A contrastive Approach to Multi-word Term Extraction from Domain-specific Corpora

Francesca Bonin, Felice Dell'Orletta, Giulia Venturi and Simonetta Montemagni

LREC Malta 2010
Outline

• Introduction and aims
• Multiword extraction process
 – Multi-word candidates extraction
 – Contrastive Re-ranking of extracted terms
• Case studies
• Evaluation
• Conclusions
The aim

- Extraction of domain specific terminology
 - Focus on multiwords.

- Filtering terms from noise:
 - Open-domain terms, e.g.
 - "anno successivo" "following year"
 - For multi-domain terminology: Singling out terms which belong to different domains.
 - This is the case in the legal domain
 - e.g. environmental terms from legal terms
 - "Rifiuto pericoloso" "dangerous waste"
 - singled out from
 - "Diritto nazionale" "national law"
Approaches to Terminology extraction

- The state of the art of TE proposes a wide variety of approaches:
 - Linguistic
 - Statistical
 - Mixed (Linguistic and statistical)
 - Contrastive

- Statistical approaches based on e.g. term frequency/inverse document frequency, log likelihood, mutual information, up to more sophisticated approaches such as C-NC Value

- Contrastive approaches: usually applied on single terms extraction
 - They face multiwords extraction expanding the single terms heads
 - e.g. [Basili et. al 2001]: contrastive selection via Heads (CsvH)
 - Single candidate terms selection using a contrastive function: distribution in the target and contrastive corpora;
 - Multi-words ranking.
Our approach: main features

- Multiwords based: we consider multiwords as unique elements, independent from single terms
- **Combines** different approaches: linguistic + statistical + contrastive
- **Multi-layered approach**
 - We split the multiword extraction process in two steps:
 - Extraction of well-formed multi-word candidates' shortlist
 - Multi-word re-ranking.
- Benefits of two-step approach:
 - Overcomes the multi-word term sparseness problem
 - Multi-word contrastive ranking: independent from single terms ranking.
General workflow

Input text

NLP tools
- Tokenization
- Morphological analysis (PoS-tagging)
- Lemmatization

Multi-word candidates extraction
- Linguistic filters
 - Sequences of PoS patterns
- Statistical filter (C-NC Value)
- Filtering of multi-word prepositions

Multi-words contrastive ranking
- Contrastive functions
Step 1: Multi-word terms (MWT) candidates extraction

MWT Candidate extraction process:

- Linguistic filters
 - Based on automatic POS tagged/lemmatized text
 - We identify sequences of allowed POS patterns in order to cover most of the Italian morphosyntactic multi-words structures:
 - Noun+(Prep+(Noun|ADJ)+ |Noun|ADJ)+
 - *Diritto nazionale* – “national law”
 - *Presidente della Repubblica* – “President of the Republic”
 - Filtering of domain specific multi-word preposition, automatically extracted with a first run of the same process using the patterns
 - Noun-Prep-Noun
 - *ai sensi di* – “by law”
 - Statistical filters: C-NC Value (Frantzi & Ananiadou 1999).
Step 2: MWT contrastive ranking

- Candidates multi-word terms are re-ranked using a contrastive method against a reference corpus.

 i. Single domain – contrast against open domain corpus [for filtering noisy general terms]

 ii. Double domain – contrast corpus sharing only one of the domains [for singling out different term types in multi-domain corpora]

 - In case i) - TFITF contrastive function

 • Basili et. al 2001 approach: contrastive selection via Heads (CsvH).

 • Our approach: Basili et. al 2001 function directly applied to multiwords.

 - In case ii) – CSmw contrastive function

 • based on arctan.

 • Particularly suitable for dealing with low frequency events
Step 2: MWT contrastive ranking - TF-ITF contrastive function

- TFITF: Term frequency Inverse Term frequency
 - Variant of Basili et al. 2001
 - applied to multi-word terms without passing through single head terms
 - A list L of candidate multi-words is extracted with C-NC Value
 - L toplist is ranked on TF-ITF score

 $$TFITF = \log(f_i(t)) \ast IWF(t)$$

 Where $f(t)$ is the frequency of the candidate term (multi-word) t, and IWF is the inverse word frequency.

 $$IWF(t) = \log\left(\frac{N}{F(t)}\right)$$

 - N: sum of all $F(t)$ for each t in L
 - $F(t)$: t frequency in the contrastive corpus
Csmw : Contrastive Selection of multi-word terms

- Specifically designed for dealing with low-frequency events
- Arctan function's mathematical features suites the low frequency events extraction
- The statistical weight is calculated directly on multi-word terms

\[C_{Smw}(t) = \arctan \left(\log(f_i(t)) \ast K \right) \]

- Where: \[K(t) = \frac{1}{F_c(t)/N_c} \]
- C is the set of contrastive domains, \(F_c(t) \) is the frequency of \(t \) in all contrastive domains of \(C \) normalized on \(N_c \) that is the sum of all frequencies in \(C \) for each \(t \) in \(L \).
Case Studies

- Art History case study:
 - Aim: domain specific term extraction
 - Corpus of Art history websites, 326,066 tokens.
 - Manually collected by a domain expert
 - Open domain contrastive Corpus: PAROLE.
 - Italian texts of different types, 3 millions tokens.

- Legislative-environmental case study
 - Aim: “double” domain terminology extraction and classification.
 - Collection of Italian European Legal Texts concerning the environmental domain, 394,088 tokens
 - Contrastive corpora used:
 - PAROLE.corpus.(open-domain)
 - Collection of European Legal Texts concerning the consumer protection domain, 72,210 tokens (Domain specific)
Art History case study

- Extraction of MWT candidates [C-NC-Value]
 - Selection of a top list of C-NC-Value ranked candidates (threshold empirically set at 600 terms).
- Contrast: against the open domain corpus PAROLE.
 - Final list \(L \) of 300 domain specific terms.

Flowchart:
1. Art History Corpus
2. NLP tools
3. Linguistic filters
4. Statistical filter
5. First 600 terms extracted
6. Contrastive ranking against PAROLE
7. Final list of 300 artistic terms
Legislative Case study

- Extraction of MWT candidates [C-NC-Value]
 - Selection of a top list of C-NC-Value ranked candidates (threshold empirically set at 600 terms).
- 1th contrast: against the open domain corpus PAROLE.
 - List L of 300 legal and environmental terms.
- 2th contrast: against Legal Corpus on consumer protection
 - Final list L new ranking:
 - Top list: environmental terms [rifiuto pericoloso – dangerous waste]
 - Bottom list: legal terms [diritto interno – national law]
Legislative Case study

- Extraction of MWT candidates [C-NC-Value]
 - Selection of a top list of C-NC-Value ranked candidates (threshold empirically set at 600 terms).
- 1th contrast: against the open domain corpus PAROLE.
 - List L of 300 legal and environmental terms.
- 2th contrast: against Legal Corpus on consumer protection
 - Final list L new ranking:
 - Top list: environmental terms [*rifiuto pericoloso – dangerous waste*]
 - Bottom list: legal terms [*diritto interno – national law*]
Evaluation methodology

- Automatic evaluation using gold standard resources
 - Term list provided by domain experts.
 - EartH, Environmental Applications Reference Thesaurus
- Manual evaluation, of unmatched terms, carried out by a domain expert
 - Gold standard resources do not have proper coverage of complex terms.
 - Art domain - Art History Department, University of Pisa.
 - Environmental – Institute of Atmospheric pollution (CNR).
 - Legal – Scuola Superiore Sant Anna, Pisa (Ossevatorio sul danno alla persona)

Evaluation has been carried on wrt the results obtained with:

- $NC\text{-}Value$
- $Csmw$
- $CsvH$
- $TF\text{-}ITF$
Evaluation – Art history domain

- List of 300 extracted artistic terms
- Extracted MWT distributed into 10 groups of 30 terms each.
- Out of the first 300 terms, CsvH method retrieved the largest amount of Artistic terms.
- TFITF and Csmw have more domain-specific terms in the top list.

<table>
<thead>
<tr>
<th>Group</th>
<th>NC-Value</th>
<th>CS-vH</th>
<th>TFITF</th>
<th>Csmw</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-30</td>
<td>24</td>
<td>28</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>30-60</td>
<td>20</td>
<td>21</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>60-90</td>
<td>20</td>
<td>23</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>90-120</td>
<td>18</td>
<td>20</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>120-150</td>
<td>20</td>
<td>24</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Tot</td>
<td>102</td>
<td>116</td>
<td>119</td>
<td>124</td>
</tr>
</tbody>
</table>
Evaluation – Legal domain

- List of 300 extracted artistic terms
- Extracted MWT distributed into 10 groups of 30 terms each.
- Top list: mainly environmental terms
- Bottom list: mainly legal terms

![Graph showing environmental terms distribution](image-url)
Evaluation – Legal domain

- List of 300 extracted artistic terms
- Extracted MWT distributed into 10 groups of 30 terms each.
- Top list: mainly environmental terms
- Bottom list: mainly legal terms
Conclusions and future developments

Novel approach to MWT extraction combining the C–NC value method with a contrastive ranking technique, aimed at:

- Reducing noise deriving from common words
- Discriminating semantically different types of terms within heterogeneous terminologies (as in the legal domain)

- **Current directions of research include:**

 Improvements to the MWT extraction algorithm
 Improvements of the multi-domain terminology extraction task
 Application of the proposed approach to identify neologisms from diachronic corpora of newspapers texts.

Thanks for your attention!