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Selectional Preferences

Selectional Restrictions and Selectional Preferences

e Selectional Restriction: a predicate cannot be combined with
arbitrary complements — restriction to semantic categories

e Famous example: Chomsky (1957)
Colorless green ideas sleep furiously

Syntactically well-formed but not semantically meaningful
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Selectional Preferences

Selectional Restrictions and Selectional Preferences

e Selectional Restriction: a predicate cannot be combined with
arbitrary complements — restriction to semantic categories

e Famous example: Chomsky (1957)
Colorless green ideas sleep furiously

Syntactically well-formed but not semantically meaningful

e Selectional Preference:

o degree of acceptability
e probabilistic models
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Selectional Preferences

Computational Motivation

o Generalisation over specific complement heads helps with data
sparseness, e.g.,

drink {coffee, tea, beer, wine}
— drink (beverage)
— drink (German regional type of lemonade)

e Requires knowledge of semantic categories:

e clusters
e WordNet
e distributional information
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Second-

Selectional Preference Models
Latent

Overview

® (luster-based selectional preferences:
EM-based clusters generalise over seen and unseen data
® Pereira et al. (1993)

e Rooth et al. (1999)
e Schulte im Walde et al. (2008)

® \WordNet-based selectional preferences:

WordNet classes generalise over subordinate instances
Resnik (1997): association strength
Li & Abe (1998): MDL cut
Abney & Light (1999): HMM
Ciaramita & Johnson (2000): Bayesian belief network
Clark & Weir (2002): MDL cut

e Light & Greiff (2002): summary of approaches

e Brockmann & Lapata (2003): comparison of approaches

® Distributional selectional preferences:
distributional descriptions as abstractions over specific complements

e Erk (2007)
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Second-order Co-Occurrence
Latent Semantic Clusters
Predicate Argument Clustering

Selectional Preference Models

e Distributional approach: contexts of a linguistic unit provide
information about the meaning of the linguistic unit,
cf. Firth (1957), Harris (1968)

o Selectional preferences with respect to a predicate's complement are
defined by the properties of the complement realisations

e Example question: what characterises the direct objects of drink?
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Second-order Co-Occurrence
Latent Semantic Clusters
Predicate Argument Clustering

Selectional Preference Models

e Distributional approach: contexts of a linguistic unit provide
information about the meaning of the linguistic unit,
cf. Firth (1957), Harris (1968)

o Selectional preferences with respect to a predicate's complement are
defined by the properties of the complement realisations

e Example question: what characterises the direct objects of drink?

o Example: typical direct object of drink is fluid, might be hot or cold,
can be bought, might be bottled, etc.
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Second-order Co-Occurrence
Latent Semantic Clusters
Predicate Argument Clustering

Selectional Preference Models

Distributional approach: contexts of a linguistic unit provide
information about the meaning of the linguistic unit,
cf. Firth (1957), Harris (1968)

Selectional preferences with respect to a predicate's complement are
defined by the properties of the complement realisations

Example question: what characterises the direct objects of drink?

Example: typical direct object of drink is fluid, might be hot or cold,
can be bought, might be bottled, etc.
— second-order co-occurrence
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Second-order Co-Occurrence
Latent Semantic Clusters
Predicate Argument Clustering

Selectional Preference Models

ldea: Example

Example: backen 'bake’ (NPnom,NPacc)

Verb Properties: Adj Realisations

backen | frisch "fresh’ Keks "cookie’
lecker "delicious’ | Brotchen "roll’
klein 'small’ Torte "tart’
trocken "dry’ Kuchen "cake’
sii "sweet’ Brot 'bread’
warm 'warm'’ Pizza 'pizza’
fett "fat’ Waffel 'waffle’
eingeweicht  'soaked’ Pfannkuchen ’pancake’
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Second-order Co-Occurrence
Latent Semantic Clusters
Predicate Argument Clustering

Selectional Preference Models

e Corpus-based joint frequencies freq(p, r1, n) of
with respect to some functional relationship r1;
rl: subjects, direct object, pp objects

e Corpus-based joint frequencies freq(n, r2, prop) of
with respect to some functional relationship r2;
r2: modifying adjectives, subcategorising verbs (for direct object),
subcategorising prepositions

e Corpus source: approx. 560 million words from the German web
corpus deWaC (Baroni & Kilgarriff, 2006)

o Preprocessing: Tree Tagger (Schmid, 1994), and dependency parser
(Schiehlen, 2003)
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Second-order Co-Occurrence
Latent Semantic Clusters
Predicate Argument Clustering

Selectional Preference Models

Scoring

o Selectional preference description: rates second-order properties
according to their contribution to selectional preference description

score(p, rl, prop) = Zné(p,rl) func(p, r1,n) * func(n, r2, prop)
with func = freq, log(freq), prob, tf — idf

e Selectional preference fit of a specific noun by standard distributional
measures: compares noun's contribution to overall preference

cosine, skew divergence, Kendall's 7, jaccard index
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Second-orde Occurrence
Latent Sema Clusters
Predicate Argument Clustering

Selectional Preference Models

Latent Semantic Clusters (LSC)

e Instance of the Expectation-Maximisation algorithm (Baum 1972)
for unsupervised training on unannotated data
e Two-dimensional soft clusters (Rooth et al. 1999)

prob(p,n) = > prob(c,p,n)

cEcluster

= Z prob(c) prob(p, c) prob(n, c)

cEcluster

o Clusters can be considered as generalisations over (seen und unseen)
members of the two inter-dependent dimensions

e Selectional preference fit: probabilities of verb—noun pairs

e Same corpus data as for the distributional model

e One model for each relation, plus one model with all relations
e Parameters: 20, 50, 100, 200, 500 clusters; 50, 100 iterations
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Second-order Co-Occurrence
Latent Sema Clusters
Predicate Argument Clustering

Selectional Preference Models

LSC: Example

cluster, prob(c) = 0.015 (range: 0.004-0.035)

entwickeln "develop’ Konzept 'concept’
vorstellen "introduce’ Angebot "offer’
erarbeiten 'work out’ Vorschlag ~ 'suggestion’
geben 'give’ Idee 'idea’
umsetzen "realise’ Projekt 'project’
ansehen 'look at’ Plan 'plan’
erstellen "create’ Programm  'program’
prasentieren 'present’ Strategie 'strategy’
diskutieren "discuss’ Modell 'model’
darstellen "demonstrate’ | Losung 'solution’

Sabine Schulte im Walde SelPrefs: 2nd-order Co-Occurrence vs. Latent Semantic Clusters



Second-order Co-Occurrence
Latent Semantic Clusters
Predicate Argument Clustering

Selectional Preference Models

Predicate Argument Clustering (PAC)

o Extension of LSC approach (Schulte im Walde et al. 2008)

e Combination of EM algorithm and Minimum Description Length
principle (Rissanen, 1978)
o Incorporates explicit, WordNet-based selectional preferences

prob(p, f,n1,...,ng) = Z prob(p) prob(p, c) prob(f, c) =
c

K
H Z prob(r|c, f, i) prob(n;|r)

i=1rewn
e Selectional preference fit: probabilities of verb—noun pairs
e Same corpus data as for the distributional model
e One model for each relation, plus one model with all relations
e Parameters: 20, 50, 100, 200, 500 clusters; 50, 100 iterations
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Second-order Co-Occurrence
Latent Semantic Clusters
Predicate Argument Clustering

Selectional Preference Models

PAC: Example

cluster, prob(c) = 0.069 (range: 0.014-0.085)

leisten 'perform’ Geschehen 'event’

geben 'give' Aktivitat 'activity’

fordern 'demand’ Veranderung 'change’
bedeuten 'mean’ Handlungssequenz  'action sequence’
ermoglichen  'enable’ Realisierung 'realisation’
verhindern 'prevent’ Anschlag "attack’

feiern 'celebrate’ Straftat 'criminal act’
darstellen 'demonstrate’ | Gerichtsverfahren  'lawsuit’

bringen 'bring’ Verbesserung 'improvement’
vornehmen 'carry out’ Optimierung 'optimisation’
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Evaluation

Questions

@ Distributional approach:

How well does 2nd-order co-occurrence model selectional
preferences?

Which 2nd-order properties are most salient?

® Comparison of models:

How does a simple distributional model compare with more complex,
cluster-based approaches?
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Evaluation

Human judgements on selectional preference fit for German
verb—noun pairs, cf. Brockmann & Lapata (2003)

30 subjects, 30 direct objects and 30 pp objects (10 verbs each)

Brockmann & Lapata (BL) compared WordNet-based selectional
preference models and a combination of models

BL normalised system scores and human judgements by /log10
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Evaluation

e Human judgements on selectional preference fit for German
verb—noun pairs, cf. Brockmann & Lapata (2003)

e 30 subjects, 30 direct objects and 30 pp objects (10 verbs each)
e Brockmann & Lapata (BL) compared WordNet-based selectional
preference models and a combination of models

e BL normalised system scores and human judgements by /log10

Correlation of system scores with human judgements, using
@ linear regression

® Spearman rank-order correlation coefficient
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Evaluation

Baselines and Upper Bound

e Baseline: correlation of joint corpus-based predicate-noun
frequencies of subjects, direct objects and pp objects with human
judgements, also by linear regression and by ranking

e Two baselines: raw frequencies and frequencies transformed by log10

e Upper bound: inter-subject agreement (isa) on selectional preference
judgements
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Results

Overview (Linear Regression)

Models:
[ SUBJ I DIR-OBJ I PP-OBJ I all ]
Distrib. *¥494 _ verb, prob | ***713 __ union, freq | ***.602 __ prep, tiidf | ***517 __ union, prob
LSC *.450 20c, 50i | ***.569 100c, 100i ¥ 562 200c, 1001 | ***.453 50c, 50i
PAC FFE 651 20c, 100i | ***.795 500c, 1001 ** 281 500c, 50 | ***543 100c, 501
[BL *408 (Resnik) [ ***611 (Clark/Weir) [ *¥¥507 (Clark/Weir) | **% 400 (comb) ]

Baselines and Upper Bound:

f 274 343 384 313
log10(f) 652 559 565 574
BL 386 360 168 301
[Cisa 790 810 820 810

Significance levels: *p < .05, **p < .01, and ***p < .001

ine Schulte im Walde
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Results

Results

PAC > 2nd-order > LSC
Similar but not identical results with two evaluations

Best results vary according to functional relation (and approach)

High baseline values; strong differences in BL and our baselines

log10 transformations better than original scores

Sabine Schulte im Walde SelPrefs: 2nd-order Co-Occurrence vs. Latent Semantic Clusters



Results

Results

PAC > 2nd-order > LSC
Similar but not identical results with two evaluations

Best results vary according to functional relation (and approach)

High baseline values; strong differences in BL and our baselines

log10 transformations better than original scores

Second-order co-occurrence:

e properties: prepositions and union of properties are best
e property scoring function: prob and tf-idf > freq and log(freq)
o selectional preference fit: cosine > 7 > skew > jaccard
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Results

Results

e PAC > 2nd-order > LSC

e Similar but not identical results with two evaluations

e Best results vary according to functional relation (and approach)
e High baseline values; strong differences in BL and our baselines

e Jog10 transformations better than original scores

e Second-order co-occurrence:

e properties: prepositions and union of properties are best
e property scoring function: prob and tf-idf > freq and log(freq)
o selectional preference fit: cosine > 7 > skew > jaccard

o Clustering approaches:

e better when all functions are trained in one model
e no clear tendency towards an optimal parameter setting
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Results

Summary

e Three computational approaches to selectional preferences:
intuitive 2nd-order co-occurrence vs. latent semantic clusters

e High correlations between models and human judgements, but
powerful frequency baseline is not met

e Answers to questions:

@ Distributional approach: How well does 2nd-order co-occurrence
model selectional preferences?
— highly significant correlations (.494/.713/.602/.517)

Which 2nd-order properties are most salient?
— prepositions and union of properties

@® Comparison of models: How does a simple distributional model
compare with more complex, cluster-based approaches?
— better than LSC but worse than PAC
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Results

Second-order Co-Occurrence: Example

Example: anbraten 'fry’ (NPnom,NPacc)

Verb Properties: Verbppacc Realisations
anbraten | schilen "peel’ Champignon  'mushroom’
schneiden "cut’ Zwiebel "onion’
essen 'eat’ Kartoffel 'potatoe’
zugeben 'add’ Gemiise 'vegetable’'
anschwitzen 'sweat’ Knoblauch "garlic’
pellen "peel’ Hackfleisch 'minced meat’
riechen 'smell’ Roulade 'roulade’
waschen "clean’ Keule "haunch’
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Results

Second-order Co-Occurrence: Example

Example: abflauen 'calm down’ (NPnom,...)

Verb Properties: Adj Realisations

abflauen | frisch "cool’ Interesse "interest’
stark 'strong’ Sturm 'storm’
heftig 'strong’ Begeisterung  'enthusiasm’
kalt "cold’ Wind 'wind'’
offentlich "public’ Protest "protest’
wirtschaftlich  'economic’ | Wachstum 'increase’
national 'national’ Kampf "fight’
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Results

Second-order Co-Occurrence: Example

Example: bebauen 'build’ (..., PP, ...)

Verb Properties: Verbyp.../pp Realisations

bebauen | errichten "build’ Familienhaus 'family home’

mit wohnen in "live in’ Gebaude 'building’
handeln um 'concern’ | Geschaftshaus  'business house’
zerstdren 'destroy’ Mietshaus 'apartment building’
erwerben 'acquire’ Villa 'villa’
verlassen 'leave’ Wohngebiude 'residential building’
einbrechen in  'break in" | Wohnung 'apartment’
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