to contain verbs that share
semantic properties and thus constitute a semantic class.
The model implicitly provides smoothing for unseen com-
binations of verbs and arguments since words from each di-
mension dimensions (verbs and nouns in the original exper-
iment) can be combined independently. In order to evaluate
their model, the authors carry out a pseudo-disambiguation
task.
In the experiment described by the authors, the model is
trained with verb-argument data extracted from a text cor-
pus. Table 1 contains some example data. Each of these
verb-argument tuples consists of a verb (e.g.abandon), its
subcategorization frame (e.g.SUBJ:NPwith a subject and
an NP which is the direct object), a slot of the frame (e.g.
SUBJ) and its nominal argument (e.g.Australia). In the
original LSC experiments, the frame, the slot, and the argu-
ment are combined.

Verb Frame Function Argument
abandon SUBJ:NP SUBJ Australia
give SUBJ:NP NP detail

Table 1: Example input for LSC.

In the resulting model, verbs and nouns are considered to
be independent given the clusterc, and their co-occurrence
is represented solely by their affiliation with the same clus-
ter. The probability of a tuple〈v, n1, ..., nk〉 is accordingly
defined as
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p(v, n1, ..., nk) =
∑

c

p(c) p(v|c) ∗

k∏

i=1

p(ni|c) (1)

wherec is a cluster,v a verb andn1, ..., nk nouns and their
subcategorization functions. The number of clusters has to
be specified for each model. The original version of LSC
1 only has two dimensions, representing verbs and nouns,
respectively, in the original experiments. This can easilybe
extended to an arbitrary number as shown above. However,
although the number of dimensionsk is now variable, it is
still fixed for a single model instance.
Clustering is achieved using the EM algorithm. The details
of EM training are given in (Rooth et al., 1999).
LSC was evaluated using pseudo-disambiguation. Models
were trained with 25 to 100 clusters and 50 EM iterations
and yielded an accuracy of approximately 80%. For models
with more than 100 clusters, an overfitting effect occurred.

2.2. Predicate Argument Clustering

The PAC model extends the idea of LSC by incorporating
information about selectional preference using the MDL
principle to generalize over arguments. The model is ca-
pable of handling subcategorization frames with arbitrary
numbers of slots.

Verb Frame Arguments
give SUBJ:NP rule consumer
happen SUBJ incident
walk SUBJ:P:NP worker off job

Table 2: Example input for PAC.

Each verb-argument tuple now consists of a verb (e.g.
give), its subcategorization frame (e.g.SUBJ:NP) consist-
ing of separate slots, and an argument for each slot (e.g.
rule andconsumer). SUBJ:P:NPis an example of a frame
that contains a subject and a PP which consists of a prepo-
sition and a noun.

2.2.1. Probabilistic Model
The following equation extends the definition of the LSC
model (Equation 1) to take subcategorization frames and
selectional preference into account:

p(v, f, a1, ..., a|f |) =

X

c

2

4p(c) p(v|c) p(f |c) ×

|f |
Y

i=1

X

r∈R

p(r|c, f, i) p(ai|r)

3

5

(2)

It describes the generation of a verb-argument tuple con-
sisting of a verbv, a subcategorization framef with |f |
slots and a argument for each of these slots. Its probability
is determined by (i) calculating the product of the probabil-
ities p(ai|r) of each possible path between each argument
ai and the selectional restrictionr in the a-priori modelR
and the probabilityp(r|c, f, i) of a selectional restrictionr

1I used an implementation written by Helmut Schmid, which
is freely available athttp://www.ims.uni-stuttgart.
de/tcl/SOFTWARE/LSC.html.

given the clusterc and theith slot in the subcategorization
framef in the selectional restriction model (which will be
defined below), (ii) multiplying them with the conditional
probabilities of the verbv and the frame given the clus-
ter, respectively and (iii) calculating the sum over all clus-
ters. A description of the a-priori and selectional preference
models as well as the details of the training algorithm will
be given in the following sections.

2.2.2. EM Training
The probability parameters of the model can be determined
by using the EM algorithm. Since there are two types
of hidden variables now, namely the clusters and the se-
lectional restrictions, we need to deviate from the original
training method.
The model describes a stochastic process which generates
the training data. This process can be expressed through
a PCFG which generates the verb-argument tuples. Thus
the Inside-Outside algorithm (Lari and Young, 1990) can
be applied to train our clustering model. Rules for a PCFG
can be obtained as given in Schulte im Walde et al. (2008):

• The start symbol is TOP.

• For each clusterc, add TOP→ Vc Ac with probabilityp(c).

• For each word in clusterc, add Vc → v with probability
p(v|c).

• For each subcategorization framef of clusterc with length
n, addAc → fRc,f,1,entity . . .Rc,f,n,entity with probability
p(f |c).

• For each transition from a noder to a noder′ in the selec-
tional preference model for sloti of the subcategorization
frame f of clusterc, we add a ruleRc,f,i,r → Rc,f,i,r′

whose probability is the transition probability fromr to r′

in the respective WordNet-HMM.

• For each terminal noder in the selectional preference model,
we add a ruleRc,f,i,r → Rr whose probability is 1. With
this rule, we transfer from the selectional restriction model
to the corresponding node in the a-priori model.

• For each transition from a noder to a noder′ in the a-priori
model, we add a ruleRrRr′ whose probability is the transi-
tion probability fromr to r′ in the a-priori WordNet-HMM.

• For each word nodea in the a-priori model, we add a rule
R → a whose probability is 1.

A single tuple can be represented as a parse using this gram-
mar. In our example tree (Figure 1), we generate the tuple
〈give, SUBJ:NP, consumer, rule〉. We chose cluster 3 and
two paths through the selectional preference and a-priori
models, one for each argument, respectively. AtRabstract

andRperson, we transfer from the selectional preference
into the a-priori model. After choosing a path through the
a-priori model, we finally arrive at a terminal node which
contains an argument.

2.2.3. WordNet as a Markov Model
PAC includes a model for selectional preferences which
learns them by representing classes of preference through
nodes from WordNet (Miller et al., 1990). For example, if
words likecoffee, tea, andmilk occur frequently in a slot,
the model may choose a node likebeverageto represent
them. All nodes belowbeverageare removed. The model
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TOP

V3 A3

take SUBJ:NP R3,SUBJ:NP,1,entity R3,SUBJ:NP,2,entity

R2,SUBJ:NP,1,abstract R2,SUBJ:NP,2,person

Rabstract Rperson

. . . . . .

Rconcept Ruser

Rrule Rconsumer

rule consumer

Figure 1: Example parse tree.

determines the set of nodes that represents the training data
best during EM training. These selectional preference mod-
els are built separately for each slot of each subcategoriza-
tion frame. Abstraction over nouns can help in sparse-data
situations where previously unseen combinations of verbs
and arguments occur.
Following Abney and Light (1999), WordNet is first turned
into a Markov model. WordNet can be viewed as a graph
consisting of non-terminal (concepts) and terminal nodes
(words). In the Markov model, a nodesx exists for each
nodex of the WordNet graph. Since some versions of
WordNet do not have a unique top node, an artificial one
is inserted which has all WordNet top nodes as hyponyms.
The transition probability from a nodesx to sy is non-zero
iff x is a hyponym ofy or x is a word in synsety. The
probabilities of all links from a node to his hyponyms sum
up to 1.
There exists one general instance of this model called the
a-priori model . In addition, each slot of each subcatego-
rization frame has a WordNet Markov model called these-
lectional preference models. These models only consist
of partial copies of WordNet to reflect the idea of gener-
alization presented above. At their terminal nodes, these
models have links to the corresponding hyponym nodes in
the a-priori model. The terminal nodes are determined ac-
cording to the MDL principle (described in Sections 2.2.4.
and 2.2.5.). The set of all terminal nodes in a selectional
preference model is called acut.

2.2.4. MDL principle
The MDL principle (Rissanen, 1978) states that the qual-
ity of a model can be improved by minimizing itsdescrip-
tion length. The core idea behind this assumption is that
the model that can optimally compress the training data is
its best representation. The more regularities and redun-
dancies are detected, the higher the degree of compression.
This section gives an outline of the MDL principle.
The description length is composed of themodel length
and thedata length. The model length is the number of
bits which are necessary to represent the model, including
its parameters. The data length in turn is the number of bits
which are needed to describe the training data by using the
current model. The model length (ML) is defined as

ML =
k

2
∗ log2|S|. (3)

k is the number of concepts in the selectional preference
models above and including the cut, and|S| is the size of
the sample (the sum of the frequencies of training data).
The data length (DL) is the number of bits necessary to
encode the training data using the current model. It can be
calculated as

DL = −
∑

y∈S

log2pθ(y), (4)

with the probability of a noun being dependent on the prob-
ability of the WordNet concept it belongs to.
The description length is then defined as

Ld = w ∗ ML + DL, (5)

wherew is a weight factor that can put an emphasis on ei-
ther the model length or the description length. The stan-
dard value ofw is 1, meaning that model length and de-
scription length are equally important. Ifw is set to a larger
value, the model length gets penalized more, which leads
to the selectional preference models becoming smaller in
depth, and vice versa.

2.2.5. EM training and the MDL principle
In Section 2.2.3. I described the relationship between the
a-priori and the selectional preference models. Terminal
nodes of the selection preference model have links to nodes
corresponding to their hyponyms in the a priori model. The
EM algorithm is designed to fit the training data. Since
detailed selectional preference models describe the train-
ing data better than shallow ones, the EM algorithm prefers
them, thus the selectional preference models grow during
training and overfitting effects occur. Since we want to
maintain a degree of abstraction, we will restrict the growth
of the models by applying the MDL principle.
The MDL principle can be integrated into EM training
through the following steps. When the training begins, all
selectional preference models consist only of the top node.
In each iteration, the cuts of the models are redefined. First,
we expand each node in a cut towards its hyponyms. Then,
the Inside-Outside-Algorithm is applied. Afterwards, start-
ing at the terminal nodes of the model, we decide for each
node if keeping it in the selection is beneficial. This deci-
sion is made by comparing the description lengths of the
model with and without the node. If keeping the node in-
creases the description length, it is pruned from the model.
This method differs from the one described by Schulte im
Walde et al. (2008) in that nodes can now be pruned indi-
vidually as opposed to pruning all nodes in a cut. Finally,
as a last step, the probabilities are maximized.

3. Pseudo-Disambiguation
Pseudo-disambiguation is a method that tests if a model
is capable of distinguishing between semantically proba-
ble and improbable inputs. It was developed as a way to
circumvent the lack of properly annotated data for the eval-
uation of word sense disambiguation algorithms. In this
paper, it will be applied to evaluate whether the verb clus-
terings induced by the PAC model represent semantic prop-
erties appropriately.
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3.1. Definition of the Task

The main idea behind pseudo-disambiguation is to create
semantically implausible data from existing real data by re-
placing one word in a verb-argument tuple with other ele-
ments that are equally frequent but not semantically related.
There is however no rule on how these replacements have
to be chosen. In this paper, only verbs were exchanged.
Pseudo-disambiguation has first been used to evaluate word
sense disambiguation (WSD) algorithms. The wordsuit for
example is ambiguous, and a conceivable subset of labels
for its readings could for example consist of{clothing, law,
card game}. In a typical WSD task, an ambiguous word
is presented in the context of a sentence, for example “He
wears a black suit.” The test whether a model is capable of
disambiguating the word senses ofsuit is to have the model
choose the sense from the aforementioned set of labels. The
correctness of such an assertion can however only be tested
if a set of test sentences annotated with these labels is avail-
able. Creating such a set involves manual labelling and is
thus time-consuming.
Due to this problem, Schütze (1992) and Gale et al. (1992)
created a different WSD task where the model will be pre-
sented with an artificially ambiguous word which will take
the place ofsuit. This word is called apseudo-wordand
is created by combiningsuit with an equally frequent word
from a different semantic class, for examplebanana, result-
ing in banana-suit. Each occurrence ofsuit andbananain
the test corpus will then be replaced with this pseudo-word,
and the WSD algorithm has to find out which of the two
words was replaced in each case. With this method, it is
possible to create a test set automatically with no manual
labeling being involved.
Following Rooth et al. (1999) the method is applied to
verb-argument tuples. Here, the model is presented two
word sequences in which one of the places, in this case the
verb, is ambiguous, for example:

read man book

fly man book

The word pair that produces the ambiguity, in this case
〈read, fly〉 will be called a pseudo-word. The second se-
quence is less probable than the first sequence from a se-
mantical point of view. The model has to find out which
of the two words was the original one, thus its ability of
recognizing semantically plausible input is tested.

3.2. Data Acquisition

The data used for my experiments was acquired using
BitPar (Schmid, 2004) which had been trained on the
Penn Treebank (Marcus et al., 1993). We parsed the
Reuters newswire corpus (Rose et al., 2002) which pro-
duced 4882100 Viterbi parses.
From these, we extracted2,375,359 verb-argument tuples
(1,208,039 types), where token means a single occurrence
of a verb-argument tuple in the corpus, type means all of
its occurrences. Each tuple consists of a verb, its subcat-
egorization frame and the lemmatized lexical heads of the
arguments for each of the frame’s argument slots. I looked
only at active forms and I discarded all tuples containing

words which were not included in WordNet 3.0 (Miller et
al., 1990) which was used for the selectional preference
model. To eliminate noise, I removed all tuples which oc-
curred only once or contained a verb, a subcategorization
frame, or a noun that did not appear more than once. How-
ever, I also conducted experiments containing singulars due
to an argument by Dagan et al. (1999) that it was possible
to build models that include such data without any loss of
quality.

3.3. Generation of Pseudo-Words

The verb-argument tuples were split into 90% training and
10% test tuple tokens; each occurrence of a tuple was
counted as a separate token. I used this segmentation for
all following experiments except for the frequency varia-
tion experiments. I removed tuples containing any of the
25 most frequent verbs (represent, show, see, follow, seek,
use, raise, make, support, take, include, boost, buy, hit, get,
reach, reflect, produce, meet, report, hold, cover, face, be-
come, create) from the test corpus since the differences be-
tween their frequencies were too high which could lead to
a bias towards the more frequent replacement word.
In order to generate pseudo-words, each verb was assigned
to word with the next higher corpus frequency as its re-
placement (Table 4). This way I could assure that both the
original type and its replacement were roughly equally fre-
quent. This process is also fairly random, as it is not likely
that two words that are paired up are semantically related.

use (5041) approve (5102)
create (5039) use (5041)
become (4722) create (5039)
support (4652) become (4722)
increase (4574) support (4652)

Table 3: 5 most frequent pseudo-words for the Reuters cor-
pus, frequency counts in brackets.

All in all, 2790 pseudo-words were created. Table 3 lists
the ten most frequent ones, where the left word is replaced
by the right word. Table 4 shows how these words are then
used to create fake tuples. For each tuple in the test set
I created a fake tuple by replacing the verb with the cor-
responding partner in the pseudo-word. Fake tuples that
already appeared in the test corpus as a real tuple were re-
moved.

cut SUBJ:NP Congress budget
increase SUBJ:NP Congress budget
support SUBJ:NP politician bill
become SUBJ:NP politician bill

Table 4: Random tuples and their corresponding fake tu-
ples.

3.4. Experiments

I set up multiple tasks which differed in the way of selecting
the test set and of pre-processing the data, as well as in the
choice of model parameters. In these experiments, each
tuple and its pseudo-tuple were assigned likelihood values
by each of the particular models. Likelihood values were
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calculated as defined in Equation 1 for LSC and in Equation
2 for PAC.
In order to determine accuracy, I compared the likeli-
hoods of each tuple and its fake tuple. If the like-
lihood of the original tuple was greater than the one
assigned to the fake tuple, the choice was counted as
correct. Each tie was counted as0.5, which simu-
lates a random choice of correct or wrong. Accord-
ing to these rules, I formalized the accuracyA as
(number of correct choices+ 0.5 × number of ties)/N . N
denotes the overall number of tuples in the test corpus.
Models, if not noted otherwise, were trained with 50 clus-
ters and 50 iterations, following the results of the evaluation
of LSC (Rooth et al., 1999) and PAC (Schulte im Walde et
al., 2008) and the experiments in Section 3.4.5..

3.4.1. Repeating the Experiment from Rooth et al.
The first experiment repeats the original LSC evaluation.
Here, relations between arguments of subcategorization
frames were not modeled, which was impossible due to
the dimension number constraint in LSC. Instead, only
the co-occurrence of a verb, a subcategorization frame,
one argument slot and one argument was included in
the model. I transformed our data sets into the format
that was used to evaluate LSC by creating a new tuple for
each subcategorization function in each tuple. For example,

give SUBJ:NP Congress budget

yielded two new tuples:

give SUBJ:NP-SUBJ–Congress
give SUBJ:NP-NP–budget

This transformation produced 2,669,727 verb-argument
pairs. I trained both LSC and PAC models with this data.
For PAC, I trained two versions of the model, one that uses
the selectional preference model and one that does not. In
this experiment, LSC has an accuracy of 91.27%, and PAC
has 83.49%. When selectional preference models are not
used in PAC, the accuracy reaches to 91.72%. This sug-
gests that the abstractions made by the MDL model cause
problems.

3.4.2. Subjects and Objects
Since LSC needs a fixed number of dimensions, experi-
ments with the complete data set are impossible. Thus, I
decided to carry out an experiment in which only tuples
containing the most frequent frame (SUBJ:NP, i.e. a sub-
ject and a direct object) are used. This leaves488,665 tu-
ples in the corpus. In order to process this data with LSC,
subcategorization frame information had to be removed.
LSC achieved an accuracy of 93.08%, PAC 74.32%. As
mentioned earlier, one reason for the inferior accuracy of
the PAC model could be the degree of abstraction in the
selectional restriction models. Manual examination of the
models revealed another source of problems related to clus-
tering. The clusters turned out to be inhomogeneous to a
certain degree. For example, different tuples containing the
verbto alarmare placed into various clusters although there
is no ambiguity. This causes all tuples with this verb to be

identified as fake. There are more verbs of this kind that
lead to the same problem, for examplerationalise, devote,
persist, rain, disrupt. The clusters to which these verbs are
assigned often either contain many common-place verbs
like make, take, show, andbuy or consist of semantically
unrelated verbs. Most of the aforementioned examples are
categorized correctly by LSC. On the other hand, PAC per-
forms well on very high-frequent verbs in the training cor-
pus.

3.4.3. Complete Data
For the next experiment, I used training and test data con-
taining other frames thansubject-object, which consisted
of 1,414,360 tuples. LSC allows only a fixed number of ar-
guments, so these experiments could only be carried out
with a PAC model. To test the claim by Dagan et al.
(1999) that including singular events in the corpus could
improve a model, I trained another model where tuples
with a frequency of 1 were not removed. This data con-
tained 2,375,359 tuples. In order to find a baseline to which
we can compare our results, we define a simple back-off
method that decides the question of a tuple being real or
fake only based on frequency countsc from the training
data. This algorithm, given in pseudocode in Figure 2, de-
cides which tuple〈v, f〉 is the original based on a back-off
scheme. If at leastv or v′ andf were observed together,
their joint frequency is used for the decision, otherwise the
frequencies of the overall occurrences ofv and v′ were
used.

if c(〈v, f〉) > 0 or c(〈v′, f〉) > 0 then
if c(〈v, f〉) > c(〈v′, f〉) then

returnv

else
returnv′

end if
else ifc(v′) > c(v) then

returnv′

else
returnv

end if

Figure 2: Baseline algorithm based on verbs subcategoriza-
tion frames.

Note that this method only uses co-occurrence data of verbs
and frames and does not consider arguments at all. In
these experiments, PAC achieved an accuracy of 89.71%
(80.64% with singletons), the baseline achieved 83.0%.
First, accuracy was higher when singletons were excluded.
Possible reasons for this will be examined in the fol-
lowing sections. Second, the frequency-based baseline
method achieves a fairly good result even though using less
data than the PAC models. This suggests that knowledge
about subcategorization frames is sufficient in this kind
of task, and that those methods perform well at pseudo-
disambiguations which can fit the training data, which is
the case with a frequency-based method. In the next sec-
tion I will propose a baseline method that is able to beat
both LSC and PAC under certain conditions.
To understand the impact of frames on accuracy, Table 5
shows accuracy values for different frames. We can see that
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SUBJ:NPis actually the frame with the lowest accuracy
value, while tuples containing less frequent frames tend to
have higher accuracies. It might be easier for PAC to dis-
cover fake tuples with these frames for the same reasons it
is for the baseline method.

Frame Frequency Accuracy

SUBJ:NP 40,440 84.53
SUBJ 16,120 91.64
SUBJ:P:NP 9,749 94.64
SUBJ:S 8,929 94.60
SUBJ:SBAR 7,310 96.60
SUBJ:NP:P:NP 5,351 87.42
SUBJ:PRT:NP 1,781 94.83
SUBJ:ADJP-PRD 1,021 98.04
SUBJ:NP:S 967 99.58
SUBJ:PRT 958 96.97

Table 5: Accuracy values for the 10 most frequent frames.

3.4.4. Frequency Experiments
Since PAC performed much worse than LSC, I executed
further experiments that focused on tuple frequencies on
theSUBJ:NPdata. First, I changed the composition of the
test set. I excluded 50% of all tuples with a frequency of 2
from the corpus and added them to the test set. This way
unseen tuples were guaranteed to occur in the test data. In
addition, I randomly selected 10% of the remaining tuple
tokens and added them to the test set as well.
I then defined another baseline method given in Figure 3,
similar to the one defined above, which only relies on the
frequencies of the original verbv, the replacement verbv′,
the subjects, and the objecto.

if f(〈v, s, o〉) > 0 andf(〈v′, s, o〉) > 0 then
if f(〈v, s, o〉) > f(〈v′, s, o〉) then

returnv

else
returnv′

end if
else iff(〈v, o〉) > 0 andf(〈v′, o〉) > 0 then

if f(〈v, o〉) > f(〈v′, o〉) then
returnv

else
returnv′

end if
else iff(v′) > f(v) then

returnv′

else
returnv

end if

Figure 3: Baseline algorithm based on verbs, subjects and
objects.

Figure 4 shows accuracy values in relation to the coverage
of the test tuples through the training data. VSO denotes
tuples that were seen during training, VO consists of tuples
of which the verb and the object but not the subject were
seen, and V contains tuples of which only the verb appeared
during training. For VSO and VO, the baseline method is
better than the clustering models. This shows that the clus-
tering models are only useful in sparse data situations. PAC
seems to be fairly consistent for all kinds of tuples whereas

PAC
LSC
BL
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Figure 4: Accuracy by occurrence of verbs, subjects, and
objects.

the accuracy of LSC drops when it encounters unseen data.
However, PAC is also less accurate than LSC in all situa-
tions.
Figure 5 shows the accuracy values broken down by fre-
quency. Both LSC and PAC perform better with tuples
which occurred more often in the training corpus. Thus,
the inferior performance of PAC is not related to tuple fre-
quency but rather to the problems stated in the previous sec-
tions.
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Figure 5: Accuracy by frequency in PAC (number of tuples
with those frequencies in brackets).

3.4.5. Variations of the Model Parameters
In this section, the effects of model parameter variations
are examined. Figure 6 shows that the number of EM itera-
tions causes the accuracy of PAC to increase until it begins
to converge at over 74% after about 50 iterations. LSC ap-
pears to reach a stable level of over 93% after 35 iterations.
The need for more iterations of an PAC model could be ex-
plained by the fact that the MDL models have to be trained
as well.
Another parameter that can be varied is the number of clus-
ters. I tried increasing the number of clusters from 50 to
100, however, I was not able to observe a significant change
in accuracy (74.32% to 74.5%). This seems to match the
experiences made in the evaluation of LSC (cf. Rooth et al.
(1999)).
Lastly, we change the MDL weightw in Equation 5 which
determines the influence of model length and description
length. Whenw is set to a smaller value, the model length
becomes less influential, thus enabling the resulting mod-
els to become larger. For the standard setting (w = 1), the
accuracy is 70.47%. When usingw = 0.5, the selectional
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Figure 6: Accuracy by iteration in PAC.

preference models grow larger and the accuracy increases
to 73.97%, and when usingw = 2, the selectional prefer-
ence models are more shallow and the accuracy decreases
to 68.83%. These observations confirm the hypothesis that
the lower accuracy of the PAC model is related to the degree
of abstraction in the selectional preference model.

3.4.6. Discussion
All accuracy values show that PAC is inferior to LSC in
a pseudo-disambiguation task. Multiple issues that are re-
sponsible were pointed out.
The first problem is caused by inconsistent clustering. Fre-
quent tuples are represented well, however there seems to
be an issue with the classification of middle-frequent data.
This issue can also be illustrated by looking at accuracy
values for this data. Figure 5 shows unexpected, significant
jumps in those regions.
The second problem lies with the MDL model. It seems
that the models seem to overgeneralize to the point where
they have difficulties in distinguishing real data from fake
data. The fact that the description length weightw has a
considerable influence on accuracy gives further evidence
for the degree of abstraction being too high. For example,
some of the examined clusters’ selectional preference mod-
els mainly had high-level nodes likething and locationas
terminal nodes. Clark and Weir (2002) report similar re-
sults from their experiments.
As Dagan et al. (1999) point out, performance at pseudo-
disambiguation is not necessarily meaningful to a model’s
performance in a non-artificial task. Clark and Weir (2002)
hint at this issue as well. Experiments by Wagner et
al. (2009) on word sense disambiguation show that due
to sparse-data problems PAC produces better results than
LSC. In addition, the assumption that choosing pseudo-
words from a frequency-sorted list is not necessarily true
as can be demonstrated using the example tuples given in
Table 4. Cut and increaseare in fact semantically related
which makes the pseudo-disambiguation task more diffi-
cult.

4. Related Work
4.1. Similarity-Based Models of Word Co-Occurrence

Probabilities

Dagan et al. (1999) give an overview of probabilistic meth-
ods which can be applied to model word co-occurrence and

describe a new approach that includes information on word
similarity. Given a combination of words, these methods
yield a likelihood value for this combination. Determining
the likelihood of combinations of verbs, frames and argu-
ments can be regarded as an instance of this task.
The authors compare similarity-based models against tradi-
tional back-off and maximum likelihood estimation (MLE)
methods. Similarity-based language models as defined by
the authors have three components: A scheme for deciding
which word pairs require an estimate, a method for com-
bining information, and a similarity measure. The authors
propose mathematical methods for each of these compo-
nents. The authors suggest Katz’ back-off as a decision
scheme, weighted linear combinations as their combination
method, and compare the merits of Kullback-Leibler diver-
gence, Jensen-Shannon divergence, theL1 norm, and con-
fusion probability as similarity measures.
For models containing these components, pseudo-
disambiguation tasks were carried out. The data used for
their experiments was obtained by tagging a corpus with
parts of speech and by then searching for patterns to extract
noun-verb pairs. The resulting verb-argument tuples
were split into training and test data 80% to 20%. The
authors trained an MLE and a Katz back-off model with
data containing singletons. In addition, each method was
trained with data from which singletons were eliminated,
a step which the authors hoped would improve model
quality.
The similarity-based methods consistently outperform the
baseline models with the Jensen-Shannon divergence yield-
ing the lowest error rates. Also, models which include sin-
gular events produce even better results than those which
did not.

4.2. Similarity Class Model

Clark and Weir (2002) present a statistical model for the
probability of a noun appearing as an argument of a given
predicate called Similarity Class model. It estimates the
probability of a word being generalized as a certain set
of WordNet synsets using Bayes’ theorem and chi-square
tests. To determine the optimal degree of generalization,
the authors apply a chi-square test to compare the signifi-
cance of choosing between two sets of synsets.
The authors evaluate their model using pseudo-
disambiguation. Among others, they compare their
model with the MDL pruning method by (L. and Abe,
1998).
The similarity class model correctly identified approxi-
mately 72% of the test cases, whereas the MDL model had
an accuracy of only approximately 63%. Measurements of
the average depth of generalization showed that MDL tends
to chose a higher level of abstraction than the similarity
class method. The authors suggest that MDL overgener-
alizes when applied in a pseudo-disambiguation task. They
also state that they find the task “somewhat artificial”.

4.3. A Simple Similarity-Based Model for selectional
preferences

Erk (2007) proposes another model for selectional prefer-
ences. Her approach makes use of two not necessarily dif-
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ferent corpora which serve different purposes.
From theprimary corpus, verb-argument tuples are ex-
tracted. These tuples consist of a predicate, an argument
position and a headword. Thegeneralization corpusis used
to calculate similarities of words. The author proposes Co-
sine similarity, Dice coefficient, Jaccard coefficient, and
mutial-information based metrics by Lin and Hindle, re-
spectively as possible similarity measures.
Erk compares her model to LSC in a pseudo-
disambiguation experiment. This instance differs from the
ones we previously examined in that semantic roles are
used instead of grammatical relations. Thus, pseudo-words
are created for nouns instead of verbs. The author finds
similarity models to produce an error rate of about 16%, an
LSC model with 30 clusters performs worse at about 31%.

5. Conclusion
In this paper, I provided a qualitative and quantitative eval-
uation of the PAC model. I used pseudo-disambiguation,
which is a well-established evaluation method in computa-
tional linguistics. I pointed out three specific problems:
First, some verbs were frequently misclassified. This prob-
lem does not seem to be affected by changing the number
clusters.
Second, the abstraction over nouns in the selectional pref-
erence models seems to harm the overall performance in a
pseudo-disambiguation task. The degree of abstraction can
be directly influenced by changing the model’s MDL pa-
rameter, which provides a degree of freedom regarding the
trade-off between fitting the training data and abstraction.
Third, pseudo-disambiguation evaluates only whether a
model can distinguish between semantically plausible and
implausible input. This relies heavily on the choice of the
test set and its relation to the training corpus. It is thus not
necessarily an indicator for how suitable the model is for
specific applications. I provided evidence based on experi-
ments in this paper and results from others which supports
the notion that while the method is capable of asserting the
quality of the probabilities supplied by the model, it might
be less useful for predicting its performance in real-world
tasks.
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