
Dan Flickinger♣, Stephan Oepen♠, Gisle Ytrestøl♠

♣ Stanford University, Center for the Study of Language and Information
♠ University of Oslo, Department of Informatics

20 May 2010
LREC 2010, Malta
Annotation of the Wikipedia: Syntax and Semantics

Overview

- Extraction of relevant textual content
- Preprocessing and sentence segmentation
- Automatic parsing and disambiguation of full corpus
- Annotation export in several formats
- Manual annotation of NLP subcorpus
Motivation: Why Annotate the Wikipedia?

- Large on-line corpus of high-quality text
- Interesting and relevant content
- Mix of native and non-native authors
- Common annotation target: comparison and combination
Existing DELPH-IN Resources Used in WikiWoods

Consortium for deep linguistic processing resources:
www.delph-in.net

- Efficient parser: PET
- Broad-coverage, high-quality English Resource Grammar
- Minimal Recursion Semantics (MRS)
- Redwoods treebank annotation tools
- Statistical tools and methods for disambiguation
Format of Annotations for Each Sentence

Syntactic Analysis (HPSG)
- Full derivation tree
- Labeled with identifiers of constructions, lexical entries
- Recipe for constructing complete typed feature structure

Semantics (MRS)
- Fully linked graph of all elementary predications (relations)
- Head-argument and head-modifier dependencies
- Details of entities, events/states (e.g. number, aspect)
- Underspecified scope constraints
Format of Annotations for Each Sentence

<table>
<thead>
<tr>
<th>Syntactic Analysis (HPSG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Full derivation tree</td>
</tr>
<tr>
<td>• Labeled with identifiers of constructions, lexical entries</td>
</tr>
<tr>
<td>• Recipe for constructing complete typed feature structure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semantics (MRS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fully linked graph of all elementary predications (relations)</td>
</tr>
<tr>
<td>• Head-argument and head-modifier dependencies</td>
</tr>
<tr>
<td>• Details of entities, events/states (e.g. number, aspect)</td>
</tr>
<tr>
<td>• Underspecified scope constraints</td>
</tr>
</tbody>
</table>
The song was later covered by Harry Nilsson.
The song was later covered by Harry Nilsson.

The song was covered by Harry Nilsson.
Sample Semantic Annotation

The song was later covered by Harry Nilsson.

\[
\left< h_1, \\
h_3: _\text{the}_q(x_5, h_6, h_4), h_7: _\text{song}_n_\text{of}(x_5\{\text{PERS 3, NUM sg}\}, _), \\
h_9: _\text{later}_a_1(_, e_2), \\
h_9: _\text{cover}_v_1(e_2\{\text{SF prop, TENSE past}\}, x_{11}, x_5), \\
h_{16}: \text{compound}_\text{name}(_, x_{11}, x_{17}), \\
h_{19}: \text{proper}_q(x_{17}, h_{20}, h_{21}), h_{22}: \text{named}(x_{17}\{\text{PERS 3, NUM sg}\}, \text{Harry}), \\
h_{13}: \text{proper}_q(x_{11}, h_{14}, h_{15}), h_{16}: \text{named}(x_{11}\{\text{PERS 3, NUM sg}\}, \text{Nilsson}) \\
\{ h_{20} = q h_{22}, h_{14} = q h_{16}, h_6 = q h_7 \} \right>
\]
The song was later covered by Harry Nilsson.
Method

Preprocessing
- Keep textual content, ‘linguistic’ markup (templates, fonts)
- Remove non-linguistic elements, including tabular content
- Use regular expression pattern-matching at textual level
- Produce output in plain text format, one sentence per line

Corpus organization
- Text files in segments of 100 consecutive articles
- Globally unique identifier for each utterance
- Several formats: raw, text exchange, Redwoods treebank
Method

Preprocessing
- Keep textual content, ‘linguistic’ markup (templates, fonts)
- Remove non-linguistic elements, including tabular content
- Use regular expression pattern-matching at textual level
- Produce output in plain text format, one sentence per line

Corpus organization
- Text files in segments of 100 consecutive articles
- Globally unique identifier for each utterance
- Several formats: raw, text exchange, Redwoods treebank
WeScience: Manually Annotated Subcorpus

Gold-standard disambiguation
- Higher-quality annotations
- Basis for estimates of expected error rates
- Training data for statistical parse disambiguation

Subcorpus size
- 100 articles on Natural Language Processing
- 16 segments, of which 3 are held out for testing
- 11,500 utterances in 13 annotated segments
- 10,100 parsed, 9,200 manually validated/disambiguated (80%)
WeScience: Manually Annotated Subcorpus

Gold-standard disambiguation
- Higher-quality annotations
- Basis for estimates of expected error rates
- Training data for statistical parse disambiguation

Subcorpus size
- 100 articles on Natural Language Processing
- 16 segments, of which 3 are held out for testing
- 11,500 utterances in 13 annotated segments
- 10,100 parsed, 9,200 manually validated/disambiguated (80%)

Corpus overview

- July 2008 snapshot
- Filtering out of very short articles, redirects, etc.
- 1.3 million articles, 55 M utterances, 900 million words

Automatic annotation

- Parse each utterance using PET and ERG with preprocessor/tagger
- Record most likely analysis (WeScience-trained model)
- Average ‘raw’ parse coverage at about 85%

Corpus overview
- July 2008 snapshot
- Filtering out of very short articles, redirects, etc.
- 1.3 million articles, 55 M utterances, 900 million words

Automatic annotation
- Parse each utterance using PET and ERG with preprocessor/tagger
- Record most likely analysis (WeScience-trained model)
- Average ‘raw’ parse coverage at about 85%
Sample Evaluation of Annotation Quality

- Random 1000 utterances from 500,000-utterance set
- Coarse-grained manual evaluation:
 - correct: No errors in syntax or semantics
 - nearly correct: One or two errors
 - incorrect
- Roughly 82% receive correct or nearly correct analyses
Sample Evaluation of Annotation Quality

<table>
<thead>
<tr>
<th>Item Length</th>
<th>Incorrect Parse</th>
<th>Nearly Correct</th>
<th>Correct Parse</th>
<th>Total Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 4</td>
<td>3</td>
<td>10</td>
<td>250</td>
<td>265</td>
</tr>
<tr>
<td>5 – 14</td>
<td>44</td>
<td>49</td>
<td>237</td>
<td>333</td>
</tr>
<tr>
<td>15 – 24</td>
<td>50</td>
<td>71</td>
<td>123</td>
<td>248</td>
</tr>
<tr>
<td>≥ 25</td>
<td>50</td>
<td>51</td>
<td>47</td>
<td>154</td>
</tr>
<tr>
<td>Totals</td>
<td>147</td>
<td>181</td>
<td>657</td>
<td>1000</td>
</tr>
</tbody>
</table>
Outlook

- Full annotated corpus will be available this summer: http://www.delph-in.net/wikiwoods/
- Expect some 47 million annotated utterances
- Will adapt robust parsing methods to fill 15% gap in coverage
- Will continue validation and correction
- Expect use for e.g. information extraction, lexical semantics, ontology learning