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Motivation

Motivation

Fine-grained deep grammars

@ Wide and meaningful coverage.
@ Many uses in NLP:

@ Machine Translation
@ Question Answering
o ...

— But: often license a vast number of structures that make the
usage of those grammars difficult.

Solution: Parse disambiguation

Using statistical approaches to train a model in order to rank the
different parses.
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Motivation

Approaches

Generative methods

Probabilistic parsing; PCFG like derivations
@ Early pruning.
@ Difficult to integrate non-local features.
@ Independence assumption between features.

@ Inflexible: hard to integrate new features.

[Magerman, 1995], [Collins, 1997], [Charniak, 1997], [Roark, 2001], ..
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Motivation

Approaches (2)

Discriminative methods

Ranking parses; Log Linear models:
@ Re-ranking of the parser’s output.
@ Easy integration of new features.
@ No independence assumption.

[Charniak, 2000], [Riezler et al., 2002], [Toutanova et al., 2005],
[Collins and Koo, 2005], [Fujita et al., 2007]
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Experiments

The Setup

Delph-in Colloboration
Set of tools and Grammars for NLP.

@ Available at http://www.delph-in.net.

@ The Datasets: LOGON and WeScience Treebanks.

@ The Grammar: HPSG English Resource Grammar (Lingo
ERG).

@ The Parser: PET parser for unification-based grammars.
o Contains deep syntactic and semantic information.

@ The Classifier: Maximum Entropy classifier
@ TADM - Toolkit for Advanced Discriminative Models.
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Experiments
(1)

Baseline

Choosing the Baseline

Informative Baseline

@ Should allow comparison with other approaches:

@ Common practice to choose syntactic features
([Toutanova et al., 2005], [Fujita et al., 2007], [Zhang et al., 2007]).

@ Should provide a good testing measure for our approach:
@ We are testing the effects of adding semantic information.
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Choosing the Baseline

Informative Baseline

@ Should allow comparison with other approaches:

@ Common practice to choose syntactic features
([Toutanova et al., 2005], [Fujita et al., 2007], [Zhang et al., 2007]).

@ Should provide a good testing measure for our approach:
@ We are testing the effects of adding semantic information.

—Using syntactic elements only, incorporating non-local features.
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Experiments
oe

Baseline

Baseline: Results

In Domain Results:

LOGON WeScience
features 1-best 10-best 1-best 10-best

p0 | 233,982 49.2154  75.1783 | 40.2282  69.0442
pl | 349,564 54.0656 78.8873 | 43.2239 71.6119
p2 | 1,008,198 | 54.3509 77.4607 | 46.7902 74.7503
p3 | 2,493,884 | 55.7774 79.7432 | 49.2154  75.1783

Domain Adaptation Results:

WS-LO LO-WS
features 1-best 10-best 1-best 10-best

p0 | 233,982 31,6690 62.9101 | 27.1041 56.4907
pl | 349,564 32.6676 63.7660 | 29.5292  62.9201
p2 | 1,008,198 | 35.0927 67.0470 | 30.2442 59.7717
p3 | 2,493,884 | 34.0941 66.9044 | 31.5263 63.4807
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Deep semantic features

Semantic Modules

Minimal Recursion Semantics
@ Fully underspecified flat semantics.
@ Captures ambiguities.
@ Highly Expressive.

@ Can be easily incorporated into the constraint based HPSG.
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Deep semantic features

Semantic Modules

Minimal Recursion Semantics

@ Fully underspecified flat semantics.
@ Captures ambiguities.
@ Highly Expressive.

@ Can be easily incorporated into the constraint based HPSG.

-
Elementary Dependency Structures

@ Shallow Dependency structures

@ Captures basic relations between words, particularly
predicate-argument relations (similar to an MRS solved form).

@ Can be automatically extracted from the MRS.

A\
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Deep semantic features

Example

V NP with the
\ i telescope
saw the tree

Syntactic Features:

<syn:p0>vp:v,np
<syn:pl>vp,vp:v,np
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Deep semantic features

Example

TN

_with_rel  telsecope rel

NS

_boy rel _saw_rel _tree rel

Syntactic Features:
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Syntactic Features:

Semantic Features:
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Experiments
0000000e
Deep semantic features

Example

TN

_with_rel  telsecope rel

D

_boy rel _saw_rel _tree rel

Syntactic Features:

Semantic Features:
<syn:p0>vp:Vv,np
<syn:pl>vp,vp:Vv,np
<syn:p2>s,vVp,Vp:V,np

<sem:d1>with:telescope
<sem:d2>saw,with:telescope
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Results

Semantics Models

In Domain Results:

LOGON WeScience
Model 7 features 1-best 10-best 1-best 10-best
Random Pick 14.7113  37.0314 | 13.5550 35.0914
sem-eds 1,265,442 31.8116  67.4750 | 18.9728 50.9272
sem-mrs 159,420 37.8031 72.1825 | 25.3922 58.2025

sem-combined | 1,424,862 425106 76.4621 | 28.1027 64.6219

Domain Adaptation Results:

WS-LO LO-WS
Model # features 1-best 10-best 1-best 10-best
Random Pick 14.7113  37.0314 | 13.5550 35.0914
sem-eds 1,265,442 14.4079 42.7960 | 12.6961 40.9415
sem-mrs 159,420 21.2553  53.9229 | 17.4037  49.3580

sem-combined | 1,424,862 25.2496  56.2054 | 18.5449  52.6390
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Combined Models

In Domain Results:

Results

LOGON WeScience
features 1-best 10-best 1-best 10-best
syn:p3 2,493,884 | 55.7774 79.7432 | 49.2154  75.1783
sem:mrs+eds | 2,736,573 | 42.5106 76.4621 | 28.1027 64.6219
syn+sem 5,230,457 | 59.6291 82.0256 | 47.3609 75.3209
Domain Adaptation Results:
WS-LO LO-WS
features 1-best 10-best 1-best 10-best
syn:p3 2,493,884 | 33.3808 64.1949 | 31.5263 63.4807
sem:mrs+eds | 2,736,573 | 25.2496 56.2054 | 18.2596 52.4964
syn+sem 5,230,457 | 36.9472 68.1883 | 29.6718 62.3395
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Conclusion

Conclusion

@ Syntactic features have reached their limit:
= adding semantic information.

@ MRS information performs very well with a small set of
features.

@ Using different data-sets might influence the results.
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Wide coverage parsing with stochastic attribute value
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Stochastic HPSG parse disambiguation using the Redwoods
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