Data-Driven and Ontological Analysis of FrameNet for Natural Language Reasoning

Ekaterina Ovchinnikova¹, Laure Vieu^{2,3}, Alessandro Oltramari², Stefano Borgo², Theodore Alexandrov⁴

¹University of Osnabrück, ²LOA-ISTC-CNR Trento, ³IRIT-CNRS Toulouse, ⁴University of Bremen

May, 20th - LREC, Valetta

Introduction

Lexical-semantic knowledge for reasoning

- WordNet [Morato et al., 2004]
 - search
 - information extraction
 - ...

FrameNet

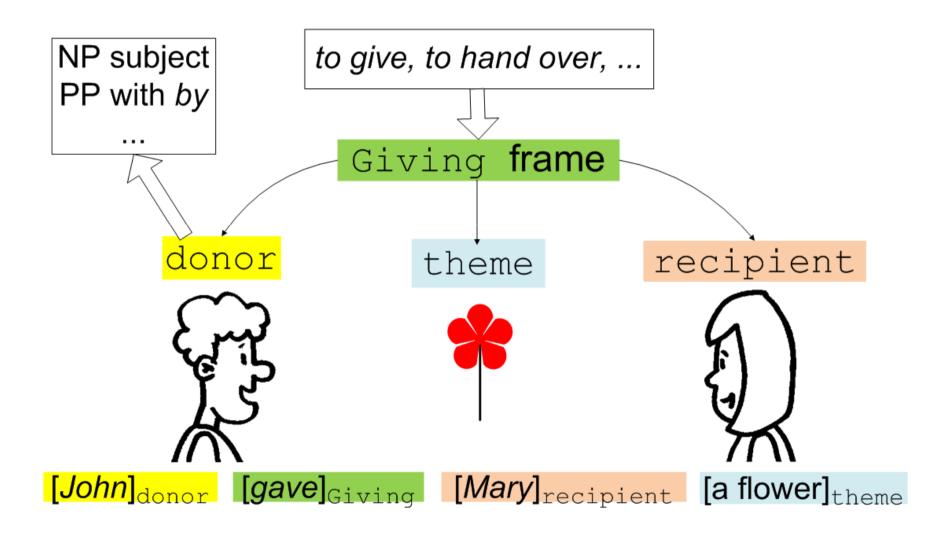
- question answering [Shen and Lapata, 2007]
- recognizing textual entailment [*Burchardt et al., 2009*]
- ...

Introduction

Shortcomings of FrameNet with regard to NL reasoning

- Iow coverage [Shen and Lapata, 2007; Cao et al., 2008]
- conceptual inconsistency and lack of axiomatization

Our focus


methodology for improving the conceptual structure of FrameNet for the goals of NL reasoning

- 1. FrameNet for Reasoning
- 2. Proposed Methodology
- 3. Conceptual Problems
- 4. Data-Driven Analysis
- 5. Ontological Analysis
- 6. Case Study
- 7. Conclusion

1. FrameNet for Reasoning

- 2. Proposed Methodology
- 3. Conceptual Problems
- 4. Data-Driven Analysis
- 5. Ontological Analysis
- 6. Case Study
- 7. Conclusion

FrameNet for reasoning

(a) $[John]_{DONOR}$ $[gave]_{Giving}$ $[Mary]_{RECIPIENT}$ $[a flower]_{THEME}$

(b) $[Mary]_{\text{RECIPIENT}} [got]_{\text{Getting}} [a flower]_{\text{THEME}} [from John]_{\text{SOURCE}}$

Giving	causes	Getting	
DONOR			
RECIPIENT -			
THEME		> THEME	

Frame relations

- 1. Inheritance: 441
 - Vehicle Arfitact, Motion_directional Motion
- 2. Precedence: 55
 - Being_awake Fall_asleep
- 3. Perspective: 43
 - Buy, Sell Goods_transfer
- 4. Causation: 49
 - Giving Getting
- 5. Subframe: 87
 - Trial, Sentencing Criminal_process
- 6. Using: 426
 - Recovery Medical_conditions
- 7. See_also: 669
 - Scrunity Seeking

Research goals

- 1. Axiomatizing frame relations
- 2. Finding missing frame relations
- 3. Cleaning up frame relations
- 4. Applying frame relations to NL reasoning

- 1. FrameNet for Reasoning
- 2. Proposed Methodology
- 3. Conceptual Problems
- 4. Data-Driven Analysis
- 5. Ontological Analysis
- 6. Case Study
- 7. Conclusion

Proposed improvement methodology

- Conceptual problems in FrameNet : Frame-Annotated Corpus for Textual Entailment (FATE)
- 2. Clustering frames
- 3. Ontological analysis of frames and frame relations
 - axiomatizing frame relations
 - constraints on frame relations
- 4. Evaluation: enriched, axiomatized and cleaned up frame relations in RTE

- 1. FrameNet for Reasoning
- 2. Proposed Methodology
- 3. Conceptual Problems
- 4. Data-Driven Analysis
- 5. Ontological Analysis
- 6. Case Study
- 7. Conclusion

Frame-Annotated Corpus for Textual Entailment

FATE [Burchardt & Pennacchiotti, 2008]

- 800 T-H entailment pairs annotated with FrameNet frames and roles
- we have analized cases when *T* was known to entail *H* (400 pairs) applying a frame matching strategy

FATE analysis results

- 170 pairs: matching is possible
- 131 pairs: this approach does not work
 - annotation disagreements
 - different conceptualizations of T and H
- 99 pairs: the same facts in T and H are represented by different frames which are related semantically and could be mapped on each other with the help of reasoning
 - FrameNet enables inferences only for **17** pairs

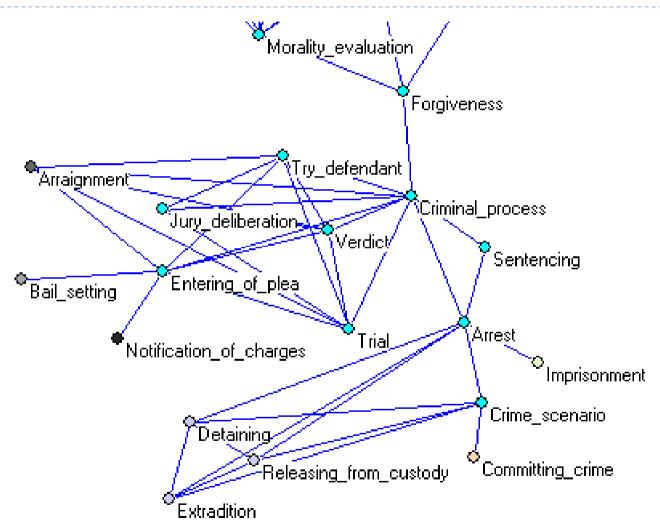
Discovered problems

- 1. missing relations
 - (t) ...X [survived]_{Surviving} Sars...
 (h) ...X [recovered]_{Recovery} from Sars...
- 2. problems in the relational structure $...[parts]_{Part_whole} [of Aceh province]_{WHOLE}...$ Part_whole \rightarrow Part_piece, WHOLE \rightarrow SUBSTANCE
- 3. missing axiomatization of the relations
 (t) ...X [recovered]_{Recovery} from Sars...
 (h) ...X [was ill]_{Medical_conditions}...
 Recovery uses Medical_conditions

- 1. FrameNet for Reasoning
- 2. Proposed Methodology
- 3. Conceptual Problems
- 4. Data-Driven Analysis
- 5. Ontological Analysis
- 6. Case Study
- 7. Conclusion

Clustering frames

For every two frames *f*¹ and *f*² we apply similarity measures based on [*Pennacchiotti* & *Wirdth*, *2009*] :


- 1. overlapping frame elements in f_1 and f_2
- co-occurrence of lexemes evoking *f*¹ and *f*² in corpora (pmi)

Clustering results

- 1. Clusters based on overlapping frame elements
 - 228 clusters in total
 - 1497 relations not contained in FrameNet
 - 73 clusters from 100 random contain semantically related frames (2 experts, agreement 0.85)
- 2. Clusters based on co-occurence of lexemes evoking frames
 - 113 clusters in total
 - 1149 relations not contained in FrameNet
 - 65 clusters from 100 random contain semantically related frames (2 experts, agreement 0.85)

Frame clusters: visualization

- 1. FrameNet for Reasoning
- 2. Proposed Methodology
- 3. Conceptual Problems
- 4. Data-Driven Analysis
- 5. Ontological Analysis
- 6. Case Study
- 7. Conclusion

What do frames describe?

- Frames abstract from natural language expressions (predicates with their arguments)
- Natural language expressions describe situations
- Frames can be seen as abstractions from situations

Types of situations

From which types of situations do frames abstract?

 categories from the DOLCE ontology [Masolo et al., 2002] for describing types of situations

Types of situations:

- 1. "Event" situation
 - e.g. Motion (John is running in the park)
- 2. "Object" situation
 - e.g. **People** (A man)
- 3. "Quality" situation
 - e.g. **Color** (*This rose is red*)
- 4. "Relation" situation
 - e.g. **Part_whole** (*This park is a part of the town*)

Situations and time

- 1. Situations having temporal qualities
 - John is running in the park, a clerk, This rose is red, John is next to Mary
 - can participate in temporal relations (*precedence, temporal inclusion* etc.)
- 2. Non-temporal situations
 - A man, The war lasted four years, Einstein's birth preceded my birth
 - cannot participate in temporal relation

Causation: f_1 is causative of f_2

 $\forall \mathsf{s}_1(f_1(\mathsf{s}_1) \rightarrow \exists \mathsf{s}_2(f_2(\mathsf{s}_2) \land causes(\mathsf{s}_1, \mathsf{s}_2)))$

 $\forall s_1 s_2 (causes(s_1, s_2) \rightarrow \neg starts_before(s_2, s_1)))$

Subframe: f_1 is subframe of f_2

1. Subframe of "Events"

 $\forall s_1 s_2(sub_ev(s_1, s_2) \rightarrow (strict_temp_inc(s_2, s_1) \land spatially_inc(s_2, s_1)))$

- part presupposes whole $\forall s_1(f_1(s_1) \rightarrow \exists s_2(f_2(s_2) \land sub_ev(s_1,s_2)))$
- whole presupposes part $\forall s_2 (f_2(s_2) \rightarrow \exists s_1 (f_1(s_1) \land sub_ev(s_1, s_2)))$
- 2. Subframe of "Objects"
 - part presupposes whole

 $\forall s_1 en_1(f_1(s_1) \land FE_1(s_1, en_1) \rightarrow \exists s_2 en_2(f_2(s_2) \land FE_2(s_2, en_2) \land part_of(en_1, en_2)))$

whole presupposes part

 $\forall s_2 en_2(f_2(s_2) \land FE_2(s_2, en_2) \rightarrow \exists s_1 en_1(f_1(s_1) \land FE_1(s_1, en_1) \land part_of(en_1, en_2)))$

Using and See_also

- the most frequent relations in FN
- sometimes can be represented in terms of other axiomatized relations
- otherwise

$$\forall \mathsf{s}_1(f_1(\mathsf{s}_1) \to \exists \mathsf{s}_2(f_2(\mathsf{s}_2) \land depends(\mathsf{s}_1, \mathsf{s}_2)))$$

often represent typical rather than necessary
dependence (e.g. Medical_professionals-Cure)

Mapping frame elements

If f_1 is related to f_2 with a relation in FN then

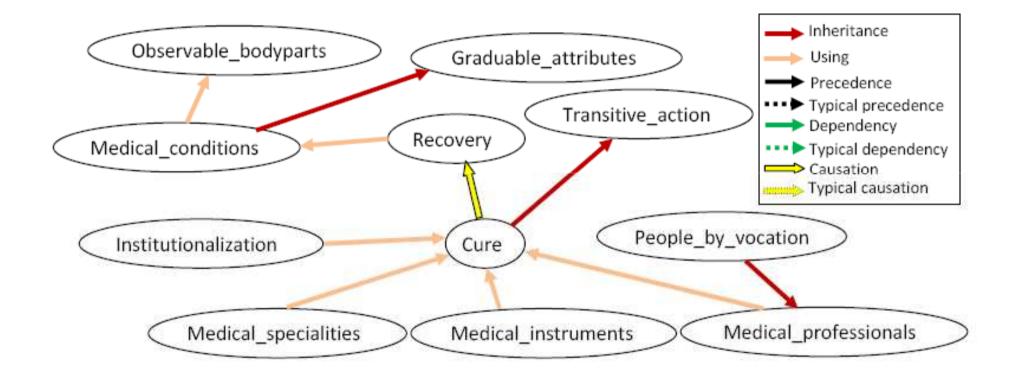
 $\forall \mathsf{s}_1 \mathsf{s}_2 ((f_1(\mathsf{s}_1) \land f_2(\mathsf{s}_2)) \rightarrow (\mathit{rel}(\mathsf{s}_1, \mathsf{s}_2) \leftrightarrow \forall \mathsf{x} (\mathsf{FE}_1(\mathsf{x}, \mathsf{s}_1) \leftrightarrow \mathsf{FE}_2(\mathsf{x}, \mathsf{s}_2))),$

where FE_1 in f_1 is mapped to FE_2 in f_2 .

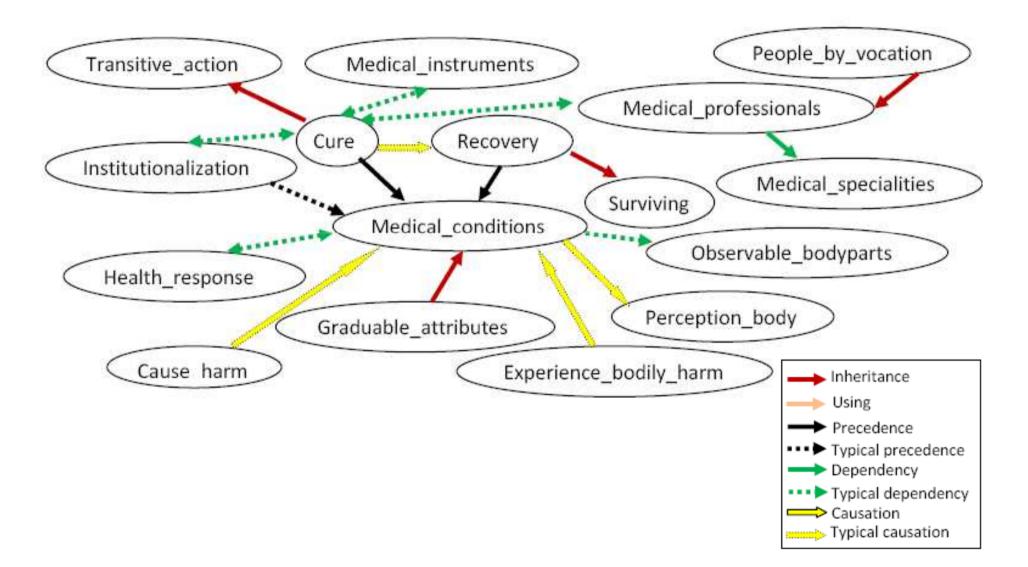
Example

 $\forall s_1(Giving(s_1) \rightarrow \exists s_2(Getting(s_2) \land causes(s_1, s_2)))$

 $\forall s_1 s_2 ((Giving(s_1) \land Getting(s_2)) \rightarrow (causes(s_1, s_2) \leftrightarrow \forall x (donor(x, s_1) \leftrightarrow source(x, s_2)))$


Cleaning up constraints

Given frames f_1 and f_2 connected with a relation r


- 1. define the types of situations that instantiate f_1 and f_2
- 2. if r is a temporal relation, make sure that both f_1 and f_2 refer to "temporal" situations
- 3. define whether *r* has a typical or a necessary character
- 4. check whether the frame relation axioms apply to all instantiations of f_1 and f_2

- 1. FrameNet for Reasoning
- 2. Proposed Methodology
- 3. Conceptual Problems in FrameNet
- 4. Data-Driven Analysis of FrameNet
- 5. Ontological Analysis of FrameNet
- 6. Case Study
- 7. Conclusion

Case Study: "medical cluster"

Enriched and cleaned up "medical" cluster

"Medical" cluster in RTE

- 39 T-H entailment pairs (18 true entailments) annotated in FATE with "medical" frames
- TE computed by the Nutcracker system [Bos&Markert, 2006]

	NFA	FA	FA&A	FA&CA
Correct proofs	1	4	7	10
Wrong proofs	1	1	1	1
Overall accuracy	0.56	0.5	0.61	0.78

Problems:

- Incompleteness of the FATE annotation: 8
- Nutcracker processing errors: 5
- Lack of general non-definitional knowledge: 7

- 1. FrameNet for Reasoning
- 2. Proposed Methodology
- 3. Conceptual Problems in FrameNet
- 4. Data-Driven Analysis of FrameNet
- 5. Ontological Analysis of FrameNet
- 6. Case Study
- 7. Conclusion

Conclusion

- 1. Presented
 - i. Conceptual problems in FN
 - ii. Methodology for improvement
 - data-driven analysis
 - ontological analysis
 - iii. Case study
- 2. Lessons learned
 - I. Many usefull relations can be aquired automatically
 - II. Axiomatization helps
 - III. RTE is still a difficult task
 - difficult to create an appropriate annotation
 - difficult to provide necessary knowledge
 - difficult to find a proof

Ongoing and future work

1. Automatic relation extraction

- automatic mapping of frame roles
- detecting type of the relation
- 2. Ontological analysis
 - applying OntoClean to FN hierachy of frames and roles
- 3. FrameNet in RTE
 - > applying frame relations to a full RTE set
 - using frame similarity measures for weighting axioms
 - using probabalistic reasoning

Thank you! Any questions?