Bootstrapping Language-neutral Term Extraction

Wauter Bosma <w.bosma@let.vu.nl>
Piek Vossen <p.vossen@let.vu.nl>
The KYOTO Project

- Partners across Europe & Asia:
 - Technical: EHU, CNR, NICT, VUA, AS, BBAW, MUNI, Synthema, Irion;
 - Users: WWF, ECNC;
- 7 languages (Basque, Chinese, Dutch, English, Italian, Japanese, Spanish);
- Website: www.kyoto-project.eu
The KYOTO Knowledge Cycle
Semantics in Text

- Goal: domain modelling (facts & concepts)
- Example: *terrestrial species declined by 55%*
- Terms are components of facts:
 - Decline
 - 55%
 - Terrestrial species
Term Extraction

- Identify domain terms (ranked list);
- Identify term relations;
- Example:
 - Terrestrial species ⊂ species
 - Terrestrial species ∩ marine species = ∅
 - Frog ∈ amphibious species
Strategies of Automatic Term & Relation Extraction

- Morpho-syntactic analysis (e.g., *terrestrial species* ⊂ *species*);
- Pattern-based analysis (e.g., *amphibious species such as frogs*);
- Distributional statistics (terms used similarly are similar);
- Language alignment by means of wordnet mappings;
- Our strategy: use a combination of the above for extracting relations and ranking terms.
Term & Relation Extraction in KYOTO

- **Pre-processing**: part-of-speech, dependencies, word sense disambiguation;
- Extract (plenty of) **candidate terms**;
- Extract **relations** using a combination of methods (morpho-syntactic, pattern-based, distributional, language alignment);
- Use relations and document frequencies to rank terms for domain-relevance.
Step 0: Pre-processing

- KAF – KYOTO Annotation Format;
- Supports arbitrary layers of annotation;
- Extendible;
- Language-neutral;
- Used with KYOTO languages: Basque, Chinese, Dutch, English, Italian, Japanese, Spanish;
- KAF is our starting point for term extraction.
Term Database

- **Terms** (including features such as domain-relevance, part-of-speech, etc.);
- **Relation types** (including features such as transitivity, commutativity, etc.);
- **Internal relations** (between terms);
- **External relations** (between a term and a resource such as WordNet);
- **Term instances** (with pointer to source).
Step 1: Candidate Terms

- Nouns (or other POS) are candidate terms (e.g., *species*);
- The head of *compound* nouns are candidate terms (e.g. *landbouwbeleid, beleid*);
- Noun *phrases* are candidate terms (e.g., *vertebrate terrestrial species*);
- Reduced noun phrases are candidate terms. Modifiers are stripped one by one, towards the head:
 - *vertebrate terrestrial species* → *terrestrial species* → *species*
 - *migration of species* → *migration of* → *migration*
Step 2: Morpho-syntactic Analysis

- A noun phrase is a hyponym of derived reduced noun phrases (e.g., terrestrial species \(\subset \) species);
- A compound is a hyponym of its head (e.g., landbouwbeleid \(\subset \) beleid – agricultural policy \(\subset \) policy).
Step 3: Pattern-based Analysis

- Learning patterns from existing resources, e.g. wordnets, species2000.
- Wordnet: hyponym(frog, amphibian)
- Corpus: … *amphibians such as frogs* …
- Pattern: X such as Y
- Corpus: … *habitat for wading birds such as golden plover, lapwing and redshank*;
- Corpus: *Notable trends include the recent recovery of the pinkfooted goose, avocet and* …
Enumerations

- ... golden plover, lapwing and redshank.
- ... limiting the use of fertilisers, manures and pesticides;
- Share a syntactic function;
- Share a common hypernym or attribute;
- Usually disjoint (LREC attracted over 1000 researchers and people);
Step 4: Distributional Statistics

- “Terms used in a similar way are similar”;
- Measure the amount of shared context;
- Context can be anything, e.g.: linear context, dependency relations, etc.
- High similarity statistic is evidence of a shared hypernym or attribute.
Step 5: Ranking Terms

- Distinguish domain-relevant terms from non-terms;
- (As opposed to distinguishing domain terms from generic terms;)
- No clear boundary;
- A confidence value is assigned to each candidate term, representing its 'termness';
- The confidence value is calculated from the term relation graph and occurrence frequency;
- Candidate terms above a certain confidence threshold may be regarded terms.
Step 6: Language Alignment

- Wordnet mappings provide relations between languages;
- Wordnets, term database and other resources provide relations within a language;
- Infer new relations between languages;
Language Alignment: Example

- bedreigde diersoort
- endangered species
- endangered
- species
- bedreigde
- diersoort
Evaluation

- Gold standard for evaluation must be
 - corpus-based;
 - exhaustive.
- No such resource exists;
- We need to create one.
Conclusion

- Based on language-neutral KAF;
- Term relations to leverage term ranking;
- Domain terms may improve parsing;
- Works with 7 KYOTO languages;