FrAG A Hybrid CG Parser for French

Eckhard Bick University of Southern Denmark eckhard.bick@mail.dk

Outline

- Background: Research environment and data
- The FrAG parser and its modules
- Annotation scheme
- Evaluation
- > Dependency vs. PSG issues
- Applications, corpus work
- Outlook

Background

- VISL project at University of SoutherDenmark:
 CALL grammar for 25 languages
 French parser project active esp. 2003-04, 2009
- CorpusEye: Corpus annotation project for ~ half of those languages, CG and treebanks
- Deep (= full tree) parsers to support this
- Open Source Constraint Grammer compiler (CG3 by GrammarSoft ApS)
- General Language Technology Perspective: MT, Grammar checking, NER

Dual Hybridity

Format hybridity: 3 parallel, but not wholly information-equivalent, output formats

- (a) word based functional dependency tags (CG)
- (**b**) VISL-style constituent trees

(c) Other treebank schemes: PENN-treebank, TIGER, dependency trees with all formats sharing tags for syntactic function and morphological form.

Hybrid parsing/annotation process:

1.) Probabilistic Decision Tree Tagger (A. Schmid & H. Stein)

- 1 --> **2.)** Morphological analysis
- 2 --> **3.) lexicon and rule driven morphosyntactic analysis (CG)**
- 3 --> 4.) shallow dependency parsing (CG)
- 4 --> **5.a**) function based constituent analysis (PSG)
- 4 --> **5.b**) full dependency (separate grammar or CG3)

FrAG Modules

Decision Tree Tagger (Schmid 1994): probabilistic PoS tagging

Constraint grammars: rule & context based;

morphology, syntax, attachment, clause boundaries (e.g 1.560 French rules, of these 167 correction and 270 attachment/dependency rules)

Rule compilers: vislcg3 (GrammarSoft open source) Lexica: inflexion, valency, polylexicals, names etc.

- 65.470 lexemes:
- 6.200 verbs with valency patterns,
- 17.860 nouns with semantic prototype information, e.g. <Hprof>, <tool>)

Secondary programs: format filters, VISL's graphical tree manipulator, corpus search tools, linux editors, ...

Tokenisation

Fusion:

- polylexical prepositions, conjunctions, adverbs qu'est-ce_que, tout_à_fait
- Name chains *Charles_de_Gaulle*

Splitting:

- prp+art: du, des (disambiguated from partitive/art), au, aux
- Apostrophe: *n*'*a*, *c*'*est*

Punctuation: Used as context, sentence delimiters and parentheses as "word tokens"

Dependency, form and function

CG-level: Each text token is assigned

a <u>function</u> tag (subject, auxiliary, ...) and a <u>form</u> tag (PoS, clause type, ...)

a directed shallow CG-dependency, pointing to a head-category explicitly (@>N prenominal) or implicitly (@<SUBJ subject right of verb).

Full dependency:

number markers for full dependency (e.g. #5 = dependent of word 5) computed from

shallow CG-dependency

uniqueness principle

special secondary attachment tags (close, long, coordination)

PSG-level with constituent trees:

adds clause and group boundaries adds explicit discontinuity and raising creates head-function (H) retains group-specific dependency-functions (e.g. DN for nominal groups).

30 major syntactic functions

Table 1: Syntactic functions

@SUBJ	subject	@CO	coordinator
@ACC	direct (accusative) object	@SUB	subordinator
@DAT	indirect (dative) object	@APP	apposition
@PIV	prepositional object	@>N	prenominal dependent
@SC	subject complement	@N<	postnominal dependent
<u>@</u> OC	object complement	@N <pred< td=""><td>predicating postnominal</td></pred<>	predicating postnominal
@SA	subject related argument	<i>@</i> >A	adverbial pre-dependent
	adverbial		
<u>@</u> OA	object related argument	@A<	adverbial post-
	adverbial		dependent
@MV	main verb	@P<	argument of preposition
@AUX	auxiliary	@>>P	raised/fronted @P<
@ADVL	adverbial adjunct	@INFM	infinitive marker
@AUX<	argument of auxiliary	@VOK	vocative
@PRED	predicative adjunct	@FOC	focus marker

Valency potential the lexical key to syntax

Valency lexicon: valency potential for verbs and nouns <vt> <vdt> <ve> <på^vp> <vq> <vi-ud> <xt>, <+INF> <+på> <+num> ...

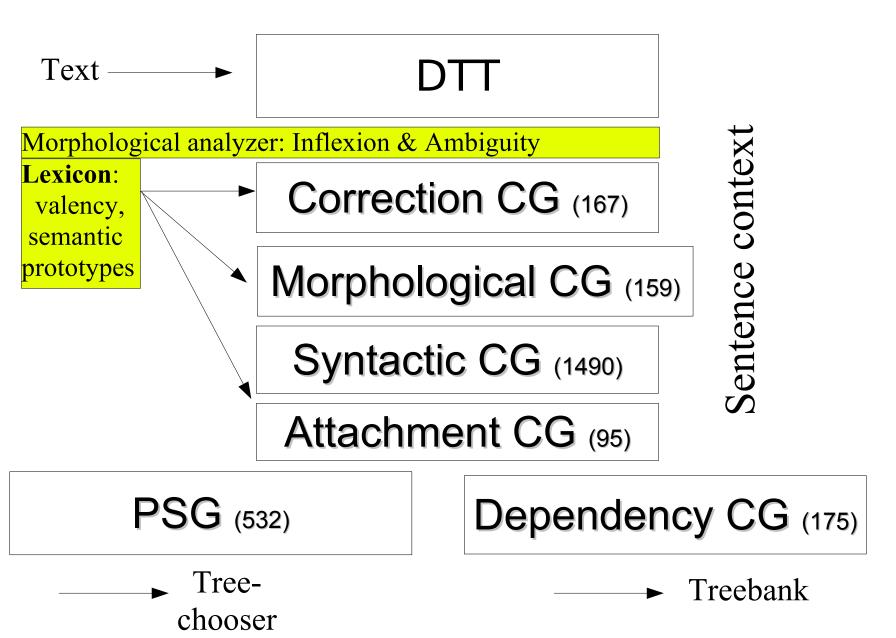
Annotation:

Valency controlled tag choices on dependents rather than structural marking Disambiguation of valency potential markers

- Example: valency-inspired Pp-nodes
- (free) adunct adverbial (fA): selon lui, d'abord, il travail ici
- (bound) argument adverbial e.g. with object relation (Ao): mettre en place (quelque part
- (bound) prepositional object (Op): demande à qn de fair qc
- underspecified valency at group level
- adnominal dependent (DNmod): les derniers points, la pipe du père
- adverbial dependent (DAarg): supérieur à

Experimentally, **case roles** like Actor, Patient etc. are assigned by a special layer of CG rules, using function context, valency and lexical information handed down by the other CG-modules.

Running CG-annotation


1. Il	[il]	PERS 3S NOM	@F-SUBJ>	#1->2
2. faudrait	[falloir]	V 3S COND	@FMV	#2->0
<i>3. que</i>	[que]	KS	@SUB	#3->5
4. je	[je]	PERS 1S NOM	@SUBJ>	#4->5
5. puisse	[pouvoir]	<aux> V PR 1/3S SUBJ</aux>	@FS- <subj< td=""><td>#5->2</td></subj<>	#5->2
6. alterner	[alterner]	<mv> V INF</mv>	@AUX<	#6->5
<i>7. avec</i>	[avec]	PRP	@ <piv< td=""><td>#7->6</td></piv<>	#7->6
8. les	[le]	ART nG P	<i>(a)</i> >N	#8->9
9. autres	[autre]	ADJ nG P	@ P <	#9->7

(It is necessary that I can take turns with the others.)

Une direction	[une] <idf> [direction]</idf>	ART N F S	@>N @SUBJ>	#1->2 #2->13
spéciale	[spécial]	ADJ F S	@N<	#3->2
, instituée	[instituer] <mv></mv>	V PCP2	@ICL-N<	#4->0 #5->2
à	[à] <sam-></sam->	PRP	@ <advl< td=""><td>#6->5</td></advl<>	#6->5
le	[le] <-sam> <def></def>	ART M S		#7->8
ministère	[ministère]	N M S	<u>@</u> P<	#8->6
de	[de] <np-close></np-close>	PRP	@N<	#9->8
la	[le] <def></def>	ART F S	@>N	#10->11
guerre	[guerre] <clb-end></clb-end>	N F S	@P<	#11->9
,				#12->0
est	[être] <aux></aux>	V PR 3S IND	@FS-STA	#13->0
chargée	[charger] <mv></mv>	V PCP2	@AUX<	#14->13
de	[de]	PRP	@ <piv< td=""><td>#15->14</td></piv<>	#15->14
tout	[tout] <quant></quant>	PRON DET M S	@>N	#16->17
ce	[ce] <dem></dem>	PRON INDP M S	@P<	#17->15
qui	[qui] <rel> PRON</rel>	INDP NOM	@SUBJ>	#18->19
concerne	[concerner] <mv></mv>	V PR	@FS-N<	#19->17
le	$[le] \leq def >$	ART M S	@>N	#20->21
personnel	[personnel]	N M S	@ <acc< td=""><td>#21->19</td></acc<>	#21->19

(A special administration, created by the Ministry of War, has been charged with everything that concerns the personel.)

How to get from text to tree?

Filtered DTT-output (probabilistic)

Enter French text to parse:

Je crois, que j'ai eu de la chance.

Parser: Probabilistic Tagger 🔽 Visualization:

```
Je [je] PRON <pers> <conj>
crois [croire] V PR IND
```

```
,
que [que] CONJ KS
j' [je] PRON <pers> <conj>
ai [avoir] V PR IND <aux>
eu [avoir] V PCP2
de [de] PRP
la [le] ART <def>
chance [chance] N
```

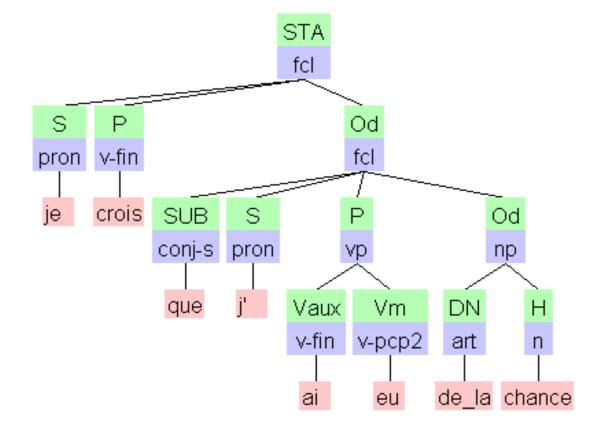
Constraint Grammar output

Enter French text to parse:

Je crois que j'ai eu de la chance. Parser: CG-Parser 🛛 Visualization: Default 💙

Je [je] PRON PERS 1S NOM @SUBJ> crois [croire] <mv> V PR 1/2S IND @FMV que [que] KS @SUB j' [je] PRON PERS @SUBJ> ai [avoir] <aux> V PR 1S IND @FS-<ACC eu [avoir] <mv> V PCP2 M S AKT @ICL-AUX< de=la [de+le] <idf> ART F S @>N chance [chance] N F S @<ACC

Constituent trees (PSG-output)


```
. . . . . . . .
Od fel
=Sinp
==DN:art('le' <def> F S)
                         La
=H:n('télévision' F S) télévision
=DN fel
====Od:pron-rel('que' <rel> INDP ACC)
                                       qui
==S:pron-pers('nous' PERS 1P nC)
                                     nous
==P:vp
====Vaux:v-fin('avoir' PR 1P IND)
                                    avons
====Vm:v-pcp2('proposer' F S AKT)
                                     proposée
==fA:pp
====H:prp('à' <sam->) à
=___DP:np
===DN:art('le' <-sam> M S) le
===H:prop('CSA' M S) CSA
=P:vp
=Vaux:v-fin('être' FUT 3S IND) sera
=Vm:v-pcp2('mettre' F S PAS) mise
```

.

FUNCTION:form EDGES:nodes/terminals

indentation for depth

Constituent trees (graphical)

Evaluation 1

CG-annotation for French Europarl data

(1.790 words)

	Recall	Precision	F-score
Word classes (CG)	98.7 %	98.7 %	98.7
Syntactic functions	93.7 %	92.5 %	93.1

Comparison: DTT-stage alone: 97.5% F-score for PoS Coparison: 2003 version on news text: 17.500 words, long sentences (28 words av.) F-Score 97, DTT alone 95.7 mature Constraint Grammars: > 95% syntactic accuracy, ca. 99% PoS accuracy

mature Constraint Grammars: > 95% syntactic accuracy, ca. 99% PoS accuracy

• French FSP (Chanod & Tapanainen 1997), Portuguese/Danish CG (Bick 2003)

^[1] separately counting tenses, participles and infinitive

^[2] including subclause functions, but without making a distinction between free and valency bound adverbials

Evaluation 2

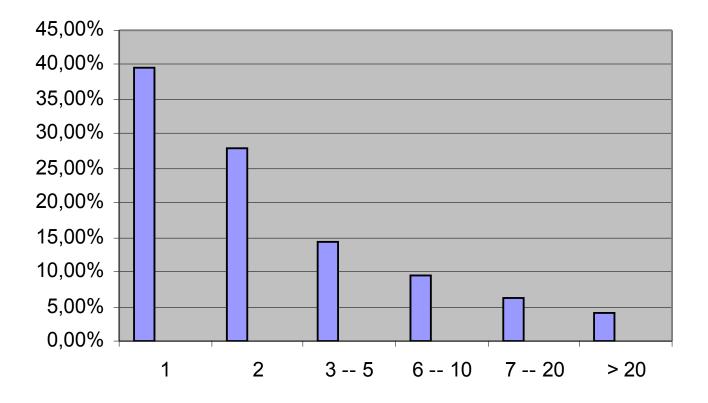
CG-annotation for Wikipedia

(1.714 words, 1911 tokens)

	Recall	Precision	F-score
Edge label/functions	96.20%	96.20%	96.2
Dependency links	95.90%	95.90%	95.9

Comparison: Probabilistic ML parsers

- Crabbé et al. (2009): edge label F-score 87.2 (66.4 external EASY)
- Schulter & van Genabith (2008): LFG-derived SVM-system F=86.73
- Arun & Keller (2005): unlabelled dependency F-score 84.2
- Candito et al. (2009): unlabelled dependency F-score 90.99


[1] separately counting tenses, participles and infinitive

[2] including subclause functions, but without making a distinction between free and valency bound adverbials

full tree-creation: PSG first vs. Dependency first

- PSG is less robust than dependency: PoS/funciton errors affect whole trees ungrammatical sentences are worse in PSG
- Coordination and ellipsis is descriptively more natural in constituent grammar, but methodologically easier in dependency grammar
 - e.g. missing subject or coordinator
- Discontinuous constituents are harder to handle in PSG than CG:
 - verb chain "brackets"
 - topic/focus fronting
 - raising
- PSG has time-space problems for complex input

Percentage of forests with n trees

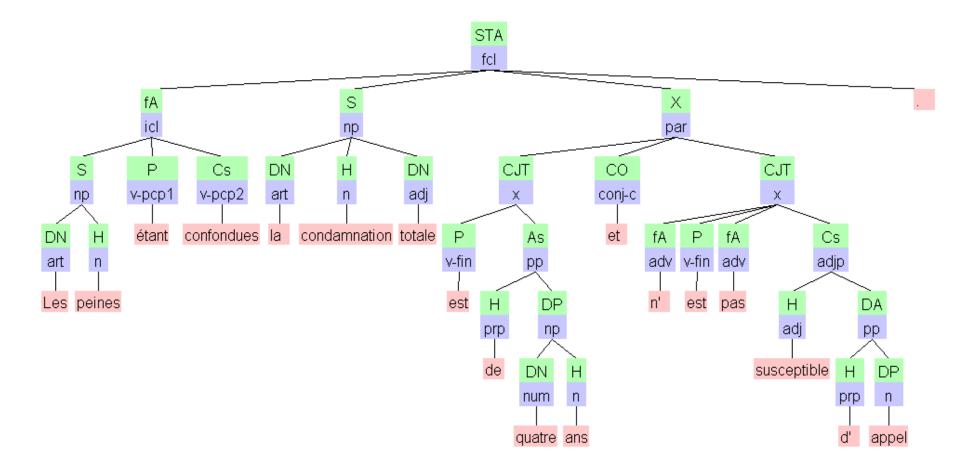
CG-to-Tree conversion: Solutions

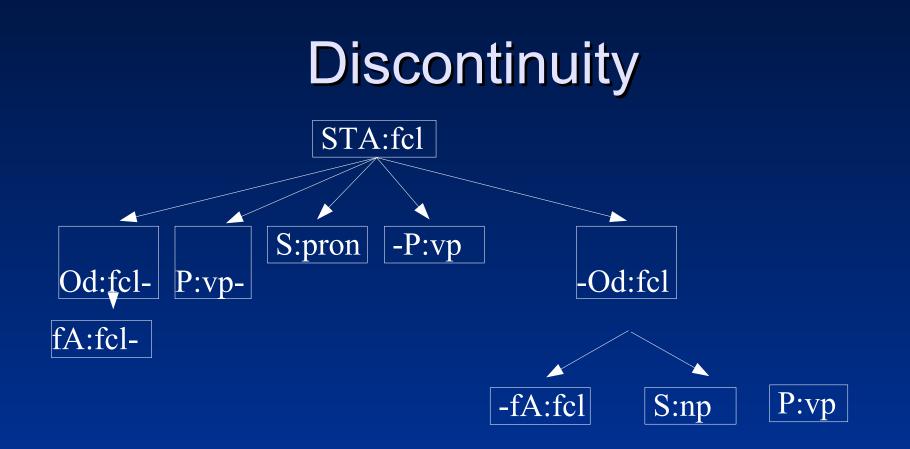
First step: Attachment CG:

- attachment markers: <np-close>, <np-long>
- Coordination specifiers: <co-subj>, <co-postnom>

Methodological ordering

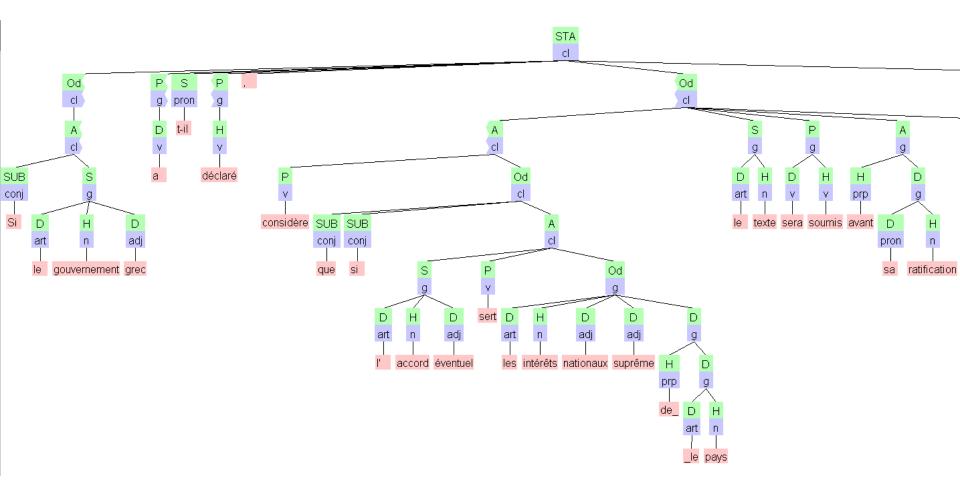
Dependency before constituent trees

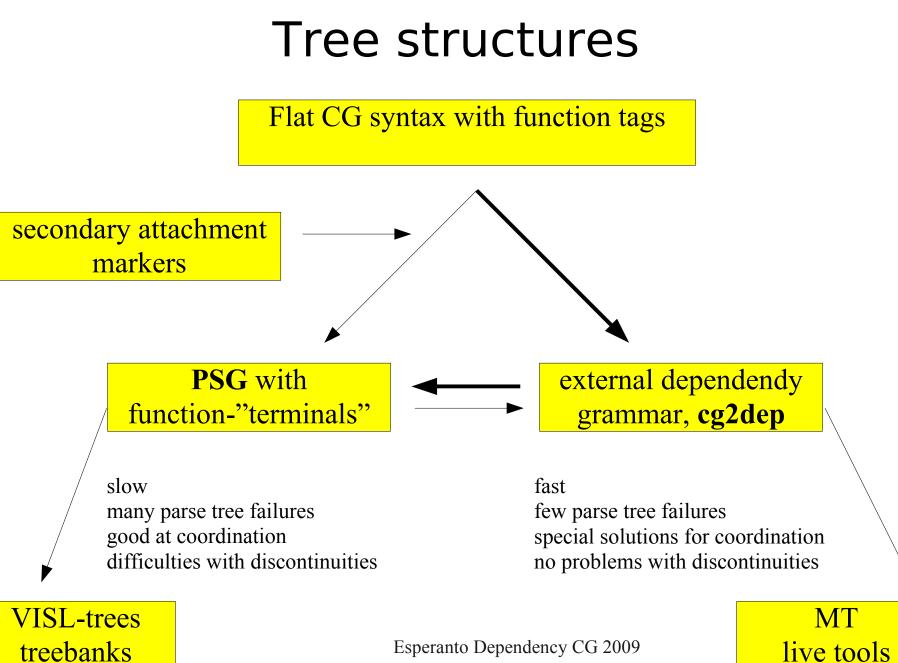

Rule ordering


- ordered attachment inside out
- coordination last

Descriptive solutions

- Stacking of "undefined" coordinated constituents
- Discontinuity marked with constituent halves


Stacking: "Dummy" nexus conjuncts



Discontinuity

Esperanto Dependency CG 2009

Creating Dependencies in CG-3

SETPARENT (@>N) (0 (ART DET)) TO (*1 (N)); SETPARENT (@P<) TO (*-1 (PRP)); = SETCHILD (PRP) TO (*1 @P<); SETPARENT (@FS-N<) TO (*-1 @SUBJ> LINK *-1 N);

- create dependencies on the fly
- change existing dependencies
- circularity
 - a rule won't be applied if it introduces circularity
 - however, if there IS circularity further up in the ancestor chain from a previous module, then it will be accepted

Using Dependencies

SELECT (%hum) (0 @SUBJ) (p <Vcog>)
-> assign +HUM to subjects of cognitive verbs

SELECT (@ACC) (NOT s @ACC)
-> uniqueness principle

(*-1 N LINK c DEF)

-> definite np recognized through dependent

ADD (§AG) TARGET @SUBJ (p V-HUM LINK c @ACC LINK 0 N-NON-HUM);

Esperanto Dependency CG 2009

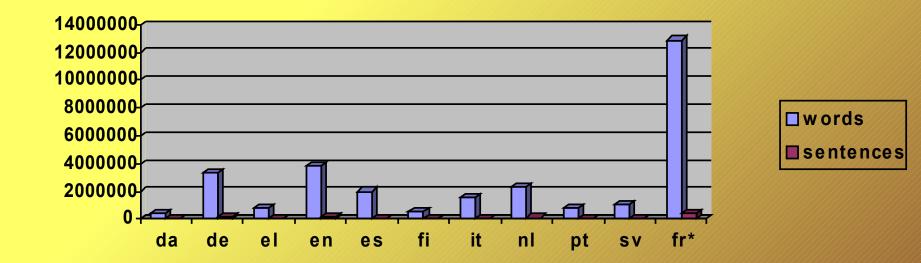
Dependency relations

- in a rule, dep-relations (letters) replace positions (numbers)
 - Parent/Mother (p)
 - Child/Daughter (c)
 - Sibling/Sister (s)
- Complex relations can be expressed as combinations:
 - Niece: s LINK c (c LINK s = 2 c-tests)
 - Aunt: p LINK s (s LINK p = p)
 - Cousin: p LINK s LINK c

Operators

NOT regards relation existence, not tags

NOT c @>N = no prenominal


- c @>N LINK NOT 0 P = at least one prenominal child that isn't plural (e.g. grammar checking for agreement)
- * means deep scan of all ancestors (*p) or offspring (*c)
- C means all-relations-match, not all-readings-match
 - sC(P) = all siblings have a plural reading (but possibly others)
 - s (P) LINK 0C (P) = there is a sibling with only plural readings
- S means and-self
 - *pS (@FS-N<) = if self or any ancestor is marked relative clause (good for verb chain testing where you don't know if you are looking at the first or later elements)

Applications

- internet-based grammar-teaching (VISL)
 - cross-language annotation scheme
 - compatible with treebanks in 25 languages
- syntactic corpus annotation
 - ANANAS-corpus (Salmon-Alt 2002)
 - l'Arboratoire treebank (manually revised)
 - Europarl annotation (28 mill. words)

The French Europarl Corpus

- * 29 million words of Parliamentary debates, original or translated
- * One of 11 similar corpora in the different European languages
- * Freely available at http://www.isi.edu/~koehn/europarl/
- Distribution of different SL in the French part of Europarl:

Cross SL category distribution (the pivot of the talk)

	da	SV	de	en	nl	GER	xx/fr	es	it	pt	ROM	fi	el
words per sentence	25.5	25.1	25.3	25.7	23.1	24.9	27.8	32.1	32.9	33.2	32.7	25.3	31.0
finite subclauses	3.81	3.75	3.47	3.47	3.30	3.56	3.16	4.04	3.68	3.52	3.75	3.00	3.72
relative clauses	1.95	2.05	1.68	1.70	1.58	1.79	1.72	2.16	2.10	2.07	2.11	1.50	2.09
direct object clauses	1.11	1.04	1.02	1.03	0.95	1.03	0.85	1.10	0.90	0.81	0.94	0.78	0.94
adverbial clauses	0.63	0.54	0.67	0.61	0.63	0.62	0.52	0.70	0.63	0.55	0.63	0.57	0.62
participial adverbial	2.92	2.15	3.20	4.35	4.52	3.43	3.96	3.82	4.09	4.71	4.21	3.31	4.78
subclauses (log-5)													
auxiliary chain parts	3.46	3.35	3.34	3.36	3.13	3.33	2.89	2.98	2.99	2.52	2.83	3.02	2.77
passive pcp2	0.47	0.45	0.42	0.45	0.44	0.45	0.41	0.33	0.34	0.39	0.35	0.44	0.39
active pcp2	1.17	1.14	1.15	1.33	1.07	1.17	1.12	1.22	1.20	0.95	1.12	1.04	1.17
infinitive	1.43	1.38	1.39	1.21	1.25	1.33	0.99	1.12	1.11	0.93	1.05	1.20	0.89
subjunctive/vfin	4.99	5.58	4.76	4.53	4.40	4.85	4.19	4.76	4.26	4.79	4.60	5.55	4.35
conditional	0.56	0.56	0.56	0.62	0.43	0.55	0.43	0.49	0.43	0.40	0.44	0.56	0.39
vocative	0.04	0.04	0.06	0.05	0.06	0.05	0.05	0.06	0.07	0.04	0.06	0.05	0.05
attributive	6.70	6.98	7.02	7.01	7.29	7.00	7.26	7.37	7.64	8.13	7.71	7.65	7.62
common nouns	20.90	21.26	21.00	21.33	21.35	21.2	22.07	21.37	21.09	22.14	21.5	22.66	21.71
finite verbs	8.94	8.59	8.48	8.29	8.49	8.56	7.57	8.18	7.78	7.23	7.73	7.83	7.86
coordinating	2.67	2.48	2.80	2.68	2.56	2.64	2.74	3.20	3.16	3.28	3.21	2.40	3.20
conjunction													
subordinating	2.33	2.16	2.22	2.17	2.13	2.20	1.84	2.35	2.01	1.87	2.08	1.88	2.06
conjunct.													
demonstrative	1.96	2.14	2.34	2.17	2.24	2.17	1.99	2.17	1.98	2.02	2.06	1.82	1.81

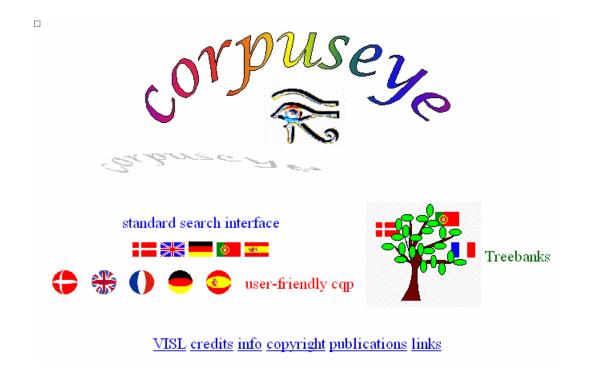
GER = Germanic average, ROM = Romance average, Red = high values, Blue = low values Notables: Sentence length, inflexion vs. aux chains, subjunctive and conditional, ROM-adj vs. GER-v, ROM-coord., DK vs. ES, xx-French (shorter than even GER), politeness vocative

Statistical musings

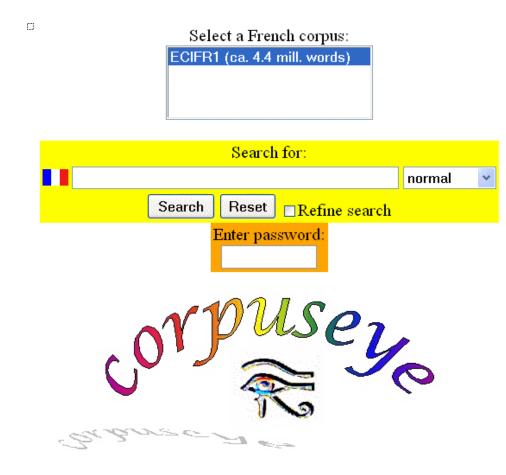
Does it make sense to statistically evaluate a corpus that has been automatically annotated, but not manually revised? Yes, for a PoS category with a frequency of 10% and a tagger with an error rate of 1.3%, the error margin is probably(only) 9.87%-10.13%, even with all errors stemming from this category, it would only vary between 8.7% and 11.3%.

Does it make sense to compare languages through a (French) translation filter?

Yes and no – It may seem innovative, but on the other hand, French functions as a kind of neutralizing filter for arbitrary descriptive differences (traditionally varying category definitions, for instance)


Are all SL speakers native speakers?

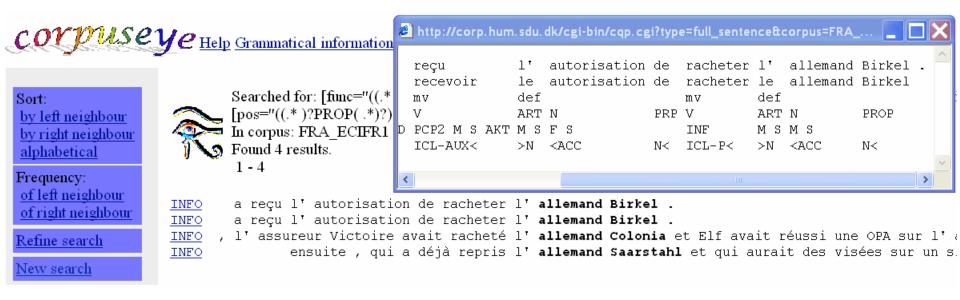
No. A portion of the French sources in the corpus may actually be second language speakers preferring their own French to a translated version. The same may be true for many English sources.


supported formats

- native VISL (indented vertical trees)
- TIGER format, both constituent and depency
- MALT dependency format (Nivre)
- PENN treebank
- XML many external versions by different research groups
- MySQL databases

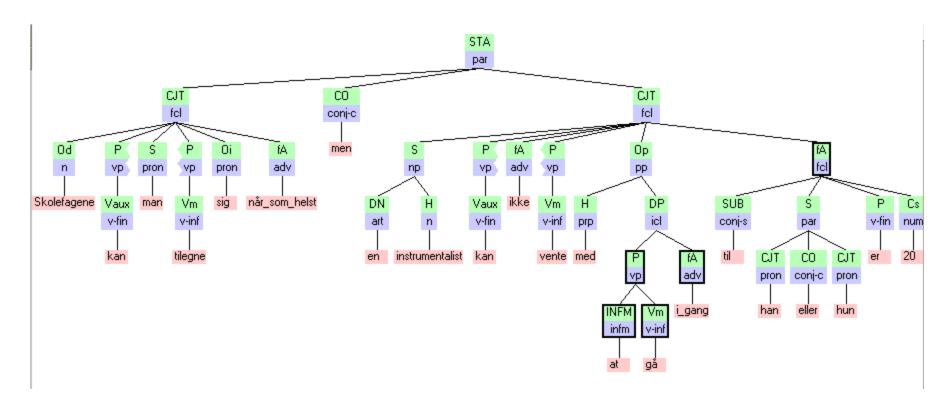
Corpus interface - top http://corp.hum.sdu.dk

Corpus interface: French CG



VISL credits info copyright publications links

Cqp-search with menus


	Search
○1 ◎+ ○? ○*	●1 ○+ ○? ○*
Word:	Word:
Base:	Base:
Extra:	Extra: <hprof></hprof>
Part of Speech -	Part of Speech +
☐ Noun ☐ Proper Noun ☑ Adjective ☐ Pronoun ﷺ ☐ Verb ☐ Adverb	Morphologi + Neg Function - Neg Subject more Object more
☐ Others more Morphologi + <mark>Neg</mark>	
Function + Neg	Apposition more

Cqp-search: Results ("allemand" @OBJECT + PROP)

Treebank search results as syntactic tree structures

P:vp~_fA:adv_fA:fcl

Outlook

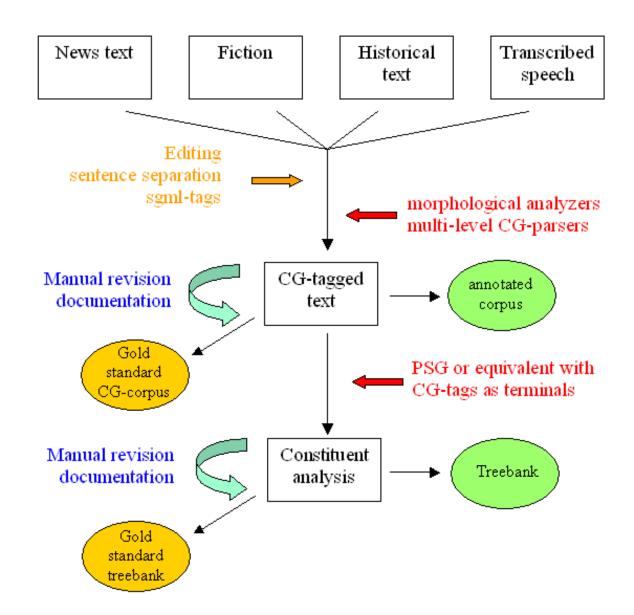
- experiments with different hybridisation schemes
- integrate a from-scratch PoS CG with DTT choices to guide heuristic CG-rules
- (human) arbitration or specialist correction rules based on systematic differences between output from the 2 systems
- rule weighting based on FraG-annotated corpora

VISL

eckhard.bick@mail.dk

parsers: beta.visl.sdu.dk corpus search: corp.hum.sdu.dk teaching: visl.sdu.dk

Discontinuity


Discontinuity (crossing branches) is not a very rare feature in French, but theory dependent to a certain degree

- expressed by <u>double-arrow-dependents</u> in CG (meaning "cross over the next legal head, to another word of compatible type)
- expressed by <u>"broken node"-markers</u> in the constituent trees.
- Can be a matter of descriptional tradition:

ne ... pas (discontinuous adv?)

a-t-il vendu (auxiliaries as clause or vp constituents?)

Corpus annotation

Evaluation 2: Constituent trees for French (PSG)

For French (FrAG)

- 45% well-formed trees on raw text
- Speed: 3000 words/sec (all CG-levels) 37 words/sec (CG-to-tree)

for Danish (DanGram)

- 50-75% well-formed trees on raw text
- 95% well-formed trees on corrected CG-input
- 0.8% attachment errors on corrected CG-input

Choosing trees

For every sentence, a heuristic *tree chooser* program creates a priority list for surviving ambiguous trees, drawing on a variety of complexity measures:

- embedding depth
- coordination flatness
- discontinuity.

Two treebank building strategies for investing time at this point:

- Proof-reading the chosen tree
- Trust there will be one correct tree in each forest (at least with corrected CG-input and a good language-specific PSG), and therefore inspect the whole forest

Experiment: 6.800 sentences in raw, unrevised cg-format were psg-processed

- 3.191 sentences received well-formed (complete) analyses
- 3.709 sentences resulted in "fragmented" (partial) trees. Of wellformed trees (Danish in parenthesis):
- 67% (40%) 1 analysis, 17% (28%) 2 analyses, 4.2% > 20 analyses
 largest forest: 192 (864) trees.

FrAG annotation scheme

Though most syntactically annotated corpora are intended as reference data for broad syntactic research in a given language, it is difficult to please all users, and a methodological or descriptional bias towards one linguistic theory or other is all but unavoidable.

"Classical" treebanks: e.g. Penn and SUSANNE treebanks

based on bracketing structure, but enriched with function labels Dependency Grammar: Czech PDT, dep. treebanks for Turkish, Russian, Danish and Italian

<u>Descriptional interdependency</u> between NLP-tools and treebanks:

HPSG: Dutch Alpino-Treebank, Bulgarian BulTreeBank

LFG: Spanish UAM Treebank, PSG/Dependency TIGER-treebank for German **FrAG output** comes in two parallel flavours

(a) a dependency parse with word based CG-annotation

(b) a PSG-treebank with constituent annotation (following VISL conventions) Both versions allow crossing branches/discontinuity and specify function as well as structure and both can be converted into graphical formats **Inventory of grammatical categories** follows the cross-language VISL standardisation scheme. Every node receives both a form and a function label, a G. Supp (subject pour phrase) or fAupp (free adverbial propositional phrase)

e.g. S:np (subject noun phrase) or fA:pp (free adverbial prepositional phrase) **Format filtering:** TIGER (used as a Nordic standard), PENN (used for t-grep2)