Evaluating Machine Translation Utility
via Semantic Role Labels

Chi-kiu Lo
jackielo@cs.ust.hk

Dekai Wu
dekai@cs.ust.hk

HKUST
Human Language Technology Center
Department of Computer Science and Engineering
University of Science and Technology, Hong Kong
Q. What makes a translation good?

- **Our utility perspective:**
 - A translation is accurate if it is **useful**

- Can you accurately understand “who did what to whom, when, where and why” after reading the translation?

- Not measured by current MT evaluation metrics
 - ... which tend to reward fluency more than adequacy
Recent trends toward **Semantic SMT**

- **WSD for SMT**
 - Carpuat & Wu (2007, 2008)
 - Giménez & Màrquez (2007)
 - Chan *et al.* (2007)

- **SRL for SMT**
 - Wu & Fung (2009)

- Translation quality improves more than reflected by current MT evaluation metrics!
- Are BLEU, HTER the wrong objective function to drive this type of work?
Toward **Semantic MT Evaluation**

- **Hypothesis:**
 - MT *utility* can best be evaluated via semantic role labeling

- **We aim to measure:**
 - How accurately can readers of MT output reconstruct the semantic frames of the source sentences and/or reference translations?

- **Should reflect** translation utility **better than:**
 - automated n-gram precision based MT evaluation metrics, like BLEU
 - non-automated MT evaluation metrics like HTER
Example: a lower-utility translation
Fewer SRL matches, but more N-gram matches!

REF Kerry, **arrived** in Cairo with [President Mubarak] **engaged** in active discussions on such topics as Iraq, Lebanon, and Darfur, Sudan as well as bilateral relations.

MT Kerry, who **arrived** in Cairo with [President Mubarak] **on Iraq, Lebanon, Sudan’s Darfur issue and active consultations on bilateral relations and other issues**]

1-gram matches: 13
2-gram matches: 7
3-gram matches: 4
4-gram matches: 3
5-gram matches: 2
6-gram matches: 1
Example: a higher-utility translation
More SRL matches, but fewer N-gram matches!

REF Kerry, **arrived** in Cairo with [President Mubarak] **engaged** in active discussions on such topics as Iraq, Lebanon, and Darfur, Sudan as well as bilateral relations.

MT Kerry, who **arrived** in Cairo **active** **consultations** with [President Mubarak] **on** Iraq, Lebanon, Sudan’s Darfur issue and on **bilateral relations and other issues**

1-gram matches: 13
2-gram matches: 6
3-gram matches: 2
4-gram matches: 0
5-gram matches: 0
6-gram matches: 0
Corpus

- Data drawn from DARPA GALE program Phase 2.5 evaluation
 - Parallel corpus of source sentences and reference translations
 - Annotated with gold standard semantic role labels in Propbank style
 - 3 state-of-the-art MT systems’ outputs
Annotation protocol

- Human annotators are given simple, minimal instructions and examples on what they should label
 - “who did what to whom, when, where and why”

<table>
<thead>
<tr>
<th>Agent (who)</th>
<th>Action (did)</th>
<th>Experiencer (what)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient (whom)</td>
<td>Temporal (when)</td>
<td>Location (where)</td>
</tr>
<tr>
<td>Purpose (why)</td>
<td>Manner (how)</td>
<td>Degree or Extent (how)</td>
</tr>
<tr>
<td>Other adverbial argument (how)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Aim: capture the key semantic roles
“Sanity check” experiments

- Normal condition
 - Output = annotators see English translations only
 - Two sub-variants:
 - Annotators are English monolinguals
 - Annotators are bilinguals (controls for the degree to which MT users can “guess” based on knowledge of source language)

- Control conditions
 - Input = annotators see foreign source sentences only
 - Input-output = annotators see English translations plus foreign source sentences
 - Annotators must be bilinguals
 - Provides baselines for comparison with the normal conditions
More “sanity check” experiments

- Control conditions
 - Annotators see reference translations (not MT)
 - under **Output** condition (without the source sentence)?
 - under **Input-Output** condition (with source sentence)?
 - Provides baselines for comparing how well humans can reconstruct semantic frames from machine translations instead
How annotators are assigned sentences

[Note: a sentence may be either a source sentence, machine translation, or reference translation]

- Each sentence is annotated by at least two human annotators
 - Helps reduce the effect of personal bias

- Each human annotator annotates only one sentence from any source-MT-reference set
 - Avoids contamination in annotators’ judgments
How partially correct reconstructions of a semantic frame can be counted

- For each predicate in the source or reference
 - find the matching predicate in the annotated sentence
- For each argument in a matched predicate
 - **Correct** = expresses the exact same content as that in the source or reference
 - **Incorrect** = expresses content that belongs in other arguments
 - **Partial** = expresses part of the correct content
 - note: extra correct content is not penalized, unless it belongs in other arguments
- Facilitates a finer-grained measurement of utility

The relative utility of MT against human translation can then be measured via precision/recall as follows...
Example: a lower-utility translation
Fewer SRL matches, but more N-gram matches!

REF: Kerry, arrived in Cairo with [President Mubarak] engaged in active discussions on such topics as Iraq, Lebanon, and Darfur, Sudan as well as bilateral relations.

MT: Kerry, who arrived in Cairo with [President Mubarak] on Iraq, Lebanon, Sudan's Darfur issue and active consultations on bilateral relations and other issues]

matched predicates 1 (arrived)
Correct arguments 2 (Kerry, in Cairo)
Incorrect arguments 2 (the two ARGM)
total # predicates in MT 2
total # predicates in reference 2
Example: a higher-utility translation
More SRL matches, but fewer N-gram matches!

REF Kerry, **arrived** in Cairo with [President Mubarak] **engaged** in active discussions on such topics as Iraq, Lebanon, and Darfur, Sudan as well as bilateral relations.

MT Kerry, who **arrived** in Cairo active **consultations** with [President Mubarak] on Iraq, Lebanon, Sudan’s Darfur issue and on bilateral relations and other issues

<table>
<thead>
<tr>
<th># matched predicates</th>
<th>1 (arrived)</th>
</tr>
</thead>
<tbody>
<tr>
<td># Correct arguments</td>
<td>2 (Kerry, in Cairo)</td>
</tr>
<tr>
<td># Incorrect arguments</td>
<td>0</td>
</tr>
<tr>
<td>total # predicates in MT</td>
<td>2</td>
</tr>
<tr>
<td>total # predicates in reference</td>
<td>2</td>
</tr>
</tbody>
</table>
What do the measurements mean?

- Counts of **Correct**, **Partial** and all arguments associated with a matched predicate

 \[
 N_{ci} = \text{no. of Correct ARG of PRED i in MT}
 \]

 \[
 N_{pi} = \text{no. of Partial ARG of PRED i in MT}
 \]

 \[
 N_i = \text{total no. of ARG of PRED i in MT}
 \]

- Sum of **Correct**, **Partial** predicate-argument structures in a sentence level

 \[
 N_c = \sum_{\text{all matched predicates}} \frac{N_{ci}}{N_i}
 \]

 \[
 N_p = \sum_{\text{all matched predicates}} \frac{N_{pi}}{N_i}
 \]
What do the measurements mean?

- Sentence-level precision-recall accuracy of predicate-argument structure

\[
P = \frac{N_c + (0.5 \times N_p)}{\text{total no. of predicates in reference}}
\]

\[
R = \frac{N_c + (0.5 \times N_p)}{\text{total no. of predicates in MT output}}
\]

\[
F = \text{measure} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}
\]
Example: a lower-utility translation
Fewer SRL matches, but more N-gram matches!

\[N_c = \frac{2}{4} = 0.5 \]
\[P = \frac{0.5}{2} = 0.25 \]
\[R = \frac{0.5}{2} = 0.25 \]
\[F\text{-measure} = 0.25 \]
Example: a higher-utility translation
More SRL matches, but fewer N-gram matches!

REF: Kerry, arrived in Cairo with [President Mubarak] engaged in active discussions on such topics as Iraq, Lebanon, and Darfur, Sudan as well as bilateral relations.

MT: Kerry, who arrived in Cairo active consultations with [President Mubarak] on Iraq, Lebanon, Sudan’s Darfur issue and on bilateral relations and other issues

\[N_c = 2/2 = 1 \]
\[P = 1/2 = 0.5 \]
\[R = 1/2 = 0.5 \]
\[F\text{-measure} = 0.5 \]
A new semantic MT evaluation methodology
- Aims at evaluating translation utility
- Measures the accuracy with which users of MT can correctly reconstruct the semantic frames

In progress
- Human evaluators currently annotating semantic frames in Chinese-English MT data from GALE P2.5