New Tools for Web-Scale N-grams

Dekang Lin, Kenneth Church, Heng Ji, Satoshi Sekine, David Yarowsky, Shane Bergsma, Kailash Patil, Emily Pitler, Rachel Lathbury, Vikram Rao, Kapil Dalwani, Sushant Narsale

> Presented by: Shane Bergsma, University of Alberta LREC 2010

The Team

Member	Affiliation	Member	Affiliation
Dekang Lin	Google	Ken Church	JHU
Heng Ji	CUNY	Satoshi Sekine	NYU
David Yarowsky	JHU	Shane Bergsma	Univ. of Alberta
Kailash Patil	JHU	Emily Pitler	UPenn
Rachel Lathbury	Univ. of Virginia	Vikram Rao	Cornell
Kapil Dalwani	JHU	Sushant Narsale	JHU

Goals

- Investigate the use of web-scale N-grams
- Create tools for the NLP community:
 - Better tools for big data
 - Flexible, efficient ways to collect counts from web-scale text
- Apply big data to big problems

Search Engines vs. N-grams

- Search Engines
 - Too slow for *millions* of queries
- Web-Scale N-gram Corpus:
 - Compressed version of text on web
 - N words in sequence + their count on web:

Workshop at ACL	367
Workshop at COLING	53
Workshop at LREC	156

N-grams For Lexical Knowledge

- Animate Nouns:
 - divorcee is animate, divorce is not
- Simple patterns: "NP who" vs. "NP which"

recent conversation	which 10	
recent debate	which 10	
recent divorcee	who 60	
recent meeting	which 232	who 13
recent opinion poll	which 24	

...

N-gram Data

- Google N-gram Version 1:
 - 1 trillion token corpus (Brants & Franz, 2006)
- Google N-gram Version 2: with POS tags
 - De-duped, converted digits to '0', URLs and e-mail addresses to '<URL>' and '<EMAIL>'
 - Today: focus on tools for Google V2

N-gram Data

- N-grams in Wikipedia

 by Satoshi Sekine at NYU
- Inverted-Index Tools:
 - Part-of-speech, chunk, and named-entity Ngram matching in Wikipedia
 - Sekine & Dalwani, LREC 2010:
 - Today, 18:20-19:40, P34: Knowledge Discovery

Google N-grams Version 2

• POS Tags:

flies1643568NNS/611646 VBZ/1031922caught the flies11VBD/DT/NNS/,/11plane flies really well10NN/VBZ/RB/RB/10

- Organization
 - 1000 files, 500 MB each, roughly 500 GB total
 - Index \rightarrow given a query, seek to a position in a file

Tool Design

- Typical usage: Retrieve all the N-grams containing the word *cheetah*
- Typical N-gram Data:
 - cheetah eats grass cheetah is an animal
 - faster than a cheetah

Rotated N-grams

faster than a cheetah \rightarrow

faster than a cheetah

than a cheetah >< faster

a cheetah >< than faster

cheetah >< a than faster

 Sort rotated N-grams: all the N-grams containing *cheetah* are now sequential

cheetah N-grams

cheetah >< a by attacked	13	VBN IN DT NN 13		
cheetah >< captive-born	12	JJ NN 12		
cheetah >< endangered the save 12 VB DT JJ NN 12				
cheetah >< missing a rescue	21	VB DT JJ NN 21		
cheetah >< stuffed	69	VBD NN 8 VBN NN 61		
cheetah attacks	26	NN NNS 22 NN VBZ 4		
cheetah breeding	248	NN NN 55 NN VBG 193		
cheetah chasing a gazelle	12	NN VBG DT NN 12		
cheetah enclosure	100	NN NN 100		
cheetah fur	109	NN NN 109		
cheetah habitat	131	NN NN 131		

....

Patterns

(word-seq ([A-Z][A-Z]* 0000 Workshop))

- Apply to all N-grams that contain "Workshop"

Patterns

(word-seq ([A-Z][A-Z]* 0000 Workshop))

ACL	524	AAAI	229	INEX	83	SIGMM	45
OOPSLA	475	AAMAS	189	UML	68	IJCAR	45
CHI	452	CLEF	167	ECDL	67	AOSD	41
ECOOP	384	NIPS	159	ICAPS	66	GECCO	40
SIGIR	346	EACL	157	ICDM	58	IROS	39
ACM	291	NAACL	151	JSAI	55	PRICAI	37
ICSE	273	ESSLLI	151	SIGCOMM	53	GONG	37
IJCAI	261	COLING	128	FNCA	53	CVPR	36
LREC	245	CSCW	116	KDD	50	AIPS	34
ECAI	244	ITS	102	VR	47	ETAPS	33
IEEE	243	WWW	89	IPDPS	47	LICS	32
SIGPLAN	230	ICML	89	VLDB	46	ISWC	31

Applications of Patterns

- Lexical Property: Countability
- The noun *water* is not countable:
 - much water, some water, etc. \rightarrow good
 - many waters, a water \rightarrow bad
- "some water" 169,017
- "a water" 1,048,362

Applications of Patterns

a water {supply, bath, bottle, system, tank, treatment, molecule, tower, shortage, filter, balloon, buffalo, fountain, pipe...}

Patterns – using POS tags

 Composite patterns: (seq (word = a))(word = water) (tag ~ [^N].*)) doesn't match: a water bottle a water tank

Commands

- Commands:
 - Process returned N-grams
 - Count things, print things
- Modes:

batch processing: collect information for *all* NPs vs.

sequential: get counts for one NP at a time

Availability

- Data: Google V2 coming soon
- Code:
 - http://code.google.com/p/ngramtools/

- For matching raw text AND N-grams

• Applications:

Ji & Lin, Gender & Number for Mention Detection, PACLIC 2009

Bergsma, Pitler, & Lin, Web-scale N-grams in Supervised Classifiers, ACL 2010

Thanks

- Center for Language & Speech
 Processing, Johns Hopkins University
- IBM/Google Academic Cloud Computing Initiative
- Workshop Sponsors:
 - NSF, Google Research, DARPA

