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Abstract 

Identification of transliterations is aimed at enriching multilingual lexicons and improving performance in various Natural Language 
Processing (NLP) applications including Cross Language Information Retrieval (CLIR) and Machine Translation (MT). This paper 
describes work aimed at using the widely applied graphical models approach of ‘Dynamic Bayesian Networks (DBNs) to 
transliteration identification. The task of estimating transliteration similarity is not very different from specific identification tasks 
where DBNs have been successfully applied; it is also possible to adapt DBN models from the other identification domains to the 
transliteration identification domain. In particular, we investigate the applicability of a DBN framework initially proposed by Filali and 
Bilmes (2005) to learn edit distance estimation parameters for use in pronunciation classification. The DBN framework enables the 
specification of a variety of models representing different factors that can affect string similarity estimation. Three DBN models 
associated with two of the DBN classes originally specified by Filali and Bilmes (2005) have been tested on an experimental set up of 
Russian-English transliteration identification. Two of the DBN models result in high transliteration identification accuracy and 
combining the models leads to even much better transliteration identification accuracy. 

 

1. Introduction 

Transliteration identification is a task that is aimed at 

leading to improvements in various NLP applications 

including: Machine Translation (MT), Cross Language 

Information Retrieval (CLIR), and automated Question 

Answering (QA). A common approach to identifying 

transliterations involves using bilingual or multilingual 

corpora where the text is represented using different 

writing systems or alphabets. The transliteration 

identification task can then be specified as: given a word 

in one language (a source language), identify a matching 

transliteration or transliterations from another language’s 

(a target language) text. For example given the following 

name written using English as “Bukenya”, we are 

interested in determining its most likely target 

representation out of a set of candidates such as 

{Набенде ‘Nabende’, Букенья ‘Bukenya’, 

Фергюсон ‘Ferguson’, … , Артур ‘Arthur’}. We 

expect a good model to give the Russian representation 

“Букенья” as the most likely match for “Bukenya” 

since it is the correct representation.  

Major approaches that have been used in transliteration 

identification include: rule-based methods (Tsuji et al., 

2002), statistical methods (Bilac and Tanaka, 2005; 

Pouliquen et al., 2006) and various machine learning 

methods (Lee & Chang, 2003; Kuo et al., 2007; Lee et al., 

2006; Udupa, et al., 2008, Udupa et al., 2009; Saravanan 

and Kumaran, 2008; Oh & Isahara, 2007; Lei et al., 2009; 

Li et al., 2008; Zhou et al., 2008; Wu et al., 2009). Two 

main recent categorizations are whether the methods used 

are generative or discriminative. In this paper, we 

investigate a class of generative graphical models referred 

to as ‘Dynamic Bayesian Networks (DBNs)’. DBNs have 

found successful application in various Identification and 

Recognition tasks including: Protein Structure 

identification (Yao et al., 2008); inferring gene regulatory 

networks (Shermin & Orgun, 2009); Automatic Speech 

Recognition (ASR) (Terry & Katsaggelos, 2008), 

pronunciation classification (Filali and Bilmes, 2005), 

cognate identification (Kondrak and Sherif, 2006), 

Human behaviour modelling (Oliver & Horvitz, 2003; 

Duong et al., 2009), etc.  DBNs generalize a variety of 

models including some of the most common models that 

have been used in various Natural Language Processing 

(NLP) tasks such as Hidden Markov Models (HMMs) 

(Rabiner, 1989). The inference algorithms used in such 

models can also be seen as instantiations of some of the 

standard DBN algorithms; for example, the well known 

forward-backward algorithm used for inference in HMMs 

can be considered as a specific type of the Message 

passing algorithm used for inference in Bayesian 

Networks. Because HMMs are one of the most common 

graphical models that have previously been applied in 

identification and recognition tasks, and because of their 

classification as DBNs, this paper mainly uses them as a 

reference point while proposing DBN models for 

application to transliteration identification. Different 

types of HMMs have already been applied or investigated 

for transliteration identification (Jeong et al., 1999; Oh & 

Choi, 2001; Nabende et al., 2010) with impressive 

transliteration identification results. However, HMMs are 

restricted by conditional independence assumptions 

associated with transition and observation parameters that 

could make it difficult to improve transliteration 

identification. DBNs allow for a more general 

representation from which various factorizations can be 

modelled including learning dependencies between 

variables that are assumed independent in HMMs (Oliver 

& Horvitz, 2005). Currently, there exist different 

approaches that can be used to implement DBN models. 

This paper is not an attempt to evaluate all the available 
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approaches but is rather aimed at evaluating one 

DBN-based edit distance framework that has successfully 

been applied on tasks that are similar to transliteration 

identification (Filali and Bilmes, 2005; Kondrak and 

Sherif, 2006). The DBN-based edit distance framework 

enables the specification of various models that represent 

various random variable dependencies that may seem to 

be important factors in transliteration identification. The 

paper is organized as follows: section 2 introduces the 

concept of Dynamic Bayesian Networks and how they 

can be applied in transliteration identification; section 3 

introduces the DBN-based edit distance framework 

proposed by Filali and Bilmes (2005); section 4 describes 

the transliteration identification experimental setup and 

discusses the results obtained from applying the 

DBN-based framework to transliteration identification; 

section 5 concludes the paper with pointers to future 

work. 

2. Dynamic Bayesian Networks 

DBNs are directed acyclic graphical models that can be 

used to represent both time-series data that is generated by 

some causal process and sequence (Natural Language 

Processing or Biological) data where we are doubtful 

about the generating mechanism (Murphy, 2002). DBNs 

generalize HMMs by representing the hidden state as an 

arbitrary set of random variables with arbitrary 

conditional independence assumptions (Zweig and 

Russell, 1998). Murphy (2002) describes a number of 

advantages that are associated with using DBNs including: 

the ability to use generic DBN inference and learning 

procedures that take a lesser time; and the ability to easily 

change a model once it is represented as a DBN. Figure 1 

shows the Bayesian Networks that are needed to 

completely specify a DBN representation for the standard 

HMM which has one hidden state variable and one 

observation variable. Figure 1 shows that when 

representing a given sequence, we begin from an initial 

state x0 that is usually denoted as a start state, and proceed 

to the state at the next time step, x1 where we observe y1. It  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Bayesian networks needed to completely 

specify a DBN for the simple case of the classic HMMs. 

Following the most common convention used for 

representing graphical models (Buntine, 1994), a shaded 

node represents an observed variable while an unshaded 

node represents a hidden state variable.  

should be noted that the subscripts do not mean that we 

always proceed to a different state at each time step, 

instead, they show the movement from one time step to 

the next, and there is a possibility of staying in a particular 

state at the next time step. The hidden state variable xt can 

have only one value where we realize different 

observations at different time steps, or it can have 

different values in which we realize different observations. 

Figure 1 also shows that a state transition network and a 

chunk network are needed and they can be unrolled either 

at once or in intervals to enable doing inference over a 

particular observation sequence. We also need an end 

network where we stop at a particular end state at time T 

in the end state xT. T is the total length of the unrolled 

sequence.  

In general, a DBN is defined as a pair ˂    B0 , B→    > where 

B0 is a Bayesian network over an initial distribution over 

states, and B→ is a two slice Temporal Bayes Net (2-TBN). 

In the example of Figure 1, B0 is equivalent to the starting 

network while B→ would be composed from the transition 

and chunk networks. Given a desired window length, an 

inter-slice (e.g. the transition network) topology and 

intra-slice (e.g. the chunk network) topology are used to 

compose the initial Bayesian network B0 and the 

transition network B→ into a Bayesian network over all 

the variables within that window (Lerner, 2002) so as to 

fit a particular observation sequence. Once a particular 

DBN topology is determined, the remaining task then is 

how to do inference with it. There are two major 

categories of inference associated with DBNs: Exact 

Inference and Approximate inference. In exact inference, 

a full summation (or integration) over discrete (or 

continuous) variables is done and it is NP-hard. 

Depending on the task, exact inference may be intractable. 

A variety of approximate inference algorithms have been 

proposed to help overcome the limitations associated with 

exact inference algorithms. Details about some of the 

common DBN inference algorithms can be found in 

(Murphy, 2002).  

Currently, there exist a variety of open source and 

commercial tools that implement the semantics
1
 of DBNs. 

Two commonly used and well implemented tools that are 

associated with DBNs and are of major interest in this 

paper are: the Bayes Net Toolbox (BNT) by Murphy 

(2002), and the Graphical Models Tool Kit (GMTK) by 

Bilmes and Zweig (1998). A number of the tools differ in 

the way they represent DBNs and in the algorithms they 

implement to do inference with the DBNs. For a more 

detailed comparison of some of the common Graphical 

Model and Bayesian Network software, please see (Korb 

& Nicholson, 2004).  This paper is mostly concerned with 

the application of the GMTK toolkit to transliteration 

identification. In that regard, we adapt a DBN-based edit 

distance framework implemented using the GMTK 

toolkit to estimate transliteration similarity. The 

DBN-based edit distance framework was initially 

                                                           
1  This means that the graphs are directed and conditional 

independence relationships are determined by the notion of 

“d-separation” (Bilmes and Zweig, 2002) 
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proposed and used in the task of pronunciation 

classification by Filali and Bilmes (2005) and in cognate 

identification by Kondrak and Sherif (2006). In the next 

section we review the features of the GMTK toolkit and 

introduce the DBN-based edit distance framework. 

 

 

3. Using GMTK in Transliteration 
Similarity Estimation 

To enable the comparison of various target strings for a 

given source string, we expect the method used to 

discriminate among the target strings to determine the 

most likely target match for the source string. We follow 

the approach of training a model on correct source target 

string matches, and thereafter apply the model in 

estimating the similarity between a source string and a 

target string. In this section we describe the features of the 

GMTK toolkit that is used in specifying, training, and 

testing the DBN models described in this paper 

3.1 GMTK Features 

GMTK is aimed at implementing various approaches in 

the Graphical Models framework. GMTK mainly 

supports the semantics of Bayesian networks (Bilmes and 

Zweig, 1998). For the transliteration identification task, 

GMTK has a number of features that support the creation 

and application of various DBN models: 

GMTK generalizes the ability of specifying DBNs 

through what are referred to as Graphical Model (GM) 

templates. The templates are defined using GMTK’s 

structure specification language, GMKTL. A template 

defines a collection of frames
2
 and a chunk specifier. With 

regard to DBNs, a frame represents a time-slice that 

contains a set of variables. A frame also includes 

attributes for each of the variables such as a variable’s 

parents, type of variable (discrete, continuous), 

parameters associated with a variable and implementation 

of the parameters (for example discrete probability tables, 

deterministic relationship, decision trees, etc.) (Bilmes, 

2002). The chunk specifier defines two integers which 

divide the DBN template into a prologue (the first N 

frames); a repeating chunk; and an epilogue. The chunk 

frame can be unrolled until the network is long enough to 

represent a specific observation sequence. The GMTK 

version that we use to estimate the similarity between 

transliterations supports the creation of junction trees
3
 

that allow for easy implementation of exact inference. 

The particular algorithm used is referred to as the Frontier 

algorithm and it uses all the hidden nodes in a slice to 

d-separate the past from the future. A number of 

improvements (Murphy, 2002; Tian and Lu, 2004) have 

                                                           
2  The term “frame” is a concept in Automatic Speech 

Recognition that refers to contagious, small regions of a speech 

signal which aid in the identification of phonemes. 
3
 A junction tree algorithm uses graph theory to form graphs 

which have the same coupling properties as the original graph 

but which are ‘easier’ to deal with than the original graph.  

been suggested over the Frontier algorithm and it is 

necessary to determine the possibility of benefiting from 

applying other algorithms to the task of transliteration 

identification. All that is required to use GMTK is to 

represent our transliteration data in a format that can 

processed using the algorithms implemented in GMTK. 

We follow the approach proposed by Filali and Bilmes 

(2005) to avoid re-implementing the procedures required 

in applying GMTK on transliteration data. This approach 

uses the notion of learning edit distance using DBN 

graphical models framework.  This approach is reviewed 

in the following subsection. 

3.2 The DBN-based Edit Distance Framework 
(Filali and Bilmes, 2005) 

Filali and Bilmes (2005) use a transducer model proposed 

by Ristad and Yianilos (1998) as a baseline model in their 

DBN-based edit distance framework. When specified as a 

DBN model, the transducer model is referred to as a 

Memory-less and Context Independent (MCI) DBN 

model. Figure 2 is a graphical representation of the 

template for the MCI DBN model that was specified using 

GMTKL. In Figure 2, Z denotes the current edit operation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

Figure 2: Template for the MCI DBN model. Following 

the common convention, shaded nodes represent observed 

variables, while unshaded nodes represent hidden nodes. 

Nodes with dots represent deterministic hidden variables 

(Adapted from Filali and Bilmes, 2005).  
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(i.e. substitution, deletion, or insertion). spos is a variable 

representing the current position in the source string, and 

tpos represents the current position in the target string. s 

represents the current character in the source string and 

takes the current position variable in the source string 

spos as its parent variable, likewise, t represents the 

current character in the target string and takes the current 

position variable tpos as its parent variable . The sc and tc 

nodes are source and target consistency nodes 

respectively. sc and tc have a fixed observed value 1 and 

the only configuration of their parents are such that the 

source component of Z is s or an empty symbol (ϵ) for sc 

and t or empty symbol (ϵ) for tc, and that Z does not 

generate empty source and empty target symbols at the 

same time (Filali and Bilmes, 2005). The end node is a 

switching parent of Z as illustrated by the dashed arrow 

and represents the variable that indicates when we are past 

the end of both source and target strings, i.e when spos > 

m and tpos > n, where m and n are the lengths of the 

source and target string respectively. The send and tend 

nodes represent variables that ensure that we are at or past 

the end of the source and target strings respectively.  

Filali and Bilmes (2005) implement additional classes of 

DBN models using the MCI DBN model as a base model. 

In the other DBN model classes, Filali and Bilmes (2005)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Template for the context dependent DBN model. 

The consistency variable sc is not represented here since 

the consistency is enforced through the direct relationship 

between the edit variable Z and source symbols. 

add edges to enable modelling of various factors 

including: context where various context window sizes in 

a source language string or a target language string or both 

source and target language strings are represented; 

memory where different dependencies on the hidden edit 

operation variables are tested; position where 

dependencies on the position in the source or target string 

are tested; length where the length of the sequence is fac- 

tored into the similarity estimate for the source and target 

language strings. Figure 3 is a graphical representation of 

the template for one of the DBN models tested in this 

paper that is referred to as a Context dependent (CON) 

DBN model where the edit operation Z directly depends 

on the current and next characters in the source string. 

Apart from the CON DBN model, the other two DBN 

models tested in this paper are the Context dependent 

length (CON length) DBN model and the MCI length 

DBN model. Figure 4 shows the template for the MCI  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Template for the MCI Length unrolling DBN 

model. (Adapted from Filali and Bilmes, 2005) 
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length DBN model. In Figure 4, additional variables are 

used to implement the logic needed to factor in the length 

of the edit sequence in the final transliteration similarity 

estimate. In Figure 4, inclen, represents a stochastic 

hidden random variable whose value added to that of the 

random variable inilen determines the number of allowed 

edit operations at this point. The variable counter is used 

to determine the frame number and is used to trigger the 

random variable atReqLen when the required frame 

number is reached. The logic for factoring in the length of 

the edit sequence in the similarity estimate when using the 

CON length DBN model is specified in a way similar to 

that of the template in Figure 4. The other difference 

between the CON length DBN model and the CON DBN 

model (see Figure 3), is that the edit operation variable in 

the CON length DBN model has a direct relationship with 

only the current character in the source string while the 

edit operation variable in the CON DBN model depends 

on both the current and next characters in the source string. 

The DBN-based edit distance framework we use, takes as 

input numeric representations of the source and target 

strings when training and when determining similarity 

estimates. The numeric representations seem to simplify 

the execution of the algorithms that are used in estimating 

the different types of parameters and for determining 

similarity estimates. The transformation to numerical 

representation is, however, only reliable, if the writing 

systems being analyzed are in such a way that the 

representation of a symbol as a numeric unit does not lead 

to loss of information. A good starting point here should 

therefore be alphabetical writing systems.  In logographic 

writing systems, a symbol represents a complete 

grammatical word while in a syllabic writing system, a 

symbol represents or approximates a syllable; a direct 

transformation of a logogram or a syllabic symbol to a 

numerical representation as that required in GMTK would 

lead to loss of information to a very large extent. For the 

case of logographic and syllabic systems, an intermediate 

step is required to represent the logograms or syllabic 

symbols in a much more reasonable format before 

transforming to the numerical format required when 

applying GMTK. In this paper, we consider only 

languages most of whose symbols are part of an 

alphabetical writing system. More specifically, the DBN 

models are evaluated on Russian (that uses the Cyrillic 

alphabet) as the source language and English (that uses 

the Latin alphabet) as the target language. 

4. Experimental Setup and Results 

The data used for testing the DBNs described in section 3 

is comprised of Russian-English transliteration pairs 

obtained from the NEWS 2009 shared task on machine 

transliteration (Kumaran and Kellner, 2007). 7840 

Russian-English name pairs are extracted where each 

name has at least four
4
 characters. The data set is simply 

                                                           
4 This constraint is used to enable the evaluation of additional 

DBN models that were specified by (Filali and Bilmes, 2005). 

These DBNs are mainly associated with representing 

divided in such a way that one tenth
5
 of the dataset 

comprise testing data while the rest comprise training data. 

During training, the system of the DBN-based edit 

distance models take as input a number of correct 

Russian-English transliteration pairs and iterate through 

the data while estimating different parameters using a 

generalized Expectation Maximization (EM) algorithm. 

Basing on previous work (Filali and Bilmes, 2005; 

Kondrak and Sherif, 2006), only three iterations are used 

to train the DBN models since it was reported that more 

than three iterations led to overfitting of the DBN models. 

However, it is important to determine the optimal setting 

for the number of iterations required for training DBN 

models for transliteration identification. All the DBN 

models were trained within a single day, and apart from 

MCI length model, the decoding procedure for the other 

two DBN models was run over the 784 test names within 

one day. The difference in execution time is attributed to 

the methods of representation of some of the parameters 

in the DBN models for example the use of dense 

conditional probability tables in the MCI length DBN 

model as compared to the use of sparse CPTs (Bilmes and 

Zweig, 2002) in the CON length DBN model. During 

scoring, a source name written in Russian was compared 

against 784 candidate target names written in English. 

The list of target names was then sorted where names with 

better scores appeared at the top of the list. The rank of the 

reference target name for each source name was 

determined and used to compute Accuracy (ACC) and 

Mean Reciprocal Rank (MRR) associated with applying 

each of the DBN models. The accuracy and MRR are 

computed as follows: 

,1

1

1
{1 if : ; 0 otherwise}

N

i i i

i

ACC r r cd
N =

= ∃ =∑ , 

where N is the total number of names that are tested, ri is a 

reference transliteration against which the candidate 

transliteration cdi,1 returned at 1
st
 rank is compared with.  

1

1 1
N

i i

MRR
N R=

= ∑ ,  

where N is as defined for ACC above and Ri is the rank of 

the top reference transliteration in the returned sorted list 

of candidate transliterations. The results obtained from 

applying the DBN models described in section 3 are 

shown in Table 1. Table 2 shows the power values 

(pvalues) associated with determining the statistical 

significance of the differences in Accuracy and MRR 

between the different DBN models and combinations of 

DBN models. Ideally, the closer the pvalue is to 1, the 

more statistically significant is the difference. In Table 1, 

                                                                                               

relationships between variables in different time slices such as 

the Memory models (for dependencies between the hidden edit 

operation variables) 
5 The division of the dataset into one tenth for testing is also 

aimed at carrying out ten-fold cross validation tests for DBN 

models that will be executed efficiently 
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DBN Model ACC MRR 

MCI-L 0.9031 0.9408 

CON (si,si+1) 0.9796 0.9834 

CON-L (si) 0.9834 0.9887 

CON-L+CON 0.9949 0.9956 

CON-L+CON+MCI-L 0.9962 0.9969 

 

Table 1: ACC and MRR of the DBN models on 

Russian-English transliteration identification. Bold values 

indicate relatively higher ACC and MRR compared to the 

least performing model. 

 

 

DBN Model 
ACC 

pvalue 

MRR 

pvalue 

MCI-L vs. CON (si,si+1) 

             vs. CON-L (si) 

             vs. CON-L+CON 

             vs. CON-L+CON+MCI-L 

1.00 

1.00 

1.00 

1.00 

0.99 

1.00 

1.00 

1.00 

CON (si,si+1) vs. CON-L (si) 

                     vs. CON-L+CON 

             vs. CON-L+CON+MCI-L 

0.08 

0.77 

0.85 

0.14 

0.66 

0.77 

CON-L (si) vs. CON-L+CON 

          vs. CON-L+CON+MCI-L 

0.59 

0.71 

0.34 

0.48 

 

Table 2: Power values (pvalue) for differences in accuracy 

and MRR between the different DBN models and 

combinations of DBN models at a significance level of 

0.05. pvalues in bold show a statistically significant 

difference between the respective models. 

 

MCI-L is the MCI Length DBN model. CON is the 

Context dependent DBN models where the edit operation 

Z depends on the current character and the next character 

in the source language string, and CON-L is the Context 

dependent length model as defined in section 3. Table 1 

shows that the Context dependent length model performs 

better than the other two DBN models, but only 

significantly better than the MCI length DBN model as 

suggested by the power values in Table 2. The MCI length 

model performs worst despite taking a longer time to 

execute on the data set as compared to the other two DBN 

models. Table 1 also shows that a combination of the 

CON model and the CON-L model results in a much 

better transliteration identification accuracy and MRR 

compared to the individual application of the two DBN 

models. The performance is improved slightly when the 

MCI length model is combined with the other two models. 

5. Conclusion 

This paper introduced the use of DBNs in an experimental 

transliteration identification task. Results show high 

transliteration identification quality of the DBN models 

when applied on Russian-English datasets. The results 

also suggest that more benefit arises out of a combination 

of the models as compared to individual applications of 

the models. This performance, however, comes at a cost 

because the DBN models take much longer time to 

execute. A comparison with the best scoring pair HMMs 

on the same data set (Nabende, 2010) resulted in similar 

transliteration identification quality, which implies that 

more investigation is needed regarding the efficiency of 

the DBN models when applied to transliteration 

identification.  

As future work, we would like to evaluate the DBN 

framework on more language pairs apart from 

Russian-English. This means that languages using 

different writing systems apart from alphabetical writing 

systems could also be used for evaluating the DBN-based 

edit distance framework. Secondly, we expect to evaluate 

the DBN framework on mining transliterations from 

Web-based resources such as Wikipedia. Thirdly, it 

should be interesting to determine the applicability of the 

DBN models on a transliteration generation task where 

DBN model parameters are used. Fourthly, the models 

tested in this paper are only a small fraction of the number 

of DBN models that can be specified for and can be 

feasibly applied to transliteration identification; it is 

important that we investigate the effect of additional 

factors and dependencies using the framework on 

transliteration identification quality. Finally, GMTK lacks 

in a variety of procedures used for inference, it is 

necessary to determine whether improvements can be 

achieved by using different inference procedures; the 

BNT toolkit seems to be equipped with different 

approaches to inference and is therefore a likely tool to 

start with. 
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