Inferring syntactic rules for word alignment through Inductive Logic Programming

Sylwia Ozdowska, Vincent Claveau

CLLE-ERSS - Univ. of Toulouse
Toulouse, France

IRISA-CNRS
Rennes, France

May 19, 2010
Word alignment

Definition and use

- link occurrences of words (or phrases) that are in a translation relationship in parallel corpora
- usefulness of word alignment (Véronis 00)
 - acquisition of bilingual lexical resources, machine translation, cross-lingual information retrieval...

Existing techniques

- most approaches:
 - statistical alignment models (Brown et al. 93)
 - lexicon-based alignment models (Gale & Church 91)
- growing interest for syntax-informed models (Wu 00; Yamada & Knight 01; Gildea 03; Lin & Cherry 03)
Syntax and alignment

Debili & Zribi’s hypothesis (96)
- if two words are translations of each other in aligned sentences, then their respective governors and dependents may be translations of each other

ALIBI (Ozdowska, 06)
- rule-based system for English/French
- principle: from two aligned anchor words (AW), the alignment link is projected to syntactically connected words
Introduction

Syntax and alignment

Debili & Zribi's hypothesis (96)

- if two words are translations of each other in aligned sentences, then their respective governors and dependents may be translations of each other

ALIBI (Ozdowska, 06)

- rule-based system for English/French
- principle: from two aligned anchor words (AW), the alignment link is projected to syntactically connected words

\[
\text{The } \underline{\text{Community}} \quad \text{banned} \quad \text{imports of ivory} \\
\quad I \\
\text{La } \underline{\text{Communauté}} \text{ a interdit l’importation d’ivoire}
\]
Syntax and alignment

Debili & Zribi’s hypothesis (96)

- if two words are translations of each other in aligned sentences, then their respective governors and dependents may be translations of each other

ALIBI (Ozdowska, 06)

- rule-based system for English/French
- principle: from two aligned anchor words (AW), the alignment link is projected to syntactically connected words

\[
\begin{align*}
\text{The } & \text{ Community } \text{ banned } \text{ imports of ivory} \\
\text{La } & \text{ Communauté a interdit l’importation d’ivoire}
\end{align*}
\]
Debili & Zribi’s hypothesis (96)

- if two words are translations of each other in aligned sentences, then their respective governors and dependents may be translations of each other.

ALIBI (Ozdowska, 06)

- rule-based system for English/French
- principle: from two aligned anchor words (AW), the alignment link is projected to syntactically connected words.

\[
\begin{array}{c}
\text{The } \underline{\text{Community}} \quad \underline{\text{banned}} \quad \text{imports of ivory} \\
\vdots \\
\text{La } \underline{\text{Communauté}} \quad \underline{\text{a interdit}} \quad \text{l’importation d’ivoire}
\end{array}
\]
Syntax and alignment

Syntactic propagation rules

- key component of the alignment system
- isomorphism (identical syntactic path): V-subj-N / V-subj-N

```
The Community banned imports of ivory
```

```
La Communauté a interdit l’importation d’ivoire
```

Ozdowska, Claveau (ERSS / IRISA)

ILP for alignment
Syntax and alignment

Syntactic propagation rules

- key component of the alignment system
- isomorphism (identical syntactic path): V-subj-N / V-subj-N
- non-isomorphism (compatible pattern): V-obj-N / V-pp+pcomp-N

\[\ldots \text{affects} \quad \text{cell} \quad \text{stability} \]

\[\ldots \text{intervient sur la stabilité des cellules} \]
Syntax and alignment

Syntactic propagation rules

- key component of the alignment system
- isomorphism (identical syntactic path): V-subj-N / V-subj-N
- non-isomorphism (compatible pattern): V-obj-N / V-pp+pcomp-N

Manual-encoding of the rules

- yields good results...
- ... yet defining these propagation rules is an issue
 - necessitate an expert in both languages
 - tedious task to be carried out for any new pair of languages, of parsers...

⇒ machine learning of the propagation rules
Supervised approach

- examples are pairs of words, linked by a syntactic path in both languages

Inductive Logic Programming (ILP)

- highly expressive, symbolic ML technique (Muggleton 95)
 - examples and output in first order logic (Prolog)
- natural way to encode relations and external knowledge
 - eg. translation and syntactic relations with simple predicates:
 \[x \text{ is the subject of } y = \text{subj}(x, y) \]
- outputs human readable rules, making a linguistic analysis possible
Machine learning of alignment rules

Inductive Logic Programming

Theoretical framework of ILP

- infer a set of rules H (Horn clauses)...
- ...from examples E^+ (and possibly counter-examples E^-)
- ...and a Background Knowledge B
- ...such as $B \land H \land E^- \not\models \Box$ and $B \land H \models E^+$

In our case

- H: syntactic propagation rules
- E^+: pairs of AW (no counter-examples)
- B: dependency relations and AW
In practice

- training data
 - aligned sentence

 \[
 \text{private sector companies} / \ les \ entreprises \ du \ secteur \ privé
 \]

 \[
 e_1 \quad e_2 \quad e_3 \quad f_1 \quad f_2 \quad f_3 \quad f_4 \quad f_5
 \]

 - dependency relations and AW in \(B \)

 \[
 \begin{align*}
 \text{adj}(e_2,e_1). & \quad \text{det}(f_2,f_1). & \quad \text{pcomp}(f_3,f_4). & \quad \text{aw}(e_2,f_4). \\
 \text{nn}(e_3,e_2). & \quad \text{pp}(f_2,f_3). & \quad \text{adj}(f_4,f_5). & \quad \text{aw}(e_3,f_2).
 \end{align*}
 \]

- several rules generated for each example, organized in a lattice
 - for ex., align(E,F) :- \(\text{nn}(E,E_2), \text{pp}(F,F_3), \text{pcomp}(F_3,F_4), \text{aw}(E_2,F_4). \)

\[
\begin{array}{cccc}
\ldots & \boxed{E_2} & \ldots & E & \ldots \\
\ldots & F & \ldots & F_3 & \ldots & \boxed{F_4} & \ldots \\
\end{array}
\]

\[
\begin{array}{lll}
\text{nn} & \text{pp} & \text{pcomp}
\end{array}
\]
Machine learning of alignment rules

Search lattice built on one example
- each rule of the lattice is scored wrt the other examples
- the best one is kept in H

align(E,F).

align(E,F) :- nn(E,E1).

align(E,F) :- pcomp(F3,F4), aw(E2,F4).

align(E,F) :- nn(E,E2), pp(F,F3),

align(E,F) :- nn(E,E2), pp(F,F3),
pcomp(F3,F4), aw(E2,F4).

align(E,F) :- adj(E2,E1), det(F,F1), aw(E2,F4), nn(E,E2), pp(F2,F3), aw(E,F), adj(F4,F5), pcomp(F,F4) ...
The whole picture

Alignment algorithm

1. generate the examples: anchoring
 - cognates: string similarity (Fluhr et al. 00)
 - lexicon: simple cooccurrence model (Gale & Church 92)

2. parse the bitext
 - Syntex FR and Syntex EN (Bourigault 07)

3. infer propagation rules with ILP
 - ALEPH implementation (Srinivasan 01)

4. apply the rules to any bitext (after parsing and anchoring)

5. consider found alignments as anchors and goto 4
Experiments

Questions about ILP
- performance for the alignment task?
- interpretability of the inferred rules?

Questions about training data
- influence of the type of the training corpus?
- influence of the size of the training corpus?
Performance evaluation

Evaluation framework

- **training dataset**
 - HANSARD corpus (RALI, Univ. of Montreal)
 - Canadian parliamentary debates
 - 1000 sentences used for the training

- **test set: HLT’03 dataset**
 - 447 sentences from the Hansards (≠ training corpus)
 - sure alignments S (inter-annotator agreement on S) and probable alignments P (multi-word expressions, free translations...)

- evaluation in precision (P), recall (R) and f-measure (F)
Performance evaluation

Results on S alignments from HLT’03 data set

<table>
<thead>
<tr>
<th>System</th>
<th>ALIBI</th>
<th>ILP</th>
<th>Ralign</th>
<th>XRCE</th>
<th>BiBr</th>
<th>ProAlign</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0.89</td>
<td>0.82</td>
<td>0.72</td>
<td>0.55</td>
<td>0.63</td>
<td>0.72</td>
</tr>
<tr>
<td>R</td>
<td>0.67</td>
<td>0.74</td>
<td>0.81</td>
<td>0.93</td>
<td>0.74</td>
<td>0.91</td>
</tr>
<tr>
<td>F</td>
<td>0.76</td>
<td>0.78</td>
<td>0.76</td>
<td>0.69</td>
<td>0.68</td>
<td>0.80</td>
</tr>
</tbody>
</table>

- Performance comparable with existing alignment systems (Mihalcea & Pedersen 03)
 - higher P
 - lower R
Performance evaluation

Cause of errors

Misalignments

- mostly caused by parsing errors
 - adjective *federal* was wrongly attached to *carpenters* leading to the misalignment *carpenter* / *gouvernement* in *federal government carpenters get* $6.42 / *Les menuisiers du gouvernement fédéral touchent* $6.42.

- caused by overgeneralization
 - *gouvernement* and *legislation* are misaligned in the sentence pair: *good legislation has been brought in by Liberal governments* / *les gouvernements libéraux ont apporté de bonnes mesures législatives*.

Non detected alignments

- lack of anchor pairs and of dependency relations
Corpora

- **HANSARD**
- **INRA**
 - Institut National de la Recherche Agronomique
 - research and popular science articles on agronomy
 - \(\sim 300,000 \) word tokens
- **JOC**
 - ARCADE Project (Véronis & Langlais 00)
 - various questions and answers dealt with at the European Commission
 - \(\sim 400,000 \) word tokens
- 1,000 sentences for each corpus used for training (separately)
Performance on HLT’03 test set

<table>
<thead>
<tr>
<th>Training corpus</th>
<th>HANSARD</th>
<th>JOC</th>
<th>INRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>82.08%</td>
<td>80.65%</td>
<td>83.16%</td>
</tr>
<tr>
<td>R</td>
<td>74.09%</td>
<td>74.10%</td>
<td>66.90%</td>
</tr>
<tr>
<td>F</td>
<td>77.88%</td>
<td>77.20%</td>
<td>74.15%</td>
</tr>
</tbody>
</table>

- Little differences with respect to the type of training corpus (except R on INRA)
- F-measure slightly improves if training and test are done on the same type of corpus
Inferred rules

Genericity
- \(\sim 60\) rules learned from each corpus of 1000 sentences
 - 38 rules shared across the three corpora
 - 13 to 21 corpus-specific rules

Comparison with human-generated rules
- all identical rules encoded in ALIBI were inferred
- most of compatible rules encoded in ALIBI were inferred
- new rules not encoded in ALIBI were found
Size of the training corpus

- 300 to 1000 sentences: little variation in P and R
- < 300: P increases and R decreases
- 10 sentences: 70% f-measure
Concluding remarks

About our approach

- fully automatic approach
 - supervised ML approach bootstrapped by the generation of anchors
- yields good performance
- inferred rules give insights on case of isomorphisms and non-isomorphisms between the two languages

No free lunch

- approach chiefly based on syntax
 - makes the most of knowledge embedded in parsers, thus requires few training data
 - dependent on the existence and quality of the parsers
Perspectives

Improvements

- enrich Background knowledge
 - add information like PoS, lemmas...
 - use the score from statistical alignment approaches
- find strategies to deal with partial syntactic analysis
- extension to dependency tree alignment

Application

- portability to different parsers
- portability to different language pairs
Inferring syntactic rules for word alignment through Inductive Logic Programming

Sylwia Ozdowska, Vincent Claveau

CLLE-ERSS - Univ. of Toulouse
Toulouse, France

IRISA-CNRS
Rennes, France

May 19, 2010
Parsers

- **SYNTEX fr** and **SYNTEX en** (Bourigault 07)
 - input: POS tagged sentences (TreeTagger (Schmidt 94))
 - output: dependency relations for each sentence

The composition of the medium affects subsequent cell stability

La composition du milieu intervient sur la stabilité ultérieure des cellules

Both parsers designed according to the same architecture

- Performance: **SYNTEX fr** > **SYNTEX en**
Corpora

- **INRA**
 - Institut National de la Recherche Agronomique
 - research and popular science articles on agronomy
 - $\sim 300 \, 000$ word tokens

- **JOC**
 - ARCADE Project (Véronis & Langlais 00)
 - various questions and answers dealt with at the European Commission
 - $\sim 400 \, 000$ word tokens

- **HANSARD**
 - RALI (University of Montreal)
 - Canadian parliamentary debates
 - $\sim 250 \, 000$ word tokens
Evaluation of overall performance

Method

- Evaluation of precision (P), recall (R) and f-measure (F)
- Cross-corpus evaluation
- Human annotation task
 - 120 test sentences for each corpus
 - annotation guidelines (Melamed 98, Véronis 98)
 - 3 human judges
- Human annotation output for each corpus
 - 60 sentences annotated by 2 persons
 - 60 sentences annotated by 1 person
Human annotation task

Inter-annotator agreement estimation

<table>
<thead>
<tr>
<th></th>
<th>J1J2</th>
<th>J1J3</th>
<th>J2J3</th>
</tr>
</thead>
<tbody>
<tr>
<td>INRA</td>
<td>0.90</td>
<td>0.89</td>
<td>0.88</td>
</tr>
<tr>
<td>JOC</td>
<td>0.87</td>
<td>0.86</td>
<td>0.85</td>
</tr>
<tr>
<td>HANSARD</td>
<td>0.76</td>
<td>0.82</td>
<td>0.72</td>
</tr>
</tbody>
</table>

- Overall agreement between pairs of annotators
- Lower agreement on HANSARD than on INRA and JOC
Human annotation task
Different annotation schemes

- Segmentation level

J1 *The [allis shad]_1 [is considered to be]_2 a vulnerable species*
 La [grande alose]_1 [est considérée comme]_2 une espèce vulnérable

J2 *The allis_1 shad_2 [is considered]_3 [to be]_4 a vulnerable species*
 La grande_1 alose_2 [est considérée]_3 comme_4 une espèce vulnérable
Human annotation task
Different annotation schemes

Segmentation level

J1 The *allis shad*$_1$ *is considered to be*$_2$ a vulnerable species
La *grande alose*$_1$ *est considérée comme*$_2$ une espèce vulnérable

J2 The *allis*$_1$ *shad*$_2$ *is considered*$_3$ *to be*$_4$ a vulnerable species
La *grande*$_1$ *alose*$_2$ *est considérée*$_3$ *comme*$_4$ une espèce vulnérable

NULL alignments

J1 … that there is any change *in the balance of ways and means*$_1$
… avoir apporté le moindre changement *au niveau de l’ensemble*$_1$

J2 … that there is any change *in the balance of ways and means*$_0$
… avoir apporté le moindre changement *au niveau de l’ensemble*$_0$
Human annotation task

Types of correspondences

<table>
<thead>
<tr>
<th></th>
<th>1-1</th>
<th>NULL</th>
<th>chunks</th>
</tr>
</thead>
<tbody>
<tr>
<td>INRA</td>
<td>64%</td>
<td>15%</td>
<td>21%</td>
</tr>
<tr>
<td>JOC</td>
<td>51%</td>
<td>22%</td>
<td>27%</td>
</tr>
<tr>
<td>HANSARD</td>
<td>43%</td>
<td>21%</td>
<td>36%</td>
</tr>
</tbody>
</table>

- **1-1 alignments:** INRA > JOC > HANSARD
- **chunk alignments:** INRA < JOC < HANSARD
Evaluation of overall performance

Results

<table>
<thead>
<tr>
<th></th>
<th>CLA</th>
<th>ALIBI</th>
<th>GIZA++</th>
<th>ALIBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>INRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.96</td>
<td>0.90 (-0.06)</td>
<td>0.95</td>
<td>0.91 (-0.04)</td>
</tr>
<tr>
<td>R</td>
<td>0.45</td>
<td>0.62 (+0.17)</td>
<td>0.66</td>
<td>0.75 (+0.09)</td>
</tr>
<tr>
<td>F</td>
<td>0.61</td>
<td>0.73 (+0.12)</td>
<td>0.78</td>
<td>0.82 (+0.04)</td>
</tr>
<tr>
<td>JOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.96</td>
<td>0.87 (-0.09)</td>
<td>0.93</td>
<td>0.87 (-0.06)</td>
</tr>
<tr>
<td>R</td>
<td>0.43</td>
<td>0.57 (+0.14)</td>
<td>0.58</td>
<td>0.67 (+0.09)</td>
</tr>
<tr>
<td>F</td>
<td>0.60</td>
<td>0.69 (+0.09)</td>
<td>0.71</td>
<td>0.75 (+0.04)</td>
</tr>
<tr>
<td>HANSARD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.95</td>
<td>0.85 (-0.10)</td>
<td>0.89</td>
<td>0.82 (-0.07)</td>
</tr>
<tr>
<td>R</td>
<td>0.28</td>
<td>0.40 (+0.12)</td>
<td>0.43</td>
<td>0.53 (+0.10)</td>
</tr>
<tr>
<td>F</td>
<td>0.43</td>
<td>0.55 (+0.12)</td>
<td>0.58</td>
<td>0.64 (+0.06)</td>
</tr>
</tbody>
</table>
Evaluation of overall performance

Results

<table>
<thead>
<tr>
<th></th>
<th>CLA</th>
<th>ALIBI</th>
<th>GIZA++</th>
<th>ALIBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>INRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.96</td>
<td>0.90 (−0.06)</td>
<td>0.95</td>
<td>0.91 (−0.04)</td>
</tr>
<tr>
<td>R</td>
<td>0.45</td>
<td>0.62 (+0.17)</td>
<td>0.66</td>
<td>0.75 (+0.09)</td>
</tr>
<tr>
<td>F</td>
<td>0.61</td>
<td>0.73 (+0.12)</td>
<td>0.78</td>
<td>0.82 (+0.04)</td>
</tr>
<tr>
<td>JOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.96</td>
<td>0.87 (−0.09)</td>
<td>0.93</td>
<td>0.87 (−0.06)</td>
</tr>
<tr>
<td>R</td>
<td>0.43</td>
<td>0.57 (+0.14)</td>
<td>0.58</td>
<td>0.67 (+0.09)</td>
</tr>
<tr>
<td>F</td>
<td>0.60</td>
<td>0.69 (+0.09)</td>
<td>0.71</td>
<td>0.75 (+0.04)</td>
</tr>
<tr>
<td>HANSARD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.95</td>
<td>0.85 (−0.10)</td>
<td>0.89</td>
<td>0.82 (−0.07)</td>
</tr>
<tr>
<td>R</td>
<td>0.28</td>
<td>0.40 (+0.12)</td>
<td>0.43</td>
<td>0.53 (+0.10)</td>
</tr>
<tr>
<td>F</td>
<td>0.43</td>
<td>0.55 (+0.12)</td>
<td>0.58</td>
<td>0.64 (+0.06)</td>
</tr>
</tbody>
</table>
Evaluation of overall performance

Results

<table>
<thead>
<tr>
<th></th>
<th>CLA</th>
<th>ALIBI</th>
<th>GIZA++</th>
<th>ALIBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>INRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.96</td>
<td>0.90 (−0.06)</td>
<td>0.95</td>
<td>0.91 (−0.04)</td>
</tr>
<tr>
<td>R</td>
<td>0.45</td>
<td>0.62 (+0.17)</td>
<td>0.66</td>
<td>0.75 (+0.09)</td>
</tr>
<tr>
<td>F</td>
<td>0.61</td>
<td>0.73 (+0.12)</td>
<td>0.78</td>
<td>0.82 (+0.04)</td>
</tr>
<tr>
<td>JOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.96</td>
<td>0.87 (−0.09)</td>
<td>0.93</td>
<td>0.87 (−0.06)</td>
</tr>
<tr>
<td>R</td>
<td>0.43</td>
<td>0.57 (+0.14)</td>
<td>0.58</td>
<td>0.67 (+0.09)</td>
</tr>
<tr>
<td>F</td>
<td>0.60</td>
<td>0.69 (+0.09)</td>
<td>0.71</td>
<td>0.75 (+0.04)</td>
</tr>
<tr>
<td>HANSARD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.95</td>
<td>0.85 (−0.10)</td>
<td>0.89</td>
<td>0.82 (−0.07)</td>
</tr>
<tr>
<td>R</td>
<td>0.28</td>
<td>0.40 (+0.12)</td>
<td>0.43</td>
<td>0.53 (+0.10)</td>
</tr>
<tr>
<td>F</td>
<td>0.43</td>
<td>0.55 (+0.12)</td>
<td>0.58</td>
<td>0.64 (+0.06)</td>
</tr>
</tbody>
</table>
Evaluation of overall performance

Results

<table>
<thead>
<tr>
<th></th>
<th>CLA</th>
<th>ALIBI</th>
<th>GIZA++</th>
<th>ALIBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>INRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.96</td>
<td>0.90 (−0.06)</td>
<td>0.95</td>
<td>0.91 (−0.04)</td>
</tr>
<tr>
<td>R</td>
<td>0.45</td>
<td>0.62 (+0.17)</td>
<td>0.66</td>
<td>0.75 (+0.09)</td>
</tr>
<tr>
<td>F</td>
<td>0.61</td>
<td>0.73 (+0.12)</td>
<td>0.78</td>
<td>0.82 (+0.04)</td>
</tr>
<tr>
<td>JOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.96</td>
<td>0.87 (−0.09)</td>
<td>0.93</td>
<td>0.87 (−0.06)</td>
</tr>
<tr>
<td>R</td>
<td>0.43</td>
<td>0.57 (+0.14)</td>
<td>0.58</td>
<td>0.67 (+0.09)</td>
</tr>
<tr>
<td>F</td>
<td>0.60</td>
<td>0.69 (+0.09)</td>
<td>0.71</td>
<td>0.75 (+0.04)</td>
</tr>
<tr>
<td>HANSARD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.95</td>
<td>0.85 (−0.10)</td>
<td>0.89</td>
<td>0.82 (−0.07)</td>
</tr>
<tr>
<td>R</td>
<td>0.28</td>
<td>0.40 (+0.12)</td>
<td>0.43</td>
<td>0.53 (+0.10)</td>
</tr>
<tr>
<td>F</td>
<td>0.43</td>
<td>0.55 (+0.12)</td>
<td>0.58</td>
<td>0.64 (+0.06)</td>
</tr>
</tbody>
</table>
Evaluation of overall performance

Results

<table>
<thead>
<tr>
<th></th>
<th>CLA</th>
<th>ALIBI</th>
<th>GIZA++</th>
<th>ALIBI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INRA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.96</td>
<td>0.90 (−0.06)</td>
<td>0.95</td>
<td>0.91 (−0.04)</td>
</tr>
<tr>
<td>R</td>
<td>0.45</td>
<td>0.62 (+0.17)</td>
<td>0.66</td>
<td>0.75 (+0.09)</td>
</tr>
<tr>
<td>F</td>
<td>0.61</td>
<td>0.73 (+0.12)</td>
<td>0.78</td>
<td>0.82 (+0.04)</td>
</tr>
<tr>
<td></td>
<td>JOC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.96</td>
<td>0.87 (−0.09)</td>
<td>0.93</td>
<td>0.87 (−0.06)</td>
</tr>
<tr>
<td>R</td>
<td>0.43</td>
<td>0.57 (+0.14)</td>
<td>0.58</td>
<td>0.67 (+0.09)</td>
</tr>
<tr>
<td>F</td>
<td>0.60</td>
<td>0.69 (+0.09)</td>
<td>0.71</td>
<td>0.75 (+0.04)</td>
</tr>
<tr>
<td></td>
<td>HANSARD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.95</td>
<td>0.85 (−0.10)</td>
<td>0.89</td>
<td>0.82 (−0.07)</td>
</tr>
<tr>
<td>R</td>
<td>0.28</td>
<td>0.40 (+0.12)</td>
<td>0.43</td>
<td>0.53 (+0.10)</td>
</tr>
<tr>
<td>F</td>
<td>0.43</td>
<td>0.55 (+0.12)</td>
<td>0.58</td>
<td>0.64 (+0.06)</td>
</tr>
</tbody>
</table>
Evaluation of overall performances

Results

<table>
<thead>
<tr>
<th></th>
<th>CLA</th>
<th>ALIBI</th>
<th>GIZA++</th>
<th>ALIBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>INRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.96</td>
<td>0.90 (−0.06)</td>
<td>0.95</td>
<td>0.91 (−0.04)</td>
</tr>
<tr>
<td>R</td>
<td>0.45</td>
<td>0.62 (+0.17)</td>
<td>0.66</td>
<td>0.75 (+0.09)</td>
</tr>
<tr>
<td>F</td>
<td>0.61</td>
<td>0.73 (+0.12)</td>
<td>0.78</td>
<td>0.82 (+0.04)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CLA</th>
<th>ALIBI</th>
<th>GIZA++</th>
<th>ALIBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.96</td>
<td>0.87 (−0.09)</td>
<td>0.93</td>
<td>0.87 (−0.06)</td>
</tr>
<tr>
<td>R</td>
<td>0.43</td>
<td>0.57 (+0.14)</td>
<td>0.58</td>
<td>0.67 (+0.09)</td>
</tr>
<tr>
<td>F</td>
<td>0.60</td>
<td>0.69 (+0.09)</td>
<td>0.71</td>
<td>0.75 (+0.04)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CLA</th>
<th>ALIBI</th>
<th>GIZA++</th>
<th>ALIBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>HANSARD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.95</td>
<td>0.85 (−0.10)</td>
<td>0.89</td>
<td>0.82 (−0.07)</td>
</tr>
<tr>
<td>R</td>
<td>0.28</td>
<td>0.40 (+0.12)</td>
<td>0.43</td>
<td>0.53 (+0.10)</td>
</tr>
<tr>
<td>F</td>
<td>0.43</td>
<td>0.55 (+0.12)</td>
<td>0.58</td>
<td>0.64 (+0.06)</td>
</tr>
</tbody>
</table>
Evaluation of overall performances

Results

<table>
<thead>
<tr>
<th></th>
<th>CLA</th>
<th>ALIBI</th>
<th>GIZA++</th>
<th>ALIBI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.96</td>
<td>0.90 (-0.06)</td>
<td>0.95</td>
<td>0.91 (-0.04)</td>
</tr>
<tr>
<td>R</td>
<td>0.45</td>
<td>0.62 (+0.17)</td>
<td>0.66</td>
<td>0.75 (+0.09)</td>
</tr>
<tr>
<td>F</td>
<td>0.61</td>
<td>0.73 (+0.12)</td>
<td>0.78</td>
<td>0.82 (+0.04)</td>
</tr>
<tr>
<td>JOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.96</td>
<td>0.87 (-0.09)</td>
<td>0.93</td>
<td>0.87 (-0.06)</td>
</tr>
<tr>
<td>R</td>
<td>0.43</td>
<td>0.57 (+0.14)</td>
<td>0.58</td>
<td>0.67 (+0.09)</td>
</tr>
<tr>
<td>F</td>
<td>0.60</td>
<td>0.69 (+0.09)</td>
<td>0.71</td>
<td>0.75 (+0.04)</td>
</tr>
<tr>
<td>HANSARD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.95</td>
<td>0.85 (-0.10)</td>
<td>0.89</td>
<td>0.82 (-0.07)</td>
</tr>
<tr>
<td>R</td>
<td>0.28</td>
<td>0.40 (+0.12)</td>
<td>0.43</td>
<td>0.53 (+0.10)</td>
</tr>
<tr>
<td>F</td>
<td>0.43</td>
<td>0.55 (+0.12)</td>
<td>0.58</td>
<td>0.64 (+0.06)</td>
</tr>
</tbody>
</table>
Evaluation of overall performances

To sum up

- F-measure increased over baselines
- Best strategy: ALIBI bootstrapped with GIZA++
- Much higher performances on INRA than on JOC and HANSARD
 - INRA: $F = 0.82$
 - JOC: $F = 0.75$
 - HANSARD: $F = 0.64$
- HANSARD
 - inter-annotator agreement −−
 - chunk alignments ++
 - performances −−