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How can we improve information 
retrieval?

(Especially for morphologically rich languages with 
considerable free word order and long distance 
relations between words?)
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The Task

For given document 
collection and given query, 
rank documents with 
relevance to the query.



Test Collection
● Czech collection from Cross Language Evaluation 

(CLEF) Forum 2007 Ad-Hoc Track
● 81,735 documents, 50 topics
● average document length: 349.46 words
● 15.24 documents in average assessed as relevant to 

each topic



Test Collection
● Czech collection from Cross Language Evaluation 

(CLEF) Forum 2007 Ad-Hoc Track
● 81,735 documents, 50 topics
● average document length: 349.46 words
● 15.24 documents in average assessed as releavant to 

each topic
● Results on this shared task published in Nunzio et al., 

2008:
● MAP: 35.68%, 34.84%, 32.04%
● best known MAP: 42.42% (Dolamic, Savoy (2008))



Topics

● Queries describing „information need“ in natural 
language.

● TREC format: a structure of three fields
● title: keyword query
● desc: more detail (one sentence)
● narr: detailed description of relevant documents

● Randomly divided into a development set of 10 
topics and test set of 40 topics.



Topic Example
<title>

Inflace Eura

</title>

<desc>

Najděte dokumenty o růstech cen po zavedení 
Eura.

</desc>

<narr>

Relevantní jsou jakékoli dokumenty, které 
poskytují informace o růstu cen v jakékoli zemi, 
v níž byla zavedena společná evropská měna.

</narr>



Vector space model for IR



Language modeling in IR
● Notation:

● document: D
● collection of documents: C
● query:
● surface bigram: 
● dependency bigram: 

● Documents D are ranked by probability P(D|Q) of being 
(independently) generated from queries Q.

● From Bayes, we consider „reverted“ probability P(Q|D).

Q=q1,q2, ... , qn

qi , qi1

 p qi , qi



Language models

● Unigram model
●

● Where             stands for P(D|Q) and              is the raw 
count of word      in document D  

● Bigram (surface) model
●

PD Q=∏ PD qi=∏
C D qi
∣D∣

PD Q =∏ PD qi , qi1=∏
C D qi , qi1

∣D∣

PD Q CD qi 
qi



Dependency tree

Dependency tree for sentence „The American 
presidential election was followed closely.“



Dependency bigram model

PDQ=∏qi :∃ pqi
PD p qi , qi



Experimental Setup
● baseline: plain unigram model
● comparison: surface vs. dependency bigram 

model
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Experimental Setup
● baseline: plain unigram model
● comparison: surface vs. dependency bigram 

model
● lemmatization (= linguistically motivated means 

of stemming)
● smoothing: Jelinek-Mercer
● combination of all models by simple linear 

interpolation
● coefficients fitted by simple grid search using 

development data

● Stopwords: 256 words from UniNE



Experimental Setup II (Tools)
● lemmatization: Hajič, 2004
● parsing: McDonald et al., 2005
● evaluation: MAP with trec_eval
● morphological and syntax analysis performed in 

TectoMT framework (Žabokrtský et al., 2008)



Results

model MAP
unigram-surface-form 0.3116
unigram-surface-lemma 0.3731
bigram-surface-form 0.1775
bigram-surface-lemma 0.2023
bigram-dependency-form 0.1826
bigram-dependency-lemma 0.2447
combination 0.3890
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Bigram surface (20.23) 
vs. bigram dependency (24.47)



Conclusions

● We have presented a simple dependency bigram 
language model for information retrieval.

● With this model, we have outperformed most of 
the results published in Nunzio et al., 2008.

● Finally, we have found examples, where syntax 
model performs significantly better than surface 
bigram model.



Thank you!
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