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Motivation

Learning methods require large general corpora and knowl-
edge repositories
In specific domains ontologies are extremely poor
Manually building ontologies is a very time consuming and
expensive task
Automatically creating or extending ontologies needs large
corpora and existing structured knowledge to achieve rea-
sonable performance
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Motivation

Problems
Scarcity of domains covered by existing ontologies
Not relevant existing ontologies to expand for target domain

⇓

Solution
We propose a model that can be used in different specific
knowledge domains with a small effort for its adaptation
Our model is learned from a generic domain that can be
exploited to extract new informations in a specific domain
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Our Learner Model

Model exploits the information learned in a background
domain for extracting information in an adaptation domain
Model is based on the probabilistic formulation
Model takes into consideration corpus-extracted evidences
over a list of training pairs
Model is used to estimate the probabilities of the new
instances computing a new feature space
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Corpus Analysis
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Corpus Analysis
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A Probabilistic Model

Probabilistic model for learning ontologies form corpora
Ontology is seen as a set O of relations R over pairs Ri,j

If Ri,j is in O, i is a concept and j is one of its generalization

Goal: Estimate Posterior Probability

P(Ri,j ∈ O|E)

where E is a set of evidences extracted from corpus
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Logistic Regression

Logit
Given two variables Y and X, the probability p of Y to be 1
given that X = x is: p = P(Y = 1|X = x) and Y ∼ Bernoulli(p)

logit(p) = ln
(

p
1−p

)

logit(p) = β0 +β1x1 + ...+βkxk

Given regression coefficients the probability is

p(x) =
exp(β0 +β1x1 + ...+βkxk)

1+ exp(β0 +β1x1 + ...+βkxk)
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Estimating Regression Coefficients

We estimate the regressors β0,β1, ...,βk of x1, ...,xk with
maximal likelihood estimation
logit(p) = β0 +β1x1 + ...+βkxk

solving a linear problem

−−−−→
logit(p) = Eβ

where

E =


1 e11 e12 · · · e1n
1 e21 e22 · · · e2n
...

...
...

. . .
...

1 em1 em2 · · · emn


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Background Ontology Learner

Using a logistic regressor based on the Moore-Penrose
pseudo-inverse matrix (Fallucchi and Zanzotto, RANLP 2009)

β̂ = X+
CB

l

where:
X+

CB
is the pseudo-inverse matrix of the evidences matrix

XCB obtained from a generic corpus CB

l is the logit vector (
−−−−→
logit(p))
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Estimator for Application Domain

The logit of the testing pairs

l′ = αXCA β̂

where:
α is a parameter used to adapt the model by the β vector to
the new domain
XCA is the inverse evidence matrix obtained from an
adaptation domain corpus CA

β̂ is the regressors vector

Then, step by step testing pairs probability

pi = exp(li)
1+exp(li)
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Experimental Set-Up

1 Target Ontologies
Training: pairs that are in hyperonym relation in WordNet
==> about 600000 pairs of words
Testing: pairs in Earth Observation Domain
==> about 404 pairs of words

2 Corpus
Training: English Web as Corpus, ukWaC (Ferraresi,2008)
==> about 2700000 web pages
Testing: corpus related to Earth Observation Domain
==> about 8300 web pages

3 Feature Spaces
bag-of-words and n-grams
windows: length 3 tokens
==> about 280000 features
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Annotators for Testing Pairs

Three annotators (A1, A2 and A3) to build three different
ontologies
Two annotators are expert in the domain (A1 and A2), the
third one is not (A3)
A1 and A2 have different levels of expertise: A1 is a young
expert in the domain and A2 an older one
Each annotator made a binary classification of 641 pairs of
words in Earth Observation Domain

Only 404 pairs are found in Earth Observation Corpus
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Evaluating the Quality of Annotations

Quality of the annotation procedure according to
inter-annotation agreement among annotators

Pairwise Agreement
Inter-annotators agreement for each pair of annotators
Contigency table

Multi−π Agreement
Inter-annotators agreement for all annotators together
Agreement table
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Pairwise Agreement 404-annotation

A1
yes no

yes 40 32 72
A2

no 35 297 332
75 329 404

pair1 = (A1 ,A2)

A1
yes no

yes 65 54 119
A3

no 10 275 285
75 329 404

pair2 = (A1 ,A3)

A2
yes no

yes 53 66 119
A3

no 19 266 285
72 332 404

pair3 = (A2,A3)

Table: Contingency tables for pairwise annotator agreement

Ao Ae kappa

pair1 = (A1,A2) 0.8341584 0.7023086 0.4429077
pair2 = (A1,A3) 0.8415842 0.6291663 0.5728117
pair3 = (A2,A3) 0.7896040 0.6322174 0.4279336

Table: pairwise agreement
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Multi−π Agreement 404-annotation

pairs of words A1 A2 A3 Yes No

(forest,terra firma) 1 1 1 3 0
(wind,process) 0 0 0 0 3
(forest,object) 0 0 0 0 3
(cloud,state) 0 1 0 1 2
(soil,object) 0 1 1 2 1

(wind,breath) 0 0 0 0 3
(wind,act) 0 0 0 0 3

(topography,geography) 1 1 1 3 0
. . . . . . . . . . . . . . . . . .

TOTAL 75 72 119 266 (0.22) 946 (0.78)

Table: Agreement table

Multi-π agreement
Ao = 0.82382 Ae = 0.65739

kappa = 0.48577
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Experiments

Objective
To compute a model using both a background domain and an
existing ontology can be positively used to learn the isa relation
in Earth Observation Domain.

We compare two systems
WN-System: existing hyperonym links in WordNet
Our-System: our learner model

measuring their performance to replicate the three target
ontologies produced by the three annotators
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Results

annotators recall precision f-measure

A1 0,36 0.184932 0,244344
A2 0,305556 0,150685 0,201836
A3 0,470588 0,383562 0,422642

Table: WN-System against the 3 annotators

annotators recall precision f-measure

A1 0,493333 0,253425 0,334842
A2 0,4305556 0,212329 0,284404
A3 0,4369748 0,356164 0,392453

Table: Our-System against the 3 annotators
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Conclusions

We propose a model adaptation strategy that use a back-
ground domain to learn the isa relations in a specific do-
main
Experiments show that this way of using a model identified
in a background domain is helpful to learn the isa relation
in Earth Observation Domain.
We will try to learn ontologies in other target domain
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